安徽省宣城市2023-2024學年高考數(shù)學考前最后一卷預測卷含解析_第1頁
安徽省宣城市2023-2024學年高考數(shù)學考前最后一卷預測卷含解析_第2頁
安徽省宣城市2023-2024學年高考數(shù)學考前最后一卷預測卷含解析_第3頁
安徽省宣城市2023-2024學年高考數(shù)學考前最后一卷預測卷含解析_第4頁
安徽省宣城市2023-2024學年高考數(shù)學考前最后一卷預測卷含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

安徽省宣城市2023-2024學年高考數(shù)學考前最后一卷預測卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某中學2019年的高考考生人數(shù)是2016年高考考生人數(shù)的1.2倍,為了更好地對比該??忌纳龑W情況,統(tǒng)計了該校2016年和2019年的高考情況,得到如圖柱狀圖:則下列結論正確的是().A.與2016年相比,2019年不上線的人數(shù)有所增加B.與2016年相比,2019年一本達線人數(shù)減少C.與2016年相比,2019年二本達線人數(shù)增加了0.3倍D.2016年與2019年藝體達線人數(shù)相同2.已知定義在R上的函數(shù)(m為實數(shù))為偶函數(shù),記,,則a,b,c的大小關系為()A. B. C. D.3.“中國剩余定理”又稱“孫子定理”,最早可見于中國南北朝時期的數(shù)學著作《孫子算經(jīng)》卷下第二十六題,叫做“物不知數(shù)”,原文如下:今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二.問物幾何?現(xiàn)有這樣一個相關的問題:將1到2020這2020個自然數(shù)中被5除余3且被7除余2的數(shù)按照從小到大的順序排成一列,構成一個數(shù)列,則該數(shù)列各項之和為()A.56383 B.57171 C.59189 D.612424.已知雙曲線與雙曲線有相同的漸近線,則雙曲線的離心率為()A. B. C. D.5.已知集合,則全集則下列結論正確的是()A. B. C. D.6.已知奇函數(shù)是上的減函數(shù),若滿足不等式組,則的最小值為()A.-4 B.-2 C.0 D.47.點在所在的平面內,,,,,且,則()A. B. C. D.8.的展開式中各項系數(shù)的和為2,則該展開式中常數(shù)項為A.-40 B.-20 C.20 D.409.已知,則“直線與直線垂直”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件10.已知三棱錐中,是等邊三角形,,則三棱錐的外接球的表面積為()A. B. C. D.11.五名志愿者到三個不同的單位去進行幫扶,每個單位至少一人,則甲、乙兩人不在同一個單位的概率為()A. B. C. D.12.為研究語文成績和英語成績之間是否具有線性相關關系,統(tǒng)計兩科成績得到如圖所示的散點圖(兩坐標軸單位長度相同),用回歸直線近似地刻畫其相關關系,根據(jù)圖形,以下結論最有可能成立的是()A.線性相關關系較強,b的值為1.25B.線性相關關系較強,b的值為0.83C.線性相關關系較強,b的值為-0.87D.線性相關關系太弱,無研究價值二、填空題:本題共4小題,每小題5分,共20分。13.在矩形中,,為的中點,將和分別沿,翻折,使點與重合于點.若,則三棱錐的外接球的表面積為_____.14.已知實數(shù)滿約束條件,則的最大值為___________.15.已知,分別是橢圓:()的左、右焦點,過左焦點的直線與橢圓交于、兩點,且,,則橢圓的離心率為__________.16.某班有學生52人,現(xiàn)將所有學生隨機編號,用系統(tǒng)抽樣方法,抽取一個容量為4的樣本,已知5號、31號、44號學生在樣本中,則樣本中還有一個學生的編號是__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線Γ:y2=2px(p>0)的焦點為F,P是拋物線Γ上一點,且在第一象限,滿足(2,2)(1)求拋物線Γ的方程;(2)已知經(jīng)過點A(3,﹣2)的直線交拋物線Γ于M,N兩點,經(jīng)過定點B(3,﹣6)和M的直線與拋物線Γ交于另一點L,問直線NL是否恒過定點,如果過定點,求出該定點,否則說明理由.18.(12分)設函數(shù),,.(1)求函數(shù)的單調區(qū)間;(2)若函數(shù)有兩個零點,().(i)求的取值范圍;(ii)求證:隨著的增大而增大.19.(12分)設數(shù)列,其前項和,又單調遞增的等比數(shù)列,,.(Ⅰ)求數(shù)列,的通項公式;(Ⅱ)若,求數(shù)列的前n項和,并求證:.20.(12分)設函數(shù).(1)當時,求不等式的解集;(2)若對恒成立,求的取值范圍.21.(12分)設不等式的解集為M,.(1)證明:;(2)比較與的大小,并說明理由.22.(10分)的內角的對邊分別為,已知.(1)求的大??;(2)若,求面積的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

設2016年高考總人數(shù)為x,則2019年高考人數(shù)為,通過簡單的計算逐一驗證選項A、B、C、D.【詳解】設2016年高考總人數(shù)為x,則2019年高考人數(shù)為,2016年高考不上線人數(shù)為,2019年不上線人數(shù)為,故A正確;2016年高考一本人數(shù),2019年高考一本人數(shù),故B錯誤;2019年二本達線人數(shù),2016年二本達線人數(shù),增加了倍,故C錯誤;2016年藝體達線人數(shù),2019年藝體達線人數(shù),故D錯誤.故選:A.【點睛】本題考查柱狀圖的應用,考查學生識圖的能力,是一道較為簡單的統(tǒng)計類的題目.2、B【解析】

根據(jù)f(x)為偶函數(shù)便可求出m=0,從而f(x)=﹣1,根據(jù)此函數(shù)的奇偶性與單調性即可作出判斷.【詳解】解:∵f(x)為偶函數(shù);∴f(﹣x)=f(x);∴﹣1=﹣1;∴|﹣x﹣m|=|x﹣m|;(﹣x﹣m)2=(x﹣m)2;∴mx=0;∴m=0;∴f(x)=﹣1;∴f(x)在[0,+∞)上單調遞增,并且a=f(||)=f(),b=f(),c=f(2);∵0<<2<;∴a<c<b.故選B.【點睛】本題考查偶函數(shù)的定義,指數(shù)函數(shù)的單調性,對于偶函數(shù)比較函數(shù)值大小的方法就是將自變量的值變到區(qū)間[0,+∞)上,根據(jù)單調性去比較函數(shù)值大?。?、C【解析】

根據(jù)“被5除余3且被7除余2的正整數(shù)”,可得這些數(shù)構成等差數(shù)列,然后根據(jù)等差數(shù)列的前項和公式,可得結果.【詳解】被5除余3且被7除余2的正整數(shù)構成首項為23,公差為的等差數(shù)列,記數(shù)列則令,解得.故該數(shù)列各項之和為.故選:C.【點睛】本題考查等差數(shù)列的應用,屬基礎題。4、C【解析】

由雙曲線與雙曲線有相同的漸近線,列出方程求出的值,即可求解雙曲線的離心率,得到答案.【詳解】由雙曲線與雙曲線有相同的漸近線,可得,解得,此時雙曲線,則曲線的離心率為,故選C.【點睛】本題主要考查了雙曲線的標準方程及其簡單的幾何性質的應用,其中解答中熟記雙曲線的幾何性質,準確運算是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.5、D【解析】

化簡集合,根據(jù)對數(shù)函數(shù)的性質,化簡集合,按照集合交集、并集、補集定義,逐項判斷,即可求出結論.【詳解】由,則,故,由知,,因此,,,,故選:D【點睛】本題考查集合運算以及集合間的關系,求解不等式是解題的關鍵,屬于基礎題.6、B【解析】

根據(jù)函數(shù)的奇偶性和單調性得到可行域,畫出可行域和目標函數(shù),根據(jù)目標函數(shù)的幾何意義平移得到答案.【詳解】奇函數(shù)是上的減函數(shù),則,且,畫出可行域和目標函數(shù),,即,表示直線與軸截距的相反數(shù),根據(jù)平移得到:當直線過點,即時,有最小值為.故選:.【點睛】本題考查了函數(shù)的單調性和奇偶性,線性規(guī)劃問題,意在考查學生的綜合應用能力,畫出圖像是解題的關鍵.7、D【解析】

確定點為外心,代入化簡得到,,再根據(jù)計算得到答案.【詳解】由可知,點為外心,則,,又,所以①因為,②聯(lián)立方程①②可得,,,因為,所以,即.故選:【點睛】本題考查了向量模長的計算,意在考查學生的計算能力.8、D【解析】令x=1得a=1.故原式=.的通項,由5-2r=1得r=2,對應的常數(shù)項=80,由5-2r=-1得r=3,對應的常數(shù)項=-40,故所求的常數(shù)項為40,選D解析2.用組合提取法,把原式看做6個因式相乘,若第1個括號提出x,從余下的5個括號中選2個提出x,選3個提出;若第1個括號提出,從余下的括號中選2個提出,選3個提出x.故常數(shù)項==-40+80=409、B【解析】

由兩直線垂直求得則或,再根據(jù)充要條件的判定方法,即可求解.【詳解】由題意,“直線與直線垂直”則,解得或,所以“直線與直線垂直”是“”的必要不充分條件,故選B.【點睛】本題主要考查了兩直線的位置關系,及必要不充分條件的判定,其中解答中利用兩直線的位置關系求得的值,同時熟記充要條件的判定方法是解答的關鍵,著重考查了推理與論證能力,屬于基礎題.10、D【解析】

根據(jù)底面為等邊三角形,取中點,可證明平面,從而,即可證明三棱錐為正三棱錐.取底面等邊的重心為,可求得到平面的距離,畫出幾何關系,設球心為,即可由球的性質和勾股定理求得球的半徑,進而得球的表面積.【詳解】設為中點,是等邊三角形,所以,又因為,且,所以平面,則,由三線合一性質可知所以三棱錐為正三棱錐,設底面等邊的重心為,可得,,所以三棱錐的外接球球心在面下方,設為,如下圖所示:由球的性質可知,平面,且在同一直線上,設球的半徑為,在中,,即,解得,所以三棱錐的外接球表面積為,故選:D.【點睛】本題考查了三棱錐的結構特征和相關計算,正三棱錐的外接球半徑求法,球的表面積求法,對空間想象能力要求較高,屬于中檔題.11、D【解析】

三個單位的人數(shù)可能為2,2,1或3,1,1,求出甲、乙兩人在同一個單位的概率,利用互為對立事件的概率和為1即可解決.【詳解】由題意,三個單位的人數(shù)可能為2,2,1或3,1,1;基本事件總數(shù)有種,若為第一種情況,且甲、乙兩人在同一個單位,共有種情況;若為第二種情況,且甲、乙兩人在同一個單位,共有種,故甲、乙兩人在同一個單位的概率為,故甲、乙兩人不在同一個單位的概率為.故選:D.【點睛】本題考查古典概型的概率公式的計算,涉及到排列與組合的應用,在正面情況較多時,可以先求其對立事件,即甲、乙兩人在同一個單位的概率,本題有一定難度.12、B【解析】

根據(jù)散點圖呈現(xiàn)的特點可以看出,二者具有相關關系,且斜率小于1.【詳解】散點圖里變量的對應點分布在一條直線附近,且比較密集,故可判斷語文成績和英語成績之間具有較強的線性相關關系,且直線斜率小于1,故選B.【點睛】本題主要考查散點圖的理解,側重考查讀圖識圖能力和邏輯推理的核心素養(yǎng).二、填空題:本題共4小題,每小題5分,共20分。13、.【解析】

計算外接圓的半徑,并假設外接球的半徑為R,可得球心在過外接圓圓心且垂直圓面的垂線上,然后根據(jù)面,即可得解.【詳解】由題意可知,,所以可得面,設外接圓的半徑為,由正弦定理可得,即,,設三棱錐外接球的半徑,因為外接球的球心為過底面圓心垂直于底面的直線與中截面的交點,則,所以外接球的表面積為.故答案為:.【點睛】本題考查三棱錐的外接球的應用,屬于中檔題.14、8【解析】

畫出可行域和目標函數(shù),根據(jù)平移計算得到答案.【詳解】根據(jù)約束條件,畫出可行域,圖中陰影部分為可行域.又目標函數(shù)表示直線在軸上的截距,由圖可知當經(jīng)過點時截距最大,故的最大值為8.故答案為:.【點睛】本題考查了線性規(guī)劃問題,畫出圖像是解題的關鍵.15、【解析】

設,則,,由知,,,作,垂足為C,則C為的中點,在和中分別求出,進而求出的關系式,即可求出橢圓的離心率.【詳解】如圖,設,則,,由橢圓定義知,,因為,所以,,作,垂足為C,則C為的中點,在中,因為,所以,在中,由余弦定理可得,,即,解得,所以橢圓的離心率為.故答案為:【點睛】本題考查橢圓的離心率和直線與橢圓的位置關系;利用橢圓的定義,結合焦點三角形和余弦定理是求解本題的關鍵;屬于中檔題、??碱}型.16、18【解析】

根據(jù)系統(tǒng)抽樣的定義和方法,所抽取的4個個體的編號成等差數(shù)列,故可根據(jù)其中三個個體的編號求出另一個個體的編號.【詳解】解:根據(jù)系統(tǒng)抽樣的定義和方法,所抽取的4個個體的編號成等差數(shù)列,已知其中三個個體的編號為5,31,44,故還有一個抽取的個體的編號為18,故答案為:18【點睛】本題主要考查系統(tǒng)抽樣的定義和方法,屬于簡單題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)y2=4x;;(2)直線NL恒過定點(﹣3,0),理由見解析.【解析】

(1)根據(jù)拋物線的方程,求得焦點F(,0),利用(2,2),表示點P的坐標,再代入拋物線方程求解.(2)設M(x0,y0),N(x1,y1),L(x2,y2),表示出MN的方程y和ML的方程y,因為A(3,﹣2),B(3,﹣6)在這兩條直線上,分別代入兩直線的方程可得y1y2=12,然后表示直線NL的方程為:y﹣y1(x),代入化簡求解.【詳解】(1)由拋物線的方程可得焦點F(,0),滿足(2,2)的P的坐標為(2,2),P在拋物線上,所以(2)2=2p(2),即p2+4p﹣12=0,p>0,解得p=2,所以拋物線的方程為:y2=4x;(2)設M(x0,y0),N(x1,y1),L(x2,y2),則y12=4x1,y22=4x2,直線MN的斜率kMN,則直線MN的方程為:y﹣y0(x),即y①,同理可得直線ML的方程整理可得y②,將A(3,﹣2),B(3,﹣6)分別代入①,②的方程可得,消y0可得y1y2=12,易知直線kNL,則直線NL的方程為:y﹣y1(x),即yx,故yx,所以y(x+3),因此直線NL恒過定點(﹣3,0).【點睛】本題主要考查了拋物線的方程及直線與拋物線的位置關系,直線過定點問題,還考查了轉化化歸的思想和運算求解的能力,屬于中檔題.18、(1)見解析;(2)(i)(ii)證明見解析【解析】

(1)求出導函數(shù),分類討論即可求解;(2)(i)結合(1)的單調性分析函數(shù)有兩個零點求解參數(shù)取值范圍;(ii)設,通過轉化,討論函數(shù)的單調性得證.【詳解】(1)因為,所以當時,在上恒成立,所以在上單調遞增,當時,的解集為,的解集為,所以的單調增區(qū)間為,的單調減區(qū)間為;(2)(i)由(1)可知,當時,在上單調遞增,至多一個零點,不符題意,當時,因為有兩個零點,所以,解得,因為,且,所以存在,使得,又因為,設,則,所以單調遞增,所以,即,因為,所以存在,使得,綜上,;(ii)因為,所以,因為,所以,設,則,所以,解得,所以,所以,設,則,設,則,所以單調遞增,所以,所以,即,所以單調遞增,即隨著的增大而增大,所以隨著的增大而增大,命題得證.【點睛】此題考查利用導函數(shù)處理函數(shù)的單調性,根據(jù)函數(shù)的零點個數(shù)求參數(shù)的取值范圍,通過等價轉化證明與零點相關的命題.19、(1),;(2)詳見解析.【解析】

(1)當時,,當時,,當時,也滿足,∴,∵等比數(shù)列,∴,∴,又∵,∴或(舍去),∴;(2)由(1)可得:,∴,顯然數(shù)列是遞增數(shù)列,∴,即.)20、(1)或;(2)或.【解析】試題分析:(1)根據(jù)絕對值定義將不等式化為三個不等式組,分別求解集,最后求并集(2)根據(jù)絕對值三角不等

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論