![海南省保亭縣2024年中考數(shù)學(xué)最后一模試卷含解析_第1頁](http://file4.renrendoc.com/view4/M01/3F/13/wKhkGGY3DlmASY3cAAHWsOu0pbE494.jpg)
![海南省保亭縣2024年中考數(shù)學(xué)最后一模試卷含解析_第2頁](http://file4.renrendoc.com/view4/M01/3F/13/wKhkGGY3DlmASY3cAAHWsOu0pbE4942.jpg)
![海南省保亭縣2024年中考數(shù)學(xué)最后一模試卷含解析_第3頁](http://file4.renrendoc.com/view4/M01/3F/13/wKhkGGY3DlmASY3cAAHWsOu0pbE4943.jpg)
![海南省保亭縣2024年中考數(shù)學(xué)最后一模試卷含解析_第4頁](http://file4.renrendoc.com/view4/M01/3F/13/wKhkGGY3DlmASY3cAAHWsOu0pbE4944.jpg)
![海南省保亭縣2024年中考數(shù)學(xué)最后一模試卷含解析_第5頁](http://file4.renrendoc.com/view4/M01/3F/13/wKhkGGY3DlmASY3cAAHWsOu0pbE4945.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
海南省保亭縣2024年中考數(shù)學(xué)最后一模試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.一個不透明的布袋里裝有5個只有顏色不同的球,其中2個紅球、3個白球.從布袋中一次性摸出兩個球,則摸出的兩個球中至少有一個紅球的概率是()A. B. C. D.2.已知二次函數(shù)(為常數(shù)),當(dāng)時,函數(shù)的最小值為5,則的值為()A.-1或5 B.-1或3 C.1或5 D.1或33.(﹣1)0+|﹣1|=()A.2B.1C.0D.﹣14.如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為E,連接AC,若∠CAB=22.5°,CD=8cm,則⊙O的半徑為()A.8cm B.4cm C.4cm D.5cm5.甲、乙兩人沿相同的路線由A地到B地勻速前進,A、B兩地間的路程為40km.他們前進的路程為s(km),甲出發(fā)后的時間為t(h),甲、乙前進的路程與時間的函數(shù)圖象如圖所示.根據(jù)圖象信息,下列說法不正確的是()A.甲的速度是10km/h B.乙的速度是20km/hC.乙出發(fā)h后與甲相遇 D.甲比乙晚到B地2h6.如圖,一張半徑為的圓形紙片在邊長為的正方形內(nèi)任意移動,則在該正方形內(nèi),這張圓形紙片“能接觸到的部分”的面積是()A. B. C. D.7.若分式有意義,則a的取值范圍是()A.a(chǎn)≠1 B.a(chǎn)≠0 C.a(chǎn)≠1且a≠0 D.一切實數(shù)8.的絕對值是()A.﹣4 B. C.4 D.0.49.如圖是一個放置在水平桌面的錐形瓶,它的俯視圖是()A. B. C. D.10.如圖是幾何體的三視圖,該幾何體是()A.圓錐 B.圓柱 C.三棱柱 D.三棱錐二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,中,,,,,平分,與相交于點,則的長等于_____.12.已知一粒米的質(zhì)量是1.111121千克,這個數(shù)字用科學(xué)記數(shù)法表示為__________.13.如圖,已知在△ABC中,∠A=40°,剪去∠A后成四邊形,∠1+∠2=______°.14.如圖,在平面直角坐標(biāo)系中,一動點從原點O出發(fā),沿著箭頭所示方向,每次移動一個單位,依次得到點P1(0,1);P2(1,1);P3(1,0);P4(1,﹣1);P5(2,﹣1);P6(2,0)……,則點P2019的坐標(biāo)是_____.15.不等式-2x+3>0的解集是___________________16.2018年5月13日,中國首艘國產(chǎn)航空母艦首次執(zhí)行海上試航任務(wù),其排水量超過6萬噸,將數(shù)60000用科學(xué)記數(shù)法表示應(yīng)為_______________.三、解答題(共8題,共72分)17.(8分)某校在一次大課間活動中,采用了四種活動形式:A、跑步,B、跳繩,C、做操,D、游戲.全校學(xué)生都選擇了一種形式參與活動,小杰對同學(xué)們選用的活動形式進行了隨機抽樣調(diào)查,根據(jù)調(diào)查統(tǒng)計結(jié)果,繪制了不完整的統(tǒng)計圖.請結(jié)合統(tǒng)計圖,回答下列問題:(1)本次調(diào)查學(xué)生共人,a=,并將條形圖補充完整;(2)如果該校有學(xué)生2000人,請你估計該校選擇“跑步”這種活動的學(xué)生約有多少人?(3)學(xué)校讓每班在A、B、C、D四種活動形式中,隨機抽取兩種開展活動,請用樹狀圖或列表的方法,求每班抽取的兩種形式恰好是“跑步”和“跳繩”的概率.18.(8分)如今很多初中生購買飲品飲用,既影響身體健康又給家庭增加不必要的開銷,為此數(shù)學(xué)興趣小組對本班同學(xué)一天飲用飲品的情況進行了調(diào)查,大致可分為四種:A:自帶白開水;B:瓶裝礦泉水;C:碳酸飲料;D:非碳酸飲料.根據(jù)統(tǒng)計結(jié)果繪制如下兩個統(tǒng)計圖(如圖),根據(jù)統(tǒng)計圖提供的信息,解答下列問題:(1)請你補全條形統(tǒng)計圖;(2)在扇形統(tǒng)計圖中,求“碳酸飲料”所在的扇形的圓心角的度數(shù);(3)為了養(yǎng)成良好的生活習(xí)慣,班主任決定在自帶白開水的5名同學(xué)(男生2人,女生3人)中隨機抽取2名同學(xué)擔(dān)任生活監(jiān)督員,請用列表法或樹狀圖法求出恰好抽到一男一女的概率.19.(8分)如圖,在平行四邊形中,的平分線與邊相交于點.(1)求證;(2)若點與點重合,請直接寫出四邊形是哪種特殊的平行四邊形.20.(8分)“食品安全”受到全社會的廣泛關(guān)注,濟南市某中學(xué)對部分學(xué)生就食品安全知識的了解程度,采用隨機抽樣調(diào)查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:(1)接受問卷調(diào)查的學(xué)生共有人,扇形統(tǒng)計圖中“基本了解”部分所對應(yīng)扇形的圓心角為;(2)請補全條形統(tǒng)計圖;(3)若該中學(xué)共有學(xué)生900人,請根據(jù)上述調(diào)查結(jié)果,估計該中學(xué)學(xué)生中對食品安全知識達到“了解”和“基本了解”程度的總?cè)藬?shù);(4)若從對食品安全知識達到“了解”程度的2個女生和2個男生中隨機抽取2人參加食品安全知識競賽,請用樹狀圖或列表法求出恰好抽到1個男生和1個女生的概率.21.(8分)某初級中學(xué)正在展開“文明城市創(chuàng)建人人參與,志愿服務(wù)我當(dāng)先行”的“創(chuàng)文活動”為了了解該校志愿者參與服務(wù)情況,現(xiàn)對該校全體志愿者進行隨機抽樣調(diào)查.根據(jù)調(diào)查數(shù)據(jù)繪制了如下所示不完整統(tǒng)計圖.條形統(tǒng)計圖中七年級、八年級、九年級、教師分別指七年級、八年級、九年級、教師志愿者中被抽到的志愿者,扇形統(tǒng)計圖中的百分?jǐn)?shù)指的是該年級被抽到的志愿者數(shù)與樣本容量的比.請補全條形統(tǒng)計圖;若該校共有志愿者600人,則該校九年級大約有多少志愿者?22.(10分)在平面直角坐標(biāo)系xOy中,已知兩點A(0,3),B(1,0),現(xiàn)將線段AB繞點B按順時針方向旋轉(zhuǎn)90°得到線段BC,拋物線y=ax2+bx+c經(jīng)過點C.(1)如圖1,若拋物線經(jīng)過點A和D(﹣2,0).①求點C的坐標(biāo)及該拋物線解析式;②在拋物線上是否存在點P,使得∠POB=∠BAO,若存在,請求出所有滿足條件的點P的坐標(biāo),若不存在,請說明理由;(2)如圖2,若該拋物線y=ax2+bx+c(a<0)經(jīng)過點E(2,1),點Q在拋物線上,且滿足∠QOB=∠BAO,若符合條件的Q點恰好有2個,請直接寫出a的取值范圍.23.(12分)如圖,在平面直角坐標(biāo)系中,拋物線與x軸交于點A、B,與y軸交于點C,直線y=x+4經(jīng)過點A、C,點P為拋物線上位于直線AC上方的一個動點.(1)求拋物線的表達式;(2)如圖,當(dāng)CP//AO時,求∠PAC的正切值;(3)當(dāng)以AP、AO為鄰邊的平行四邊形第四個頂點恰好也在拋物線上時,求出此時點P的坐標(biāo).24.如圖,已知,請用尺規(guī)過點作一條直線,使其將分成面積比為兩部分.(保留作圖痕跡,不寫作法)
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
畫出樹狀圖得出所有等可能的情況數(shù),找出恰好是兩個紅球的情況數(shù),即可求出所求的概率.【詳解】畫樹狀圖如下:一共有20種情況,其中兩個球中至少有一個紅球的有14種情況,因此兩個球中至少有一個紅球的概率是:.故選:D.【點睛】此題考查了列表法與樹狀圖法,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.2、A【解析】
由解析式可知該函數(shù)在x=h時取得最小值1,x>h時,y隨x的增大而增大;當(dāng)x<h時,y隨x的增大而減?。桓鶕?jù)1≤x≤3時,函數(shù)的最小值為5可分如下兩種情況:①若h<1,可得x=1時,y取得最小值5;②若h>3,可得當(dāng)x=3時,y取得最小值5,分別列出關(guān)于h的方程求解即可.【詳解】解:∵x>h時,y隨x的增大而增大,當(dāng)x<h時,y隨x的增大而減小,∴①若h<1,當(dāng)時,y隨x的增大而增大,∴當(dāng)x=1時,y取得最小值5,可得:,解得:h=?1或h=3(舍),∴h=?1;②若h>3,當(dāng)時,y隨x的增大而減小,當(dāng)x=3時,y取得最小值5,可得:,解得:h=5或h=1(舍),∴h=5,③若1≤h≤3時,當(dāng)x=h時,y取得最小值為1,不是5,∴此種情況不符合題意,舍去.綜上所述,h的值為?1或5,故選:A.【點睛】本題主要考查二次函數(shù)的性質(zhì)和最值,根據(jù)二次函數(shù)的性質(zhì)和最值進行分類討論是解題的關(guān)鍵.3、A【解析】
根據(jù)絕對值和數(shù)的0次冪的概念作答即可.【詳解】原式=1+1=2故答案為:A.【點睛】本題考查的知識點是絕對值和數(shù)的0次冪,解題關(guān)鍵是熟記數(shù)的0次冪為1.4、C【解析】
連接OC,如圖所示,由直徑AB垂直于CD,利用垂徑定理得到E為CD的中點,即CE=DE,由OA=OC,利用等邊對等角得到一對角相等,確定出三角形COE為等腰直角三角形,求出OC的長,即為圓的半徑.【詳解】解:連接OC,如圖所示:∵AB是⊙O的直徑,弦CD⊥AB,∴∵OA=OC,∴∠A=∠OCA=22.5°,∵∠COE為△AOC的外角,∴∠COE=45°,∴△COE為等腰直角三角形,∴故選:C.【點睛】此題考查了垂徑定理,等腰直角三角形的性質(zhì),以及圓周角定理,熟練掌握垂徑定理是解本題的關(guān)鍵.5、B【解析】由圖可知,甲用4小時走完全程40km,可得速度為10km/h;乙比甲晚出發(fā)一小時,用1小時走完全程,可得速度為40km/h.故選B6、C【解析】
這張圓形紙片減去“不能接觸到的部分”的面積是就是這張圓形紙片“能接觸到的部分”的面積.【詳解】解:如圖:∵正方形的面積是:4×4=16;扇形BAO的面積是:,∴則這張圓形紙片“不能接觸到的部分”的面積是4×1-4×=4-π,∴這張圓形紙片“能接觸到的部分”的面積是16-(4-π)=12+π,故選C.【點睛】本題主要考查了正方形和扇形的面積的計算公式,正確記憶公式是解題的關(guān)鍵.7、A【解析】分析:根據(jù)分母不為零,可得答案詳解:由題意,得,解得故選A.點睛:本題考查了分式有意義的條件,利用分母不為零得出不等式是解題關(guān)鍵.8、B【解析】分析:根據(jù)絕對值的性質(zhì),一個負(fù)數(shù)的絕對值等于其相反數(shù),可有相反數(shù)的意義求解.詳解:因為-的相反數(shù)為所以-的絕對值為.故選:B點睛:此題主要考查了求一個數(shù)的絕對值,關(guān)鍵是明確絕對值的性質(zhì),一個正數(shù)的絕對值等于本身,0的絕對值是0,一個負(fù)數(shù)的絕對值為其相反數(shù).9、B【解析】
根據(jù)俯視圖是從上面看到的圖形解答即可.【詳解】錐形瓶從上面往下看看到的是兩個同心圓.故選B.【點睛】本題考查三視圖的知識,解決此類圖的關(guān)鍵是由三視圖得到相應(yīng)的平面圖形.從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖,能看到的線畫實線,被遮擋的線畫虛線.10、C【解析】分析:根據(jù)一個空間幾何體的主視圖和左視圖都是長方形,可判斷該幾何體是柱體,進而根據(jù)俯視圖的形狀,可判斷是三棱柱,得到答案.詳解:∵幾何體的主視圖和左視圖都是長方形,故該幾何體是一個柱體,又∵俯視圖是一個三角形,故該幾何體是一個三棱柱,故選C.點睛:本題考查的知識點是三視圖,如果有兩個視圖為三角形,該幾何體一定是錐,如果有兩個矩形,該幾何體一定柱,其底面由第三個視圖的形狀決定.二、填空題(本大題共6個小題,每小題3分,共18分)11、3【解析】
如圖,延長CE、DE,分別交AB于G、H,由∠BAD=∠ADE=60°可得三角形ADH是等邊三角形,根據(jù)等腰直角三角形的性質(zhì)可知CG⊥AB,可求出AG的長,進而可得GH的長,根據(jù)含30°角的直角三角形的性質(zhì)可求出EH的長,根據(jù)DE=DH-EH即可得答案.【詳解】如圖,延長CE、DE,分別交AB于G、H,∵∠BAD=∠ADE=60°,∴△ADH是等邊三角形,∴DH=AD=AH=5,∠DHA=60°,∵AC=BC,CE平分∠ACB,∠ACB=90°,∴AB==8,AG=AB=4,CG⊥AB,∴GH=AH=AG=5-4=1,∵∠DHA=60°,∴∠GEH=30°,∴EH=2GH=2∴DE=DH-EH=5=2=3.故答案為:3【點睛】本題考查等邊三角形的判定及性質(zhì)、等腰直角三角形的性質(zhì)及含30°角的直角三角形的性質(zhì),熟記30°角所對的直角邊等于斜邊的一半的性質(zhì)并正確作出輔助線是解題關(guān)鍵.12、2.1×【解析】
絕對值小于1的正數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為a×11-n,與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負(fù)指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的1的個數(shù)所決定.【詳解】解:1.111121=2.1×11-2.
故答案為:2.1×11-2.【點睛】本題考查用科學(xué)記數(shù)法表示較小的數(shù),一般形式為a×11-n,其中1≤|a|<11,n由原數(shù)左邊起第一個不為零的數(shù)字前面的1的個數(shù)所決定.13、220.【解析】試題分析:△ABC中,∠A=40°,=;如圖,剪去∠A后成四邊形∠1+∠2+=;∠1+∠2=220°考點:內(nèi)角和定理點評:本題考查三角形、四邊形的內(nèi)角和定理,掌握內(nèi)角和定理是解本題的關(guān)鍵14、(673,0)【解析】
由P3、P6、P9可得規(guī)律:當(dāng)下標(biāo)為3的整數(shù)倍時,橫坐標(biāo)為,縱坐標(biāo)為0,據(jù)此可解.【詳解】解:由P3、P6、P9可得規(guī)律:當(dāng)下標(biāo)為3的整數(shù)倍時,橫坐標(biāo)為,縱坐標(biāo)為0,∵2019÷3=673,∴P2019(673,0)則點P2019的坐標(biāo)是(673,0).故答案為(673,0).【點睛】本題屬于平面直角坐標(biāo)系中找點的規(guī)律問題,找到某種循環(huán)規(guī)律之后,可以得解.本題難度中等偏上.15、x<【解析】
根據(jù)解一元一次不等式基本步驟:移項、系數(shù)化為1可得.【詳解】移項,得:-2x>-3,系數(shù)化為1,得:x<,故答案為x<.【點睛】本題主要考查解一元一次不等式的基本能力,嚴(yán)格遵循解不等式的基本步驟是關(guān)鍵,尤其需要注意不等式兩邊都乘以或除以同一個負(fù)數(shù)不等號方向要改變.16、【解析】【分析】科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).【詳解】60000小數(shù)點向左移動4位得到6,所以60000用科學(xué)記數(shù)法表示為:6×1,故答案為:6×1.【點睛】本題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.三、解答題(共8題,共72分)17、(1)300,10;(2)有800人;(3).【解析】試題分析:試題解析:(1)120÷40%=300,a%=1﹣40%﹣30%﹣20%=10%,∴a=10,10%×300=30,圖形如下:(2)2000×40%=800(人),答:估計該校選擇“跑步”這種活動的學(xué)生約有800人;(3)畫樹狀圖為:共有12種等可能的結(jié)果數(shù),其中每班所抽到的兩項方式恰好是“跑步”和“跳繩”的結(jié)果數(shù)為2,所以每班所抽到的兩項方式恰好是“跑步”和“跳繩”的概率=.考點:1.用樣本估計總體;2.扇形統(tǒng)計圖;3.條形統(tǒng)計圖;4.列表法與樹狀圖法.18、(1)詳見解析;(2)72°;(3)3【解析】
(1)由B類型的人數(shù)及其百分比求得總?cè)藬?shù),在用總?cè)藬?shù)減去其余各組人數(shù)得出C類型人數(shù),即可補全條形圖;(2)用360°乘以C類別人數(shù)所占比例即可得;(3)用列表法或畫樹狀圖法列出所有等可能結(jié)果,從中確定恰好抽到一男一女的結(jié)果數(shù),根據(jù)概率公式求解可得.【詳解】解:(1)∵抽查的總?cè)藬?shù)為:20÷40%=50(人)∴C類人數(shù)為:50-5-20-15=10(人)補全條形統(tǒng)計圖如下:(2)“碳酸飲料”所在的扇形的圓心角度數(shù)為:10(3)設(shè)男生為A1、A2,女生為B1、B畫樹狀圖得:∴恰好抽到一男一女的情況共有12種,分別是A∴P(恰好抽到一男一女)=12【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用以及概率的求法,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?9、(1)見解析;(2)菱形.【解析】
(1)根據(jù)角平分線的性質(zhì)可得∠ADE=∠CDE,再由平行線的性質(zhì)可得AB∥CD,易得AD=AE,從而可證得結(jié)論;(2)若點與點重合,可證得AD=AB,根據(jù)鄰邊相等的平行四邊形是菱形即可作出判斷.【詳解】(1)∵DE平分∠ADC,∴∠ADE=∠CDE.∵四邊形ABCD是平行四邊形,∴AB∥CD,AB=CD,AD=BC,AB=CD.∵∠AED=∠CDE.∴∠ADE=∠AED.∴AD=AE.∴BC=AE.∵AB=AE+EB.∴BE+BC=CD.(2)菱形,理由如下:由(1)可知,AD=AE,∵點E與B重合,∴AD=AB.∵四邊形ABCD是平行四邊形∴平行四邊形ABCD為菱形.【點睛】本題考查了平行四邊形的性質(zhì),平行線的性質(zhì),等腰三角形的性質(zhì),菱形的性質(zhì),熟練掌握各知識是解題的關(guān)鍵.20、(1)60,90°;(2)補圖見解析;(3)300;(4).【解析】分析:(1)根據(jù)了解很少的人數(shù)除以了解很少的人數(shù)所占的百分百求出抽查的總?cè)藬?shù),再用“基本了解”所占的百分比乘以360°,即可求出“基本了解”部分所對應(yīng)扇形的圓心角的度數(shù);(2)用調(diào)查的總?cè)藬?shù)減去“基本了解”“了解很少”和“基本了解”的人數(shù),求出了解的人數(shù),從而補全統(tǒng)計圖;(3)用總?cè)藬?shù)乘以“了解”和“基本了解”程度的人數(shù)所占的比例,即可求出達到“了解”和“基本了解”程度的總?cè)藬?shù);(4)根據(jù)題意列出表格,再根據(jù)概率公式即可得出答案.詳解:(1)60;90°.(2)補全的條形統(tǒng)計圖如圖所示.(3)對食品安全知識達到“了解”和“基本了解”的學(xué)生所占比例為,由樣本估計總體,該中學(xué)學(xué)生中對食品安全知識達到“了解”和“基本了解”程度的總?cè)藬?shù)為.(4)列表法如表所示,男生男生女生女生男生男生男生男生女生男生女生男生男生男生男生女生男生女生女生男生女生男生女生女生女生女生男生女生男生女生女生女生所有等可能的情況一共12種,其中選中1個男生和1個女生的情況有8種,所以恰好選中1個男生和1個女生的概率是.點睛:本題考查了條形統(tǒng)計圖、扇形統(tǒng)計圖以及用列表法或樹狀圖法求概率,根據(jù)題意求出總?cè)藬?shù)是解題的關(guān)鍵;注意運用概率公式:概率=所求情況數(shù)與總情況數(shù)之比.21、(1)作圖見解析;(2)1.【解析】試題分析:(1)根據(jù)百分比=計算即可解決問題,求出八年級、九年級、被抽到的志愿者人數(shù)畫出條形圖即可;(2)用樣本估計總體的思想,即可解決問題;試題解析:解:(1)由題意總?cè)藬?shù)=20÷40%=50人,八年級被抽到的志愿者:50×30%=15人九年級被抽到的志愿者:50×20%=10人,條形圖如圖所示:(2)該校共有志愿者600人,則該校九年級大約有600×20%=1人.答:該校九年級大約有1名志愿者.22、(1)①y=﹣x2+x+3;②P(,)或P'(,﹣);(2)≤a<1;【解析】
(1)①先判斷出△AOB≌△GBC,得出點C坐標(biāo),進而用待定系數(shù)法即可得出結(jié)論;②分兩種情況,利用平行線(對稱)和直線和拋物線的交點坐標(biāo)的求法,即可得出結(jié)論;(2)同(1)②的方法,借助圖象即可得出結(jié)論.【詳解】(1)①如圖2,∵A(1,3),B(1,1),∴OA=3,OB=1,由旋轉(zhuǎn)知,∠ABC=91°,AB=CB,∴∠ABO+∠CBE=91°,過點C作CG⊥OB于G,∴∠CBG+∠BCG=91°,∴∠ABO=∠BCG,∴△AOB≌△GBC,∴CG=OB=1,BG=OA=3,∴OG=OB+BG=4∴C(4,1),拋物線經(jīng)過點A(1,3),和D(﹣2,1),∴,∴,∴拋物線解析式為y=﹣x2+x+3;②由①知,△AOB≌△EBC,∴∠BAO=∠CBF,∵∠POB=∠BAO,∴∠POB=∠CBF,如圖1,OP∥BC,∵B(1,1),C(4,1),∴直線BC的解析式為y=x﹣,∴直線OP的解析式為y=x,∵拋物線解析式為y=﹣x2+x+3;聯(lián)立解得,或(舍)∴P(,);在直線OP上取一點M(3,1),∴點M的對稱點M'(3,﹣1),∴直線OP'的解析式為y=﹣x,∵拋物線解析式為y=﹣x2+x+3;聯(lián)立解得,或(舍),∴P'(,﹣);(2)同(1)②的方法,如圖3,∵拋物線y=ax2+bx+c經(jīng)過點C(4,1),E(2,1),∴,∴,∴拋物線y=ax2﹣6ax+8a+1,令y=1,∴ax2﹣6ax+8a+1=1,∴x1×x2=∵符合條件的Q點恰好有2個,∴方程ax2﹣6ax+8a+1=1有一個正根和一個負(fù)根或一個正根和1,∴x1×x2=≤1,∵a<1,∴8a+1≥1,∴a≥﹣,即:﹣≤a<1.【點睛】本題是二次函數(shù)綜合題,考查了待定系數(shù)法,全等三角形的判定和性質(zhì),平行線的性質(zhì),對稱的性質(zhì),解題的關(guān)鍵是求出直線和拋物線的交點坐標(biāo).23、(1)拋物線的表達式為;(2);(3)P點的坐標(biāo)是.【解析】
分析:(1)由題意易得點A、C的坐標(biāo)分別為(-1,0),(0,1),將這兩點坐標(biāo)代入拋物線列出方程組,解得b、c的值即可求得拋物線的解析式;(2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廈門房屋租賃合同樣本
- 房地產(chǎn)典當(dāng)合同
- 滬牌租賃合同多
- 石灰石購銷合同
- 居間合同協(xié)議書范本
- 酒吧的勞動合同
- 火焰探測器的種類和應(yīng)用
- 基于LabVIEW的鐵路彈條扣壓力測量系統(tǒng)設(shè)計
- 無償合同的題
- VTE預(yù)防相關(guān)護理管理制度
- 學(xué)校中層干部管理培訓(xùn)
- 《航運市場營銷》課件-海運巨頭馬士基
- 繪本創(chuàng)作方案
- 《童年的水墨畫》的說課課件
- 地鐵保潔服務(wù)投標(biāo)方案(技術(shù)標(biāo))
- 2023年河南省新鄉(xiāng)市鳳泉區(qū)事業(yè)單位招聘53人高頻考點題庫(共500題含答案解析)模擬練習(xí)試卷
- 2023年小升初簡歷下載
- 廣府文化的奇葩
- 公路工程標(biāo)準(zhǔn)施工招標(biāo)文件(2018年版)解析
- 七年級地理下冊期末試卷(人教版)
- 第八節(jié) 元代散曲
評論
0/150
提交評論