版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
山東省萊蕪萊城區(qū)五校聯(lián)考2023-2024學(xué)年十校聯(lián)考最后數(shù)學(xué)試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.小明解方程的過程如下,他的解答過程中從第()步開始出現(xiàn)錯(cuò)誤.解:去分母,得1﹣(x﹣2)=1①去括號(hào),得1﹣x+2=1②合并同類項(xiàng),得﹣x+3=1③移項(xiàng),得﹣x=﹣2④系數(shù)化為1,得x=2⑤A.① B.② C.③ D.④2.如圖,直線a,b被直線c所截,下列條件不能判定直線a與b平行的是()A.∠1=∠3 B.∠2+∠4=180° C.∠1=∠4 D.∠3=∠43.如表記錄了甲、乙、丙、丁四名跳高運(yùn)動(dòng)員最近幾次選拔賽成績(jī)的平均數(shù)與方差:甲乙丙丁平均數(shù)(cm)185180185180方差3.63.67.48.1根據(jù)表數(shù)據(jù),從中選擇一名成績(jī)好且發(fā)揮穩(wěn)定的參加比賽,應(yīng)該選擇()A.甲 B.乙 C.丙 D.丁4.如圖,邊長(zhǎng)為1的正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°到正方形AB’C’D’,圖中陰影部分的面積為().A. B. C. D.5.某單位若干名職工參加普法知識(shí)競(jìng)賽,將成績(jī)制成如圖所示的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖,根據(jù)圖中提供的信息,這些職工成績(jī)的中位數(shù)和平均數(shù)分別是()A.94分,96分 B.96分,96分C.94分,96.4分 D.96分,96.4分6.如圖所示是放置在正方形網(wǎng)格中的一個(gè),則的值為()A. B. C. D.7.在如圖所示的正方形網(wǎng)格中,網(wǎng)格線的交點(diǎn)稱為格點(diǎn),已知A、B是兩格點(diǎn),如果C也是圖中的格點(diǎn),且使得△ABC為等腰直角三角形,則這樣的點(diǎn)C有()A.6個(gè) B.7個(gè) C.8個(gè) D.9個(gè)8.如圖,?ABCD對(duì)角線AC與BD交于點(diǎn)O,且AD=3,AB=5,在AB延長(zhǎng)線上取一點(diǎn)E,使BE=AB,連接OE交BC于F,則BF的長(zhǎng)為()A. B. C. D.19.已知拋物線y=x2+(2a+1)x+a2﹣a,則拋物線的頂點(diǎn)不可能在()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.下列幾何體中,俯視圖為三角形的是()A. B. C. D.11.計(jì)算的結(jié)果是().A. B. C. D.12.如圖,在平面直角坐標(biāo)系中,直線y=k1x+2(k1≠0)與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,與反比例函數(shù)y=在第二象限內(nèi)的圖象交于點(diǎn)C,連接OC,若S△OBC=1,tan∠BOC=,則k2的值是()A.3 B.﹣ C.﹣3 D.﹣6二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.在一個(gè)不透明的袋子里裝有除顏色外其它均相同的紅、藍(lán)小球各一個(gè),每次從袋中摸出一個(gè)小球記下顏色后再放回,摸球三次,“僅有一次摸到紅球”的概率是_____.14.今年,某縣境內(nèi)跨湖高速進(jìn)入施工高峰期,交警隊(duì)為提醒出行車輛,在一些主要路口設(shè)立了交通路況警示牌(如圖).已知立桿AD高度是4m,從側(cè)面C點(diǎn)測(cè)得警示牌頂端點(diǎn)A和底端B點(diǎn)的仰角(∠ACD和∠BCD)分別是60°,45°.那么路況警示牌AB的高度為_____.15.某排水管的截面如圖,已知截面圓半徑OB=10cm,水面寬AB是16cm,則截面水深CD為_____.16.(題文)如圖1,點(diǎn)P從△ABC的頂點(diǎn)B出發(fā),沿B→C→A勻速運(yùn)動(dòng)到點(diǎn)A,圖2是點(diǎn)P運(yùn)動(dòng)時(shí),線段BP的長(zhǎng)度y隨時(shí)間x變化的關(guān)系圖象,其中M為曲線部分的最低點(diǎn),則△ABC的面積是_____.17.已知⊙O半徑為1,A、B在⊙O上,且,則AB所對(duì)的圓周角為__o.18.某種商品每件進(jìn)價(jià)為20元,調(diào)查表明:在某段時(shí)間內(nèi)若以每件x元(20≤x≤30,且x為整數(shù))出售,可賣出(30﹣x)件.若使利潤(rùn)最大,每件的售價(jià)應(yīng)為______元.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,已知等腰三角形ABC的底角為30°,以BC為直徑的⊙O與底邊AB交于點(diǎn)D,過D作DE⊥AC,垂足為E.證明:DE為⊙O的切線;連接OE,若BC=4,求△OEC的面積.20.(6分)如圖,一次函數(shù)y=k1x+b(k1≠0)與反比例函數(shù)的圖象交于點(diǎn)A(-1,2),B(m,-1).(1)求一次函數(shù)與反比例函數(shù)的解析式;(2)在x軸上是否存在點(diǎn)P(n,0),使△ABP為等腰三角形,請(qǐng)你直接寫出P點(diǎn)的坐標(biāo).21.(6分)△ABC中,AB=AC,D為BC的中點(diǎn),以D為頂點(diǎn)作∠MDN=∠B.如圖(1)當(dāng)射線DN經(jīng)過點(diǎn)A時(shí),DM交AC邊于點(diǎn)E,不添加輔助線,寫出圖中所有與△ADE相似的三角形.如圖(2),將∠MDN繞點(diǎn)D沿逆時(shí)針方向旋轉(zhuǎn),DM,DN分別交線段AC,AB于E,F(xiàn)點(diǎn)(點(diǎn)E與點(diǎn)A不重合),不添加輔助線,寫出圖中所有的相似三角形,并證明你的結(jié)論.在圖(2)中,若AB=AC=10,BC=12,當(dāng)△DEF的面積等于△ABC的面積的時(shí),求線段EF的長(zhǎng).22.(8分)“食品安全”受到全社會(huì)的廣泛關(guān)注,我區(qū)兼善中學(xué)對(duì)部分學(xué)生就食品安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面的兩幅尚不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題:(1)接受問卷調(diào)查的學(xué)生共有人,扇形統(tǒng)計(jì)圖中“基本了解”部分所對(duì)應(yīng)扇形的圓心角為°;(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;(3)若對(duì)食品安全知識(shí)達(dá)到“了解”程度的學(xué)生中,男、女生的比例恰為2:3,現(xiàn)從中隨機(jī)抽取2人參加食品安全知識(shí)競(jìng)賽,請(qǐng)用樹狀圖或列表法求出恰好抽到1個(gè)男生和1個(gè)女生的概率.23.(8分)某市旅游部門統(tǒng)計(jì)了今年“五?一”放假期間該市A、B、C、D四個(gè)旅游景區(qū)的旅游人數(shù),并繪制出如圖所示的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,根據(jù)圖中的信息解答下列問題:(1)求今年“五?一”放假期間該市這四個(gè)景點(diǎn)共接待游客的總?cè)藬?shù);(2)扇形統(tǒng)計(jì)圖中景點(diǎn)A所對(duì)應(yīng)的圓心角的度數(shù)是多少,請(qǐng)直接補(bǔ)全條形統(tǒng)計(jì)圖;(3)根據(jù)預(yù)測(cè),明年“五?一”放假期間將有90萬(wàn)游客選擇到該市的這四個(gè)景點(diǎn)旅游,請(qǐng)你估計(jì)有多少人會(huì)選擇去景點(diǎn)D旅游?24.(10分)計(jì)算:(﹣)0﹣|﹣3|+(﹣1)2015+()﹣1.25.(10分)小強(qiáng)的媽媽想在自家的院子里用竹籬笆圍一個(gè)面積為4平方米的矩形小花園,媽媽問九年級(jí)的小強(qiáng)至少需要幾米長(zhǎng)的竹籬笆(不考慮接縫).小強(qiáng)根據(jù)他學(xué)習(xí)函數(shù)的經(jīng)驗(yàn)做了如下的探究.下面是小強(qiáng)的探究過程,請(qǐng)補(bǔ)充完整:建立函數(shù)模型:設(shè)矩形小花園的一邊長(zhǎng)為x米,籬笆長(zhǎng)為y米.則y關(guān)于x的函數(shù)表達(dá)式為________;列表(相關(guān)數(shù)據(jù)保留一位小數(shù)):根據(jù)函數(shù)的表達(dá)式,得到了x與y的幾組值,如下表:x0.511.522.533.544.55y17108.38.28.79.310.811.6描點(diǎn)、畫函數(shù)圖象:如圖,在平面直角坐標(biāo)系xOy中,描出了以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),根據(jù)描出的點(diǎn)畫出該函數(shù)的圖象;觀察分析、得出結(jié)論:根據(jù)以上信息可得,當(dāng)x=________時(shí),y有最小值.由此,小強(qiáng)確定籬笆長(zhǎng)至少為________米.26.(12分)綜合與實(shí)踐:概念理解:將△ABC繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn),旋轉(zhuǎn)角記為θ(0°≤θ≤90°),并使各邊長(zhǎng)變?yōu)樵瓉淼膎倍,得到△AB′C′,如圖,我們將這種變換記為[θ,n],:.問題解決:(2)如圖,在△ABC中,∠BAC=30°,∠ACB=90°,對(duì)△ABC作變換[θ,n]得到△AB′C′,使點(diǎn)B,C,C′在同一直線上,且四邊形ABB′C′為矩形,求θ和n的值.拓廣探索:(3)在△ABC中,∠BAC=45°,∠ACB=90°,對(duì)△ABC作變換得到△AB′C′,則四邊形ABB′C′為正方形27.(12分)如圖,矩形ABCD中,CE⊥BD于E,CF平分∠DCE與DB交于點(diǎn)F.求證:BF=BC;若AB=4cm,AD=3cm,求CF的長(zhǎng).
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、A【解析】
根據(jù)解分式方程的方法可以判斷哪一步是錯(cuò)誤的,從而可以解答本題.【詳解】=1,去分母,得1-(x-2)=x,故①錯(cuò)誤,故選A.【點(diǎn)睛】本題考查解分式方程,解答本題的關(guān)鍵是明確解分式方程的方法.2、D【解析】試題分析:A.∵∠1=∠3,∴a∥b,故A正確;B.∵∠2+∠4=180°,∠2+∠1=180°,∴∠1=∠4,∵∠4=∠3,∴∠1=∠3,∴a∥b,故B正確;C.∵∠1=∠4,∠4=∠3,∴∠1=∠3,∴a∥b,故C正確;D.∠3和∠4是對(duì)頂角,不能判斷a與b是否平行,故D錯(cuò)誤.故選D.考點(diǎn):平行線的判定.3、A【解析】
首先比較平均數(shù),平均數(shù)相同時(shí)選擇方差較小的運(yùn)動(dòng)員參加.【詳解】∵=>=,∴從甲和丙中選擇一人參加比賽,∵=<<,∴選擇甲參賽,故選A.【點(diǎn)睛】此題主要考查了平均數(shù)和方差的應(yīng)用,解題關(guān)鍵是明確平均數(shù)越高,成績(jī)?cè)礁?,方差越小,成?jī)?cè)椒€(wěn)定.4、C【解析】
設(shè)B′C′與CD的交點(diǎn)為E,連接AE,利用“HL”證明Rt△AB′E和Rt△ADE全等,根據(jù)全等三角形對(duì)應(yīng)角相等∠DAE=∠B′AE,再根據(jù)旋轉(zhuǎn)角求出∠DAB′=60°,然后求出∠DAE=30°,再解直角三角形求出DE,然后根據(jù)陰影部分的面積=正方形ABCD的面積﹣四邊形ADEB′的面積,列式計(jì)算即可得解.【詳解】如圖,設(shè)B′C′與CD的交點(diǎn)為E,連接AE,在Rt△AB′E和Rt△ADE中,,∴Rt△AB′E≌Rt△ADE(HL),∴∠DAE=∠B′AE,∵旋轉(zhuǎn)角為30°,∴∠DAB′=60°,∴∠DAE=×60°=30°,∴DE=1×=,∴陰影部分的面積=1×1﹣2×(×1×)=1﹣.故選C.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì),正方形的性質(zhì),全等三角形判定與性質(zhì),解直角三角形,利用全等三角形求出∠DAE=∠B′AE,從而求出∠DAE=30°是解題的關(guān)鍵,也是本題的難點(diǎn).5、D【解析】
解:總?cè)藬?shù)為6÷10%=60(人),則91分的有60×20%=12(人),98分的有60-6-12-15-9=18(人),第30與31個(gè)數(shù)據(jù)都是96分,這些職工成績(jī)的中位數(shù)是(96+96)÷2=96;這些職工成績(jī)的平均數(shù)是(92×6+91×12+96×15+98×18+100×9)÷60=(552+1128+1110+1761+900)÷60=5781÷60=96.1.故選D.【點(diǎn)睛】本題考查1.中位數(shù);2.扇形統(tǒng)計(jì)圖;3.條形統(tǒng)計(jì)圖;1.算術(shù)平均數(shù),掌握概念正確計(jì)算是關(guān)鍵.6、D【解析】
首先過點(diǎn)A向CB引垂線,與CB交于D,表示出BD、AD的長(zhǎng),根據(jù)正切的計(jì)算公式可算出答案.【詳解】解:過點(diǎn)A向CB引垂線,與CB交于D,△ABD是直角三角形,∵BD=4,AD=2,∴tan∠ABC=故選:D.【點(diǎn)睛】此題主要考查了銳角三角函數(shù)的定義,關(guān)鍵是掌握正切:銳角A的對(duì)邊a與鄰邊b的比叫做∠A的正切,記作tanA.7、A【解析】
根據(jù)題意,結(jié)合圖形,分兩種情況討論:①AB為等腰△ABC底邊;②AB為等腰△ABC其中的一條腰.【詳解】如圖:分情況討論:①AB為等腰直角△ABC底邊時(shí),符合條件的C點(diǎn)有2個(gè);②AB為等腰直角△ABC其中的一條腰時(shí),符合條件的C點(diǎn)有4個(gè).故選:C.【點(diǎn)睛】本題考查了等腰三角形的判定;解答本題關(guān)鍵是根據(jù)題意,畫出符合實(shí)際條件的圖形,再利用數(shù)學(xué)知識(shí)來求解.?dāng)?shù)形結(jié)合的思想是數(shù)學(xué)解題中很重要的解題思想.8、A【解析】
首先作輔助線:取AB的中點(diǎn)M,連接OM,由平行四邊形的性質(zhì)與三角形中位線的性質(zhì),即可求得:△EFB∽△EOM與OM的值,利用相似三角形的對(duì)應(yīng)邊成比例即可求得BF的值.【詳解】取AB的中點(diǎn)M,連接OM,∵四邊形ABCD是平行四邊形,∴AD∥BC,OB=OD,∴OM∥AD∥BC,OM=AD=×3=,∴△EFB∽△EOM,∴,∵AB=5,BE=AB,∴BE=2,BM=,∴EM=+2=,∴,∴BF=,故選A.【點(diǎn)睛】此題考查了平行四邊形的性質(zhì)、相似三角形的判定與性質(zhì)等知識(shí).解此題的關(guān)鍵是準(zhǔn)確作出輔助線,合理應(yīng)用數(shù)形結(jié)合思想解題.9、D【解析】
求得頂點(diǎn)坐標(biāo),得出頂點(diǎn)的橫坐標(biāo)和縱坐標(biāo)的關(guān)系式,即可求得.【詳解】拋物線y=x2+(2a+1)x+a2﹣a的頂點(diǎn)的橫坐標(biāo)為:x=﹣=﹣a﹣,縱坐標(biāo)為:y==﹣2a﹣,∴拋物線的頂點(diǎn)橫坐標(biāo)和縱坐標(biāo)的關(guān)系式為:y=2x+,∴拋物線的頂點(diǎn)經(jīng)過一二三象限,不經(jīng)過第四象限,故選:D.【點(diǎn)睛】本題考查了二次函數(shù)的性質(zhì),得到頂點(diǎn)的橫縱坐標(biāo)的關(guān)系式是解題的關(guān)鍵.10、C【解析】
俯視圖是從上面所看到的圖形,可根據(jù)各幾何體的特點(diǎn)進(jìn)行判斷.【詳解】A.圓錐的俯視圖是圓,中間有一點(diǎn),故本選項(xiàng)不符合題意,B.幾何體的俯視圖是長(zhǎng)方形,故本選項(xiàng)不符合題意,C.三棱柱的俯視圖是三角形,故本選項(xiàng)符合題意,D.圓臺(tái)的俯視圖是圓環(huán),故本選項(xiàng)不符合題意,故選C.【點(diǎn)睛】此題主要考查了由幾何體判斷三視圖,正確把握觀察角度是解題關(guān)鍵.11、D【解析】
根據(jù)同底數(shù)冪的乘除法運(yùn)算進(jìn)行計(jì)算.【詳解】3x2y2x3y2÷xy3=6x5y4÷xy3=6x4y.故答案選D.【點(diǎn)睛】本題主要考查同底數(shù)冪的乘除運(yùn)算,解題的關(guān)鍵是知道:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加.12、C【解析】
如圖,作CH⊥y軸于H.通過解直角三角形求出點(diǎn)C坐標(biāo)即可解決問題.【詳解】解:如圖,作CH⊥y軸于H.由題意B(0,2),∵∴CH=1,∵tan∠BOC=∴OH=3,∴C(﹣1,3),把點(diǎn)C(﹣1,3)代入,得到k2=﹣3,故選C.【點(diǎn)睛】本題考查反比例函數(shù)于一次函數(shù)的交點(diǎn)問題,銳角三角函數(shù)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造直角三角形解決問題,屬于中考??碱}型.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、【解析】摸三次有可能有:紅紅紅、紅紅藍(lán)、紅藍(lán)紅、紅藍(lán)藍(lán)、藍(lán)紅紅、藍(lán)紅藍(lán)、藍(lán)藍(lán)紅、藍(lán)藍(lán)藍(lán)共計(jì)8種可能,其中僅有一個(gè)紅壞的有:紅藍(lán)藍(lán)、藍(lán)紅藍(lán)、藍(lán)藍(lán)紅共計(jì)3種,所以“僅有一次摸到紅球”的概率是.故答案是:.14、m【解析】
由特殊角的正切值即可得出線段CD的長(zhǎng)度,在Rt△BDC中,由∠BCD=45°,得出CD=BD,求出BD長(zhǎng)度,再利用線段間的關(guān)系即可得出結(jié)論.【詳解】在Rt△ADC中,∠ACD=60°,AD=4∴tan60°==∴CD=∵在Rt△BCD中,∠BAD=45°,CD=∴BD=CD=.∴AB=AD-BD=4-=路況警示牌AB的高度為m.故答案為:m.【點(diǎn)睛】解直角三角形的應(yīng)用-仰角俯角問題.15、4cm.【解析】
由題意知OD⊥AB,交AB于點(diǎn)C,由垂徑定理可得出BC的長(zhǎng),在Rt△OBC中,根據(jù)勾股定理求出OC的長(zhǎng),由CD=OD-OC即可得出結(jié)論.【詳解】由題意知OD⊥AB,交AB于點(diǎn)E,∵AB=16cm,∴BC=AB=×16=8cm,在Rt△OBE中,∵OB=10cm,BC=8cm,∴OC=(cm),∴CD=OD-OC=10-6=4(cm)故答案為4cm.【點(diǎn)睛】本題考查的是垂徑定理的應(yīng)用,根據(jù)題意在直角三角形運(yùn)用勾股定理列出方程是解答此題的關(guān)鍵.16、12【解析】根據(jù)題意觀察圖象可得BC=5,點(diǎn)P在AC上運(yùn)動(dòng)時(shí),BP⊥AC時(shí),BP有最小值,觀察圖象可得,BP的最小值為4,即BP⊥AC時(shí)BP=4,又勾股定理求得CP=3,因點(diǎn)P從點(diǎn)C運(yùn)動(dòng)到點(diǎn)A,根據(jù)函數(shù)的對(duì)稱性可得CP=AP=3,所以ΔABC的面積是117、45o或135o【解析】試題解析:如圖所示,∵OC⊥AB,∴C為AB的中點(diǎn),即在Rt△AOC中,OA=1,根據(jù)勾股定理得:即OC=AC,∴△AOC為等腰直角三角形,同理∵∠AOB與∠ADB都對(duì),∵大角則弦AB所對(duì)的圓周角為或故答案為或18、3【解析】試題分析:設(shè)最大利潤(rùn)為w元,則w=(x﹣30)(30﹣x)=﹣(x﹣3)3+3,∵30≤x≤30,∴當(dāng)x=3時(shí),二次函數(shù)有最大值3,故答案為3.考點(diǎn):3.二次函數(shù)的應(yīng)用;3.銷售問題.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)證明見解析;(2)【解析】試題分析:(1)首先連接OD,CD,由以BC為直徑的⊙O,可得CD⊥AB,又由等腰三角形ABC的底角為30°,可得AD=BD,即可證得OD∥AC,繼而可證得結(jié)論;(2)首先根據(jù)三角函數(shù)的性質(zhì),求得BD,DE,AE的長(zhǎng),然后求得△BOD,△ODE,△ADE以及△ABC的面積,繼而求得答案.試題解析:(1)證明:連接OD,CD,∵BC為⊙O直徑,∴∠BDC=90°,即CD⊥AB,∵△ABC是等腰三角形,∴AD=BD,∵OB=OC,∴OD是△ABC的中位線,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∵D點(diǎn)在⊙O上,∴DE為⊙O的切線;(2)解:∵∠A=∠B=30°,BC=4,∴CD=BC=2,BD=BC?cos30°=2,∴AD=BD=2,AB=2BD=4,∴S△ABC=AB?CD=×4×2=4,∵DE⊥AC,∴DE=AD=×2=,AE=AD?cos30°=3,∴S△ODE=OD?DE=×2×=,S△ADE=AE?DE=××3=,∵S△BOD=S△BCD=×S△ABC=×4=,∴S△OEC=S△ABC-S△BOD-S△ODE-S△ADE=4---=.20、(1)反比例函數(shù)的解析式為;一次函數(shù)的解析式為y=-x+1;(2)滿足條件的P點(diǎn)的坐標(biāo)為(-1+,0)或(-1-,0)或(2+,0)或(2-,0)或(0,0).【解析】
(1)將A點(diǎn)代入求出k2,從而求出反比例函數(shù)方程,再聯(lián)立將B點(diǎn)代入即可求出一次函數(shù)方程.(2)令PA=PB,求出P.令A(yù)P=AB,求P.令BP=BA,求P.根據(jù)坐標(biāo)距離公式計(jì)算即可.【詳解】(1)把A(-1,2)代入,得到k2=-2,∴反比例函數(shù)的解析式為.∵B(m,-1)在上,∴m=2,由題意,解得:,∴一次函數(shù)的解析式為y=-x+1.(2)滿足條件的P點(diǎn)的坐標(biāo)為(-1+,0)或(-1-,0)或(2+,0)或(2-,0)或(0,0).【點(diǎn)睛】本題考查一次函數(shù)圖像與性質(zhì)和反比例函數(shù)的圖像和性質(zhì),解題的關(guān)鍵是待定系數(shù)法,分三種情況討論.21、(1)△ABD,△ACD,△DCE(2)△BDF∽△CED∽△DEF,證明見解析;(3)4.【解析】
(1)根據(jù)等腰三角形的性質(zhì)以及相似三角形的判定得出△ADE∽△ABD∽△ACD∽△DCE,同理可得:△ADE∽△ACD.△ADE∽△DCE.(2)利用已知首先求出∠BFD=∠CDE,即可得出△BDF∽△CED,再利用相似三角形的性質(zhì)得出,從而得出△BDF∽△CED∽△DEF.(3)利用△DEF的面積等于△ABC的面積的,求出DH的長(zhǎng),從而利用S△DEF的值求出EF即可【詳解】解:(1)圖(1)中與△ADE相似的有△ABD,△ACD,△DCE.(2)△BDF∽△CED∽△DEF,證明如下:∵∠B+∠BDF+∠BFD=30°,∠EDF+∠BDF+∠CDE=30°,又∵∠EDF=∠B,∴∠BFD=∠CDE.∵AB=AC,∴∠B=∠C.∴△BDF∽△CED.∴.∵BD=CD,∴,即.又∵∠C=∠EDF,∴△CED∽△DEF.∴△BDF∽△CED∽△DEF.(3)連接AD,過D點(diǎn)作DG⊥EF,DH⊥BF,垂足分別為G,H.∵AB=AC,D是BC的中點(diǎn),∴AD⊥BC,BD=BC=1.在Rt△ABD中,AD2=AB2﹣BD2,即AD2=102﹣3,∴AD=2.∴S△ABC=?BC?AD=×3×2=42,S△DEF=S△ABC=×42=3.又∵?AD?BD=?AB?DH,∴.∵△BDF∽△DEF,∴∠DFB=∠EFD.∵DH⊥BF,DG⊥EF,∴∠DHF=∠DGF.又∵DF=DF,∴△DHF≌△DGF(AAS).∴DH=DG=.∵S△DEF=·EF·DG=·EF·=3,∴EF=4.【點(diǎn)睛】本題考查了和相似有關(guān)的綜合性題目,用到的知識(shí)點(diǎn)有三角形相似的判定和性質(zhì)、等腰三角形的性質(zhì)以及勾股定理的運(yùn)用,靈活運(yùn)用相似三角形的判定定理和性質(zhì)定理是解題的關(guān)鍵,解答時(shí),要仔細(xì)觀察圖形、選擇合適的判定方法,注意數(shù)形結(jié)合思想的運(yùn)用.22、(1)60,1°.(2)補(bǔ)圖見解析;(3)【解析】
(1)根據(jù)了解很少的人數(shù)和所占的百分百求出抽查的總?cè)藬?shù),再用“基本了解”所占的百分比乘以360°,即可求出“基本了解”部分所對(duì)應(yīng)扇形的圓心角的度數(shù);(2)用調(diào)查的總?cè)藬?shù)減去“基本了解”“了解很少”和“基本了解”的人數(shù),求出了解的人數(shù),從而補(bǔ)全統(tǒng)計(jì)圖;(3)根據(jù)題意先畫出樹狀圖,再根據(jù)概率公式即可得出答案.【詳解】(1)接受問卷調(diào)查的學(xué)生共有30÷50%=60(人),扇形統(tǒng)計(jì)圖中“基本了解”部分所對(duì)應(yīng)扇形的圓心角為360°×=1°,故答案為60,1.(2)了解的人數(shù)有:60﹣15﹣30﹣10=5(人),補(bǔ)圖如下:(3)畫樹狀圖得:?∵共有20種等可能的結(jié)果,恰好抽到1個(gè)男生和1個(gè)女生的有12種情況,∴恰好抽到1個(gè)男生和1個(gè)女生的概率為=.【點(diǎn)睛】此題考查了條形統(tǒng)計(jì)圖、扇形統(tǒng)計(jì)圖以及用列表法或樹狀圖法求概率,讀懂題意,根據(jù)題意求出總?cè)藬?shù)是解題的關(guān)鍵;概率=所求情況數(shù)與總情況數(shù)之比.23、(1)60人;(2)144°,補(bǔ)全圖形見解析;(3)15萬(wàn)人.【解析】
(1)用B景點(diǎn)人數(shù)除以其所占百分比可得;(2)用360°乘以A景點(diǎn)人數(shù)所占比例即可,根據(jù)各景點(diǎn)人數(shù)之和等于總?cè)藬?shù)求得C的人數(shù)即可補(bǔ)全條形圖;(3)用總?cè)藬?shù)乘以樣本中D景點(diǎn)人數(shù)所占比例【詳解】(1)今年“五?一”放假期間該市這四個(gè)景點(diǎn)共接待游客的總?cè)藬?shù)為18÷30%=60萬(wàn)人;(2)扇形統(tǒng)計(jì)圖中景點(diǎn)A所對(duì)應(yīng)的圓心角的度數(shù)是360°×=144°,C景點(diǎn)人數(shù)為60﹣(24+18+10)=8萬(wàn)人,補(bǔ)全圖形如下:(3)估計(jì)選擇去景點(diǎn)D旅游的人數(shù)為90×=15(萬(wàn)人).【點(diǎn)睛】本題考查的是條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖的綜合運(yùn)用.讀懂統(tǒng)計(jì)圖,從不同的統(tǒng)計(jì)圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計(jì)圖能清楚地表示出每個(gè)項(xiàng)目的數(shù)據(jù);扇形統(tǒng)計(jì)圖直接反映部分占總體的百分比大?。?4、-1【解析】分析:根據(jù)零次冪、絕對(duì)值以及負(fù)指數(shù)次冪的計(jì)算法則求出各式的值,然后進(jìn)行求和得出答案.詳解:解:(﹣)0﹣|﹣3|+(﹣1)2015+()﹣1=1﹣3+(﹣1)+2=﹣1.點(diǎn)睛:本題主要考查的是實(shí)數(shù)的計(jì)算法則,屬于基礎(chǔ)題型.理解各種計(jì)算法則是解決這個(gè)問題的關(guān)鍵.25、見解析【解析】
根據(jù)題意:一邊為x米,面積為4,則另一邊為米,籬
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年廣場(chǎng)景觀施工合同
- 【初中生物】從種到界-2024-2025學(xué)年七年級(jí)生物上冊(cè)同步教學(xué)課件(人教版2024)
- 2024租地合同協(xié)議書范本農(nóng)村租地協(xié)議書范本
- 2024年度「新能源領(lǐng)域研究開發(fā)」合同
- 2024年冷庫(kù)建造施工合同模板
- 2024年度銷售合同:醫(yī)療設(shè)備供應(yīng)
- 2024年店鋪裝修合同范本
- 2024年度」品牌代言協(xié)議明星效應(yīng)助力品牌
- 2024年度智能制造生產(chǎn)線改造合同
- 認(rèn)識(shí)梯形課件教學(xué)課件
- 第四單元認(rèn)位置(單元測(cè)試)2024-2025學(xué)年一年級(jí)數(shù)學(xué)上冊(cè)蘇教版
- 個(gè)人加工廠轉(zhuǎn)讓協(xié)議書模板
- 滬教版 八年級(jí)(上)數(shù)學(xué) 正比例函數(shù)與反比例函數(shù)重點(diǎn)題型專項(xiàng)訓(xùn)練 (含解析)
- 《電工與電子技術(shù)》課程標(biāo)準(zhǔn)
- 建設(shè)工程價(jià)款結(jié)算暫行辦法-20220522094514
- 三年級(jí)數(shù)學(xué)上冊(cè)典型例題系列之第一單元:時(shí)間計(jì)算問題專項(xiàng)練習(xí)(原卷版+解析)
- 癌癥患者生活質(zhì)量量表EORTC-QLQ-C30
- 2024年中小學(xué)體育教師招聘考試試題及答案
- 第三屆全國(guó)新能源汽車關(guān)鍵技術(shù)技能大賽【官方題庫(kù)】賽項(xiàng)一 新能源汽車輕量化技術(shù)方向
- 【課件】現(xiàn)實(shí)與理想-西方古典繪畫+課件-2023-2024學(xué)年高中美術(shù)人美版(2019)美術(shù)鑒賞
- 一般工商貿(mào)(輕工)管理人員安全生產(chǎn)考試題庫(kù)(含答案)
評(píng)論
0/150
提交評(píng)論