2024屆浙江省新昌縣達(dá)標(biāo)名校中考試題猜想數(shù)學(xué)試卷含解析_第1頁
2024屆浙江省新昌縣達(dá)標(biāo)名校中考試題猜想數(shù)學(xué)試卷含解析_第2頁
2024屆浙江省新昌縣達(dá)標(biāo)名校中考試題猜想數(shù)學(xué)試卷含解析_第3頁
2024屆浙江省新昌縣達(dá)標(biāo)名校中考試題猜想數(shù)學(xué)試卷含解析_第4頁
2024屆浙江省新昌縣達(dá)標(biāo)名校中考試題猜想數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆浙江省新昌縣達(dá)標(biāo)名校中考試題猜想數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖,電線桿CD的高度為h,兩根拉線AC與BC互相垂直(A、D、B在同一條直線上),設(shè)∠CAB=α,那么拉線BC的長度為()A. B. C. D.2.已知x1,x2是關(guān)于x的方程x2+ax-2b=0的兩個(gè)實(shí)數(shù)根,且x1+x2=-2,x1·x2=1,則ba的值是()A.14 B.-13.估計(jì)﹣1的值為()A.1和2之間 B.2和3之間 C.3和4之間 D.4和5之間4.下列各運(yùn)算中,計(jì)算正確的是()A. B.C. D.5.廣西2017年參加高考的學(xué)生約有365000人,將365000這個(gè)數(shù)用科學(xué)記數(shù)法表示為()A.3.65×103 B.3.65×104 C.3.65×105 D.3.65×1066.如圖,在Rt△ABC中,BC=2,∠BAC=30°,斜邊AB的兩個(gè)端點(diǎn)分別在相互垂直的射線OM,ON上滑動(dòng),下列結(jié)論:①若C,O兩點(diǎn)關(guān)于AB對(duì)稱,則OA=;②C,O兩點(diǎn)距離的最大值為4;③若AB平分CO,則AB⊥CO;④斜邊AB的中點(diǎn)D運(yùn)動(dòng)路徑的長為π.其中正確的是()A.①② B.①②③ C.①③④ D.①②④7.已知圓內(nèi)接正三角形的面積為3,則邊心距是()A.2 B.1 C. D.8.-5的倒數(shù)是A. B.5 C.- D.-59.下列4個(gè)數(shù):,,π,()0,其中無理數(shù)是()A. B. C.π D.()010.函數(shù)的圖象上有兩點(diǎn),,若,則()A. B. C. D.、的大小不確定11.如圖,有一張三角形紙片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿著箭頭方向剪開,可能得不到全等三角形紙片的是()A. B.C. D.12.2018年1月份,菏澤市市區(qū)一周空氣質(zhì)量報(bào)告中某項(xiàng)污染指數(shù)的數(shù)據(jù)是41,45,41,44,40,42,41,這組數(shù)據(jù)的中位數(shù)、眾數(shù)分別是()A.42,41 B.41,42 C.41,41 D.42,45二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,在菱形ABCD中,AB=BD.點(diǎn)E、F分別在AB、AD上,且AE=DF.連接BF與DE相交于點(diǎn)G,連接CG與BD相交于點(diǎn)H.下列結(jié)論:①△AED≌△DFB;②S四邊形BCDG=CG2;③若AF=2DF,則BG=6GF.其中正確的結(jié)論有_____.(填序號(hào))14.如圖AB是直徑,C、D、E為圓周上的點(diǎn),則______.15.如圖,以長為18的線段AB為直徑的⊙O交△ABC的邊BC于點(diǎn)D,點(diǎn)E在AC上,直線DE與⊙O相切于點(diǎn)D.已知∠CDE=20°,則的長為_____.16.在函數(shù)中,自變量x的取值范圍是_________.17.如圖,AB是⊙O的直徑,點(diǎn)C在AB的延長線上,CD與⊙O相切于點(diǎn)D,若∠C=20°,則∠CDA=°.18.如果a2﹣b2=8,且a+b=4,那么a﹣b的值是__.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)某中學(xué)開學(xué)初到商場(chǎng)購買A、B兩種品牌的足球,購買A種品牌的足球20個(gè),B種品牌的足球30個(gè),共花費(fèi)4600元,已知購買4個(gè)B種品牌的足球與購買5個(gè)A種品牌的足球費(fèi)用相同.(1)求購買一個(gè)A種品牌、一個(gè)B種品牌的足球各需多少元.(2)學(xué)校為了響應(yīng)“足球進(jìn)校園”的號(hào)召,決定再次購進(jìn)A、B兩種品牌足球共42個(gè),正好趕上商場(chǎng)對(duì)商品價(jià)格進(jìn)行調(diào)整,A品牌足球售價(jià)比第一次購買時(shí)提高5元,B品牌足球按第一次購買時(shí)售價(jià)的9折出售,如果學(xué)校此次購買A、B兩種品牌足球的總費(fèi)用不超過第一次花費(fèi)的80%,且保證這次購買的B種品牌足球不少于20個(gè),則這次學(xué)校有哪幾種購買方案?(3)請(qǐng)你求出學(xué)校在第二次購買活動(dòng)中最多需要多少資金?20.(6分)有一個(gè)二次函數(shù)滿足以下條件:①函數(shù)圖象與x軸的交點(diǎn)坐標(biāo)分別為A(1,0),B(x1,y1)(點(diǎn)B在點(diǎn)A的右側(cè));②對(duì)稱軸是x=3;③該函數(shù)有最小值是﹣1.(1)請(qǐng)根據(jù)以上信息求出二次函數(shù)表達(dá)式;(1)將該函數(shù)圖象x>x1的部分圖象向下翻折與原圖象未翻折的部分組成圖象“G”,平行于x軸的直線與圖象“G”相交于點(diǎn)C(x3,y3)、D(x4,y4)、E(x5,y5)(x3<x4<x5),結(jié)合畫出的函數(shù)圖象求x3+x4+x5的取值范圍.21.(6分)某車間的甲、乙兩名工人分別同時(shí)生產(chǎn)只同一型號(hào)的零件,他們生產(chǎn)的零件(只)與生產(chǎn)時(shí)間(分)的函數(shù)關(guān)系的圖象如圖所示.根據(jù)圖象提供的信息解答下列問題:(1)甲每分鐘生產(chǎn)零件_______只;乙在提高生產(chǎn)速度之前已生產(chǎn)了零件_______只;(2)若乙提高速度后,乙的生產(chǎn)速度是甲的倍,請(qǐng)分別求出甲、乙兩人生產(chǎn)全過程中,生產(chǎn)的零件(只)與生產(chǎn)時(shí)間(分)的函數(shù)關(guān)系式;(3)當(dāng)兩人生產(chǎn)零件的只數(shù)相等時(shí),求生產(chǎn)的時(shí)間;并求出此時(shí)甲工人還有多少只零件沒有生產(chǎn).22.(8分)如圖,方格紙中每個(gè)小正方形的邊長均為1,線段AB的兩個(gè)端點(diǎn)均在小正方形的頂點(diǎn)上.在圖中畫出以線段AB為一邊的矩形ABCD(不是正方形),且點(diǎn)C和點(diǎn)D均在小正方形的頂點(diǎn)上;在圖中畫出以線段AB為一腰,底邊長為2的等腰三角形ABE,點(diǎn)E在小正方形的頂點(diǎn)上,連接CE,請(qǐng)直接寫出線段CE的長.23.(8分)為實(shí)施“農(nóng)村留守兒童關(guān)愛計(jì)劃”,某校結(jié)全校各班留守兒童的人數(shù)情況進(jìn)行了統(tǒng)計(jì),發(fā)現(xiàn)各班留守兒童人數(shù)只有1名、2名、3名、4名、5名、6名共六種情況,并制成如下兩幅不完整的統(tǒng)計(jì)圖:求該校平均每班有多少名留守兒童?并將該條形統(tǒng)計(jì)圖補(bǔ)充完整;某愛心人士決定從只有2名留守兒童的這些班級(jí)中,任選兩名進(jìn)行生活資助,請(qǐng)用列表法或畫樹狀圖的方法,求出所選兩名留守兒童來自同一個(gè)班級(jí)的概率.24.(10分)如圖,在等腰△ABC中,AB=BC,以AB為直徑的⊙O與AC相交于點(diǎn)D,過點(diǎn)D作DE⊥BC交AB延長線于點(diǎn)E,垂足為點(diǎn)F.(1)證明:DE是⊙O的切線;(2)若BE=4,∠E=30°,求由、線段BE和線段DE所圍成圖形(陰影部分)的面積,(3)若⊙O的半徑r=5,sinA=,求線段EF的長.25.(10分)如圖,在△ABC中,∠B=90°,AB=4,BC=1.在BC上求作一點(diǎn)P,使PA+PB=BC;(尺規(guī)作圖,不寫作法,保留作圖痕跡)求BP的長.26.(12分)某學(xué)校計(jì)劃組織全校1441名師生到相關(guān)部門規(guī)劃的林區(qū)植樹,經(jīng)過研究,決定租用當(dāng)?shù)刈廛嚬疽还?2輛A,B兩種型號(hào)客車作為交通工具.下表是租車公司提供給學(xué)校有關(guān)兩種型號(hào)客車的載客量和租金信息:型號(hào)載客量租金單價(jià)A30人/輛380元/輛B20人/輛280元/輛注:載客量指的是每輛客車最多可載該校師生的人數(shù)設(shè)學(xué)校租用A型號(hào)客車x輛,租車總費(fèi)用為y元.求y與x的函數(shù)解析式,請(qǐng)直接寫出x的取值范圍;若要使租車總費(fèi)用不超過21940元,一共有幾種租車方案?哪種租車方案總費(fèi)用最???最省的總費(fèi)用是多少?27.(12分)菱形的邊長為5,兩條對(duì)角線、相交于點(diǎn),且,的長分別是關(guān)于的方程的兩根,求的值.

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、B【解析】根據(jù)垂直的定義和同角的余角相等,可由∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,可求得∠CAD=∠BCD,然后在Rt△BCD中cos∠BCD=,可得BC=.故選B.點(diǎn)睛:本題主要考查解直角三角形的應(yīng)用,熟練掌握同角的余角相等和三角函數(shù)的定義是解題的關(guān)鍵.2、A【解析】

根據(jù)根與系數(shù)的關(guān)系和已知x1+x2和x1?x2的值,可求a、b的值,再代入求值即可.【詳解】解:∵x1,x2是關(guān)于x的方程x2+ax﹣2b=0的兩實(shí)數(shù)根,∴x1+x2=﹣a=﹣2,x1?x2=﹣2b=1,解得a=2,b=-1∴ba=(-12)2=故選A.3、C【解析】分析:根據(jù)被開方數(shù)越大算術(shù)平方根越大,可得答案.詳解:∵<<,∴1<<5,∴3<﹣1<1.故選C.點(diǎn)睛:本題考查了估算無理數(shù)的大小,利用被開方數(shù)越大算術(shù)平方根越大得出1<<5是解題的關(guān)鍵,又利用了不等式的性質(zhì).4、D【解析】

利用同底數(shù)冪的除法法則、同底數(shù)冪的乘法法則、冪的乘方法則以及完全平方公式即可判斷.【詳解】A、,該選項(xiàng)錯(cuò)誤;B、,該選項(xiàng)錯(cuò)誤;C、,該選項(xiàng)錯(cuò)誤;D、,該選項(xiàng)正確;故選:D.【點(diǎn)睛】本題考查了同底數(shù)冪的乘法、除法法則,冪的乘方法則以及完全平方公式,正確理解法則是關(guān)鍵.5、C【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).【詳解】解:將365000這個(gè)數(shù)用科學(xué)記數(shù)法表示為3.65×1.故選C.【點(diǎn)睛】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.6、D【解析】分析:①先根據(jù)直角三角形30°的性質(zhì)和勾股定理分別求AC和AB,由對(duì)稱的性質(zhì)可知:AB是OC的垂直平分線,所以

②當(dāng)OC經(jīng)過AB的中點(diǎn)E時(shí),OC最大,則C、O兩點(diǎn)距離的最大值為4;

③如圖2,當(dāng)∠ABO=30°時(shí),易證四邊形OACB是矩形,此時(shí)AB與CO互相平分,但所夾銳角為60°,明顯不垂直,或者根據(jù)四點(diǎn)共圓可知:A、C、B、O四點(diǎn)共圓,則AB為直徑,由垂徑定理相關(guān)推論:平分弦(不是直徑)的直徑垂直于這條弦,但當(dāng)這條弦也是直徑時(shí),即OC是直徑時(shí),AB與OC互相平分,但AB與OC不一定垂直;

④如圖3,半徑為2,圓心角為90°,根據(jù)弧長公式進(jìn)行計(jì)算即可.詳解:在Rt△ABC中,∵∴①若C.O兩點(diǎn)關(guān)于AB對(duì)稱,如圖1,∴AB是OC的垂直平分線,則所以①正確;②如圖1,取AB的中點(diǎn)為E,連接OE、CE,∵∴當(dāng)OC經(jīng)過點(diǎn)E時(shí),OC最大,則C.O兩點(diǎn)距離的最大值為4;所以②正確;③如圖2,當(dāng)時(shí),∴四邊形AOBC是矩形,∴AB與OC互相平分,但AB與OC的夾角為不垂直,所以③不正確;④如圖3,斜邊AB的中點(diǎn)D運(yùn)動(dòng)路徑是:以O(shè)為圓心,以2為半徑的圓周的則:所以④正確;綜上所述,本題正確的有:①②④;故選D.點(diǎn)睛:屬于三角形的綜合體,考查了直角三角形的性質(zhì),直角三角形斜邊上中線的性質(zhì),軸對(duì)稱的性質(zhì),弧長公式等,熟練掌握直角三角形斜邊的中線等于斜邊的一半是解題的關(guān)鍵.7、B【解析】

根據(jù)題意畫出圖形,連接AO并延長交BC于點(diǎn)D,則AD⊥BC,設(shè)OD=x,由三角形重心的性質(zhì)得AD=3x,利用銳角三角函數(shù)表示出BD的長,由垂徑定理表示出BC的長,然后根據(jù)面積法解答即可.【詳解】如圖,連接AO并延長交BC于點(diǎn)D,則AD⊥BC,設(shè)OD=x,則AD=3x,∵tan∠BAD=,∴BD=tan30°·AD=x,∴BC=2BD=2x,∵,∴×2x×3x=3,∴x=1所以該圓的內(nèi)接正三邊形的邊心距為1,故選B.【點(diǎn)睛】本題考查正多邊形和圓,三角形重心的性質(zhì),垂徑定理,銳角三角函數(shù),面積法求線段的長,解答本題的關(guān)鍵是明確題意,求出相應(yīng)的圖形的邊心距.8、C【解析】

若兩個(gè)數(shù)的乘積是1,我們就稱這兩個(gè)數(shù)互為倒數(shù).【詳解】解:5的倒數(shù)是.故選C.9、C【解析】=3,是無限循環(huán)小數(shù),π是無限不循環(huán)小數(shù),,所以π是無理數(shù),故選C.10、A【解析】

根據(jù)x1、x1與對(duì)稱軸的大小關(guān)系,判斷y1、y1的大小關(guān)系.【詳解】解:∵y=-1x1-8x+m,∴此函數(shù)的對(duì)稱軸為:x=-=-=-1,∵x1<x1<-1,兩點(diǎn)都在對(duì)稱軸左側(cè),a<0,∴對(duì)稱軸左側(cè)y隨x的增大而增大,∴y1<y1.故選A.【點(diǎn)睛】此題主要考查了函數(shù)的對(duì)稱軸求法和函數(shù)的單調(diào)性,利用二次函數(shù)的增減性解題時(shí),利用對(duì)稱軸得出是解題關(guān)鍵.11、C【解析】

根據(jù)全等三角形的判定定理進(jìn)行判斷.【詳解】解:A、由全等三角形的判定定理SAS證得圖中兩個(gè)小三角形全等,故本選項(xiàng)不符合題意;B、由全等三角形的判定定理SAS證得圖中兩個(gè)小三角形全等,故本選項(xiàng)不符合題意;C、如圖1,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,所以其對(duì)應(yīng)邊應(yīng)該是BE和CF,而已知給的是BD=FC=3,所以不能判定兩個(gè)小三角形全等,故本選項(xiàng)符合題意;D、如圖2,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,∵BD=EC=2,∠B=∠C,∴△BDE≌△CEF,所以能判定兩個(gè)小三角形全等,故本選項(xiàng)不符合題意;由于本題選擇可能得不到全等三角形紙片的圖形,故選C.【點(diǎn)睛】本題考查了全等三角形的判定,注意三角形邊和角的對(duì)應(yīng)關(guān)系是關(guān)鍵.12、C【解析】

找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個(gè)數(shù)(或兩個(gè)數(shù)的平均數(shù))為中位數(shù);眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不只一個(gè).【詳解】從小到大排列此數(shù)據(jù)為:40,1,1,1,42,44,45,數(shù)據(jù)1出現(xiàn)了三次最多為眾數(shù),1處在第4位為中位數(shù).所以本題這組數(shù)據(jù)的中位數(shù)是1,眾數(shù)是1.故選C.【點(diǎn)睛】考查了確定一組數(shù)據(jù)的中位數(shù)和眾數(shù)的能力.一些學(xué)生往往對(duì)這個(gè)概念掌握不清楚,計(jì)算方法不明確而誤選其它選項(xiàng).注意找中位數(shù)的時(shí)候一定要先排好順序,然后再根據(jù)奇數(shù)和偶數(shù)個(gè)來確定中位數(shù),如果數(shù)據(jù)有奇數(shù)個(gè),則正中間的數(shù)字即為所求.如果是偶數(shù)個(gè)則找中間兩位數(shù)的平均數(shù).二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、①②③【解析】

(1)由已知條件易得∠A=∠BDF=60°,結(jié)合BD=AB=AD,AE=DF,即可證得△AED≌△DFB,從而說明結(jié)論①正確;(2)由已知條件可證點(diǎn)B、C、D、G四點(diǎn)共圓,從而可得∠CDN=∠CBM,如圖,過點(diǎn)C作CM⊥BF于點(diǎn)M,過點(diǎn)C作CN⊥ED于點(diǎn)N,結(jié)合CB=CD即可證得△CBM≌△CDN,由此可得S四邊形BCDG=S四邊形CMGN=2S△CGN,在Rt△CGN中,由∠CGN=∠DBC=60°,∠CNG=90°可得GN=CG,CN=CG,由此即可求得S△CGN=CG2,從而可得結(jié)論②是正確的;(3)過點(diǎn)F作FK∥AB交DE于點(diǎn)K,由此可得△DFK∽△DAE,△GFK∽△GBE,結(jié)合AF=2DF和相似三角形的性質(zhì)即可證得結(jié)論④成立.【詳解】(1)∵四邊形ABCD是菱形,BD=AB,∴AB=BD=BC=DC=DA,∴△ABD和△CBD都是等邊三角形,∴∠A=∠BDF=60°,又∵AE=DF,∴△AED≌△DFB,即結(jié)論①正確;(2)∵△AED≌△DFB,△ABD和△DBC是等邊三角形,∴∠ADE=∠DBF,∠DBC=∠CDB=∠BDA=60°,∴∠GBC+∠CDG=∠DBF+∠DBC+∠CDB+∠GDB=∠DBC+∠CDB+∠GDB+∠ADE=∠DBC+∠CDB+∠BDA=180°,∴點(diǎn)B、C、D、G四點(diǎn)共圓,∴∠CDN=∠CBM,如下圖,過點(diǎn)C作CM⊥BF于點(diǎn)M,過點(diǎn)C作CN⊥ED于點(diǎn)N,∴∠CDN=∠CBM=90°,又∵CB=CD,∴△CBM≌△CDN,∴S四邊形BCDG=S四邊形CMGN=2S△CGN,∵在Rt△CGN中,∠CGN=∠DBC=60°,∠CNG=90°∴GN=CG,CN=CG,∴S△CGN=CG2,∴S四邊形BCDG=2S△CGN,=CG2,即結(jié)論②是正確的;(3)如下圖,過點(diǎn)F作FK∥AB交DE于點(diǎn)K,∴△DFK∽△DAE,△GFK∽△GBE,∴,,∵AF=2DF,∴,∵AB=AD,AE=DF,AF=2DF,∴BE=2AE,∴,∴BG=6FG,即結(jié)論③成立.綜上所述,本題中正確的結(jié)論是:故答案為①②③點(diǎn)睛:本題是一道涉及菱形、相似三角形、全等三角形和含30°角的直角三角形等多種幾何圖形的判定與性質(zhì)的題,題目難度較大,熟悉所涉及圖形的性質(zhì)和判定方法,作出如圖所示的輔助線是正確解答本題的關(guān)鍵.14、90°【解析】

連接OE,根據(jù)圓周角定理即可求出答案.【詳解】解:連接OE,

根據(jù)圓周角定理可知:

∠C=∠AOE,∠D=∠BOE,

則∠C+∠D=(∠AOE+∠BOE)=90°,

故答案為:90°.【點(diǎn)睛】本題主要考查了圓周角定理,解題要掌握在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半.15、7π【解析】

連接OD,由切線的性質(zhì)和已知條件可求出∠AOD的度數(shù),再根據(jù)弧長公式即可求出的長.【詳解】連接OD,∵直線DE與⊙O相切于點(diǎn)D,∴∠EDO=90°,∵∠CDE=20°,∴∠ODB=180°-90°-20°=70°,∵OD=OB,∴∠ODB=∠OBD=70°,∴∠AOD=140°,∴的長==7π,故答案為:7π.【點(diǎn)睛】本題考查了切線的性質(zhì)、等腰三角形的判斷和性質(zhì)以及弧長公式的運(yùn)用,求出∠AOD的度數(shù)是解題的關(guān)鍵.16、x≤1且x≠﹣1【解析】試題分析:根據(jù)二次根式有意義,分式有意義得:1﹣x≥0且x+1≠0,解得:x≤1且x≠﹣1.故答案為x≤1且x≠﹣1.考點(diǎn):函數(shù)自變量的取值范圍;分式有意義的條件;二次根式有意義的條件.17、1.【解析】

連接OD,根據(jù)圓的切線定理和等腰三角形的性質(zhì)可得出答案.【詳解】連接OD,則∠ODC=90°,∠COD=70°,∵OA=OD,∴∠ODA=∠A=∠COD=35°,∴∠CDA=∠CDO+∠ODA=90°+35°=1°,故答案為1.考點(diǎn):切線的性質(zhì).18、1.【解析】

根據(jù)(a+b)(a-b)=a1-b1,可得(a+b)(a-b)=8,再代入a+b=4可得答案.【詳解】∵a1-b1=8,

∴(a+b)(a-b)=8,

∵a+b=4,

∴a-b=1,

故答案是:1.【點(diǎn)睛】考查了平方差,關(guān)鍵是掌握(a+b)(a-b)=a1-b1.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)購買一個(gè)A種品牌的足球需要50元,購買一個(gè)B種品牌的足球需要80元;(2)有三種方案,具體見解析;(3)3150元.【解析】試題分析:(1)、設(shè)A種品牌足球的單價(jià)為x元,B種品牌足球的單價(jià)為y元,根據(jù)題意列出二元一次方程組,從而求出x和y的值得出答案;(2)、設(shè)第二次購買A種足球m個(gè),則購買B種足球(50-m)個(gè),根據(jù)題意列出不等式組求出m的取值范圍,從而得出答案;(3)、分別求出第二次購買時(shí)足球的單件,然后得出答案.試題解析:(1)設(shè)A種品牌足球的單價(jià)為x元,B種品牌足球的單價(jià)為y元,解得(2)設(shè)第二次購買A種足球m個(gè),則購買B種足球(50-m)個(gè),解得25≤m≤27∵m為整數(shù)∴m=25、26、27(3)∵第二次購買足球時(shí),A種足球單價(jià)為50+4=54(元),B種足球單價(jià)為80×0.9=72∴當(dāng)購買B種足球越多時(shí),費(fèi)用越高此時(shí)25×54+25×72=3150(元)20、(1)y=(x﹣3)1﹣1;(1)11<x3+x4+x5<9+1.【解析】

(1)利用二次函數(shù)解析式的頂點(diǎn)式求得結(jié)果即可;(1)由已知條件可知直線與圖象“G”要有3個(gè)交點(diǎn).分類討論:分別求得平行于x軸的直線與圖象“G”有1個(gè)交點(diǎn)、1個(gè)交點(diǎn)時(shí)x3+x4+x5的取值范圍,易得直線與圖象“G”要有3個(gè)交點(diǎn)時(shí)x3+x4+x5的取值范圍.【詳解】(1)有上述信息可知該函數(shù)圖象的頂點(diǎn)坐標(biāo)為:(3,﹣1)設(shè)二次函數(shù)表達(dá)式為:y=a(x﹣3)1﹣1.∵該圖象過A(1,0)∴0=a(1﹣3)1﹣1,解得a=.∴表達(dá)式為y=(x﹣3)1﹣1(1)如圖所示:由已知條件可知直線與圖形“G”要有三個(gè)交點(diǎn)1當(dāng)直線與x軸重合時(shí),有1個(gè)交點(diǎn),由二次函數(shù)的軸對(duì)稱性可求x3+x4=6,∴x3+x4+x5>11,當(dāng)直線過y=(x﹣3)1﹣1的圖象頂點(diǎn)時(shí),有1個(gè)交點(diǎn),由翻折可以得到翻折后的函數(shù)圖象為y=﹣(x﹣3)1+1,∴令(x﹣3)1+1=﹣1時(shí),解得x=3+1或x=3﹣1(舍去)∴x3+x4+x5<9+1.綜上所述11<x3+x4+x5<9+1.【點(diǎn)睛】考查了二次函數(shù)綜合題,涉及到待定系數(shù)法求二次函數(shù)解析式,拋物線的對(duì)稱性質(zhì),二次函數(shù)圖象的幾何變換,直線與拋物線的交點(diǎn)等知識(shí)點(diǎn),綜合性較強(qiáng),需要注意“數(shù)形結(jié)合”數(shù)學(xué)思想的應(yīng)用.21、(1)25,150;(2)y甲=25x(0≤x≤20),;(3)x=14,150【解析】

解:(1)甲每分鐘生產(chǎn)=25只;提高生產(chǎn)速度之前乙的生產(chǎn)速度==15只/分,故乙在提高生產(chǎn)速度之前已生產(chǎn)了零件:15×10=150只;(2)結(jié)合后圖象可得:甲:y甲=25x(0≤x≤20);乙提速后的速度為50只/分,故乙生產(chǎn)完500只零件還需7分鐘,乙:y乙=15x(0≤x≤10),當(dāng)10<x≤17時(shí),設(shè)y乙=kx+b,把(10,150)、(17,500),代入可得:10k+b=150,17k+b=500,解得:k=50,b=?350,故y乙=50x?350(10≤x≤17).綜上可得:y甲=25x(0≤x≤20);;(3)令y甲=y(tǒng)乙,得25x=50x?350,解得:x=14,此時(shí)y甲=y(tǒng)乙=350只,故甲工人還有150只未生產(chǎn).22、作圖見解析;CE=4.【解析】分析:利用數(shù)形結(jié)合的思想解決問題即可.詳解:如圖所示,矩形ABCD和△ABE即為所求;CE=4.點(diǎn)睛:本題考查作圖-應(yīng)用與設(shè)計(jì)、等腰三角形的性質(zhì)、勾股定理、矩形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)利用思想結(jié)合的思想解決問題.23、解:(1)該校班級(jí)個(gè)數(shù)為4÷20%=20(個(gè)),只有2名留守兒童的班級(jí)個(gè)數(shù)為:20﹣(2+3+4+5+4)=2(個(gè)),該校平均每班留守兒童的人數(shù)為:=4(名),補(bǔ)圖如下:(2)由(1)得只有2名留守兒童的班級(jí)有2個(gè),共4名學(xué)生.設(shè)A1,A2來自一個(gè)班,B1,B2來自一個(gè)班,有樹狀圖可知,共有12中等可能的情況,其中來自一個(gè)班的共有4種情況,則所選兩名留守兒童來自同一個(gè)班級(jí)的概率為:=.【解析】(1)首先求出班級(jí)數(shù),然后根據(jù)條形統(tǒng)計(jì)圖求出只有2名留守兒童的班級(jí)數(shù),再求出總的留守兒童數(shù),最后求出每班平均留守兒童數(shù);(2)利用樹狀圖確定可能種數(shù)和來自同一班的種數(shù),然后就能算出來自同一個(gè)班級(jí)的概率.24、(1)見解析(2)8(3)【解析】分析:(1)連接BD、OD,由AB=BC及∠ADB=90°知AD=CD,根據(jù)AO=OB知OD是△ABC的中位線,據(jù)此知OD∥BC,結(jié)合DE⊥BC即可得證;(2)設(shè)⊙O的半徑為x,則OB=OD=x,在Rt△ODE中由sinE=求得x的值,再根據(jù)S陰影=S△ODE-S扇形ODB計(jì)算可得答案.(3)先證Rt△DFB∽R(shí)t△DCB得,據(jù)此求得BF的長,再證△EFB∽△EDO得,據(jù)此求得EB的長,繼而由勾股定理可得答案.詳解:(1)如圖,連接BD、OD,∵AB是⊙O的直徑,∴∠BDA=90°,∵BA=BC,∴AD=CD,又∵AO=OB,∴OD∥BC,∵DE⊥BC,∴OD⊥DE,∴DE是⊙O的切線;(2)設(shè)⊙O的半徑為x,則OB=OD=x,在Rt△ODE中,OE=4+x,∠E=30°,∴,解得:x=4,∴DE=4,S△ODE=×4×4=8,S扇形ODB=,則S陰影=S△ODE-S扇形ODB=8-;(3)在Rt△AB

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論