河北省保定市高陽縣2024年中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第1頁
河北省保定市高陽縣2024年中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第2頁
河北省保定市高陽縣2024年中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第3頁
河北省保定市高陽縣2024年中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第4頁
河北省保定市高陽縣2024年中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第5頁

文檔簡介

河北省保定市高陽縣2024年中考數(shù)學(xué)適應(yīng)性模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.下列說法正確的是()A.“明天降雨的概率是60%”表示明天有60%的時(shí)間都在降雨B.“拋一枚硬幣正面朝上的概率為50%”表示每拋2次就有一次正面朝上C.“彩票中獎(jiǎng)的概率為1%”表示買100張彩票肯定會中獎(jiǎng)D.“拋一枚正方體骰子,朝上的點(diǎn)數(shù)為2的概率為”表示隨著拋擲次數(shù)的增加,“拋出朝上的點(diǎn)數(shù)為2”這一事件發(fā)生的概率穩(wěn)定在附近2.如圖,正方形ABCD和正方形CEFG中,點(diǎn)D在CG上,BC=1,CE=3,CH┴AF與點(diǎn)H,那么CH的長是()A. B. C. D.3.一個(gè)多邊形內(nèi)角和是外角和的2倍,它是()A.五邊形 B.六邊形 C.七邊形 D.八邊形4.若關(guān)于x的一元二次方程x2﹣2x+m=0有兩個(gè)不相等的實(shí)數(shù)根,則m的取值范圍是()A.m<﹣1 B.m<1 C.m>﹣1 D.m>15.已知A(,),B(2,)兩點(diǎn)在雙曲線上,且,則m的取值范圍是()A. B. C. D.6.每到四月,許多地方楊絮、柳絮如雪花般漫天飛舞,人們不堪其憂,據(jù)測定,楊絮纖維的直徑約為0.0000105m,該數(shù)值用科學(xué)記數(shù)法表示為()A.1.05×105 B.0.105×10﹣4 C.1.05×10﹣5 D.105×10﹣77.如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,⊙O的半徑為6,∠ADC=60°,則劣弧AC的長為()A.2π B.4π C.5π D.6π8.下列命題正確的是()A.對角線相等的四邊形是平行四邊形B.對角線相等的四邊形是矩形C.對角線互相垂直的平行四邊形是菱形D.對角線互相垂直且相等的四邊形是正方形9.如圖,在△ABC中,AB=5,AC=4,∠A=60°,若邊AC的垂直平分線DE交AB于點(diǎn)D,連接CD,則△BDC的周長為()A.8 B.9 C.5+ D.5+10.在平面直角坐標(biāo)系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3…按如圖所示的方式放置,其中點(diǎn)B1在y軸上,點(diǎn)C1、E1、E2、C2、E3、E4、C3…在x軸上,已知正方形A1B1C1D1的邊長為l,∠B1C1O=60°,B1C1∥B2C2∥B3C3…,則正方形A2017B2017C2017D2017的邊長是()A.(12)2016B.(12)2017C.(33)2016D.(二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與軸相交于點(diǎn)A、B,若其對稱軸為直線x=2,則OB–OA的值為_______.12.如圖,反比例函數(shù)(x>0)的圖象與矩形OABC的邊長AB、BC分別交于點(diǎn)E、F且AE=BE,則△OEF的面積的值為.13.如圖,把△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到△A'B'C',此時(shí)A′B′⊥AC于D,已知∠A=50°,則∠B′CB的度數(shù)是_____°.14.如圖,直線經(jīng)過、兩點(diǎn),則不等式的解集為_______.15.如圖,⊙M的半徑為2,圓心M(3,4),點(diǎn)P是⊙M上的任意一點(diǎn),PA⊥PB,且PA、PB與x軸分別交于A、B兩點(diǎn),若點(diǎn)A、點(diǎn)B關(guān)于原點(diǎn)O對稱,則AB的最小值為_____.16.分解因式:a3-a=三、解答題(共8題,共72分)17.(8分)如圖,已知△ABC中,∠ACB=90°,D是邊AB的中點(diǎn),P是邊AC上一動(dòng)點(diǎn),BP與CD相交于點(diǎn)E.(1)如果BC=6,AC=8,且P為AC的中點(diǎn),求線段BE的長;(2)聯(lián)結(jié)PD,如果PD⊥AB,且CE=2,ED=3,求cosA的值;(3)聯(lián)結(jié)PD,如果BP2=2CD2,且CE=2,ED=3,求線段PD的長.18.(8分)如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于點(diǎn)A(-3,m+8),B(n,-6)兩點(diǎn).求一次函數(shù)與反比例函數(shù)的解析式;求△AOB的面積.19.(8分)某蔬菜生產(chǎn)基地的氣溫較低時(shí),用裝有恒溫系統(tǒng)的大棚栽培一種新品種蔬菜.如圖是試驗(yàn)階段的某天恒溫系統(tǒng)從開啟到關(guān)閉后,大棚內(nèi)的溫度y(℃)與時(shí)間x(h)之間的函數(shù)關(guān)系,其中線段AB、BC表示恒溫系統(tǒng)開啟階段,雙曲線的一部分CD表示恒溫系統(tǒng)關(guān)閉階段.請根據(jù)圖中信息解答下列問題:求這天的溫度y與時(shí)間x(0≤x≤24)的函數(shù)關(guān)系式;求恒溫系統(tǒng)設(shè)定的恒定溫度;若大棚內(nèi)的溫度低于10℃時(shí),蔬菜會受到傷害.問這天內(nèi),恒溫系統(tǒng)最多可以關(guān)閉多少小時(shí),才能使蔬菜避免受到傷害?20.(8分)進(jìn)入冬季,某商家根據(jù)市民健康需要,代理銷售一種防塵口罩,進(jìn)貨價(jià)為20元/包,經(jīng)市場銷售發(fā)現(xiàn):銷售單價(jià)為30元/包時(shí),每周可售出200包,每漲價(jià)1元,就少售出5包.若供貨廠家規(guī)定市場價(jià)不得低于30元/包.試確定周銷售量y(包)與售價(jià)x(元/包)之間的函數(shù)關(guān)系式;試確定商場每周銷售這種防塵口罩所獲得的利潤w(元)與售價(jià)x(元/包)之間的函數(shù)關(guān)系式,并直接寫出售價(jià)x的范圍;當(dāng)售價(jià)x(元/包)定為多少元時(shí),商場每周銷售這種防塵口罩所獲得的利潤w(元)最大?最大利潤是多少?21.(8分)如圖所示,某工程隊(duì)準(zhǔn)備在山坡(山坡視為直線l)上修一條路,需要測量山坡的坡度,即tanα的值.測量員在山坡P處(不計(jì)此人身高)觀察對面山頂上的一座鐵塔,測得塔尖C的仰角為37°,塔底B的仰角為26.6°.已知塔高BC=80米,塔所在的山高OB=220米,OA=200米,圖中的點(diǎn)O、B、C、A、P在同一平面內(nèi),求山坡的坡度.(參考數(shù)據(jù)sin26.6°≈0.45,tan26.6°≈0.50;sin37°≈0.60,tan37°≈0.75)22.(10分)【發(fā)現(xiàn)證明】如圖1,點(diǎn)E,F(xiàn)分別在正方形ABCD的邊BC,CD上,∠EAF=45°,試判斷BE,EF,F(xiàn)D之間的數(shù)量關(guān)系.小聰把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,通過證明△AEF≌△AGF;從而發(fā)現(xiàn)并證明了EF=BE+FD.【類比引申】(1)如圖2,點(diǎn)E、F分別在正方形ABCD的邊CB、CD的延長線上,∠EAF=45°,連接EF,請根據(jù)小聰?shù)陌l(fā)現(xiàn)給你的啟示寫出EF、BE、DF之間的數(shù)量關(guān)系,并證明;【聯(lián)想拓展】(2)如圖3,如圖,∠BAC=90°,AB=AC,點(diǎn)E、F在邊BC上,且∠EAF=45°,若BE=3,EF=5,求CF的長.23.(12分)如圖,在△ABC中,AD是BC邊上的高,BE平分∠ABC交AC邊于E,∠BAC=60°,∠ABE=25°.求∠DAC的度數(shù).24.解不等式組:.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

根據(jù)概率是指某件事發(fā)生的可能性為多少,隨著試驗(yàn)次數(shù)的增加,穩(wěn)定在某一個(gè)固定數(shù)附近,可得答案.【詳解】解:A.“明天降雨的概率是60%”表示明天下雨的可能性較大,故A不符合題意;B.“拋一枚硬幣正面朝上的概率為”表示每次拋正面朝上的概率都是,故B不符合題意;C.“彩票中獎(jiǎng)的概率為1%”表示買100張彩票有可能中獎(jiǎng).故C不符合題意;D.“拋一枚正方體骰子,朝上的點(diǎn)數(shù)為2的概率為”表示隨著拋擲次數(shù)的增加,“拋出朝上的點(diǎn)數(shù)為2”這一事件發(fā)生的概率穩(wěn)定在附近,故D符合題意;故選D【點(diǎn)睛】本題考查了概率的意義,正確理解概率的含義是解決本題的關(guān)鍵.2、D【解析】

連接AC、CF,根據(jù)正方形性質(zhì)求出AC、CF,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF,最后由直角三角形面積的兩種表示法即可求得CH的長.【詳解】如圖,連接AC、CF,∵正方形ABCD和正方形CEFG中,BC=1,CE=3,∴AC=,CF=3,∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,AF=,∵CH⊥AF,∴,即,∴CH=.故選D.【點(diǎn)睛】本題考查了正方形的性質(zhì)、勾股定理及直角三角形的面積,熟記各性質(zhì)并作輔助線構(gòu)造出直角三角形是解題的關(guān)鍵.3、B【解析】

多邊形的外角和是310°,則內(nèi)角和是2×310=720°.設(shè)這個(gè)多邊形是n邊形,內(nèi)角和是(n﹣2)?180°,這樣就得到一個(gè)關(guān)于n的方程,從而求出邊數(shù)n的值.【詳解】設(shè)這個(gè)多邊形是n邊形,根據(jù)題意得:(n﹣2)×180°=2×310°解得:n=1.故選B.【點(diǎn)睛】本題考查了多邊形的內(nèi)角與外角,熟記內(nèi)角和公式和外角和定理并列出方程是解題的關(guān)鍵.根據(jù)多邊形的內(nèi)角和定理,求邊數(shù)的問題就可以轉(zhuǎn)化為解方程的問題來解決.4、B【解析】

根據(jù)方程有兩個(gè)不相等的實(shí)數(shù)根結(jié)合根的判別式即可得出△=4-4m>0,解之即可得出結(jié)論.【詳解】∵關(guān)于x的一元二次方程x2-2x+m=0有兩個(gè)不相等的實(shí)數(shù)根,∴△=(-2)2-4m=4-4m>0,解得:m<1.故選B.【點(diǎn)睛】本題考查了根的判別式,熟練掌握“當(dāng)△>0時(shí),方程有兩個(gè)不相等的兩個(gè)實(shí)數(shù)根”是解題的關(guān)鍵.5、D【解析】

∵A(,),B(2,)兩點(diǎn)在雙曲線上,∴根據(jù)點(diǎn)在曲線上,點(diǎn)的坐標(biāo)滿足方程的關(guān)系,得.∵,∴,解得.故選D.【詳解】請?jiān)诖溯斎朐斀猓?、C【解析】試題分析:絕對值小于1的正數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為a×10﹣n,與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負(fù)指數(shù)冪,指數(shù)由原數(shù)左邊起第一個(gè)不為零的數(shù)字前面的0的個(gè)數(shù)所決定.所以0.0000105=1.05×10﹣5,故選C.考點(diǎn):科學(xué)記數(shù)法.7、B【解析】

連接OA、OC,然后根據(jù)圓周角定理求得∠AOC的度數(shù),最后根據(jù)弧長公式求解.【詳解】連接OA、OC,∵∠ADC=60°,∴∠AOC=2∠ADC=120°,則劣弧AC的長為:=4π.故選B.【點(diǎn)睛】本題考查了弧長的計(jì)算以及圓周角定理,解答本題的關(guān)鍵是掌握弧長公式.8、C【解析】分析:根據(jù)平行四邊形、矩形、菱形、正方形的判定定理判斷即可.詳解:對角線互相平分的四邊形是平行四邊形,A錯(cuò)誤;對角線相等的平行四邊形是矩形,B錯(cuò)誤;對角線互相垂直的平行四邊形是菱形,C正確;對角線互相垂直且相等的平行四邊形是正方形;故選:C.點(diǎn)睛:本題考查的是命題的真假判斷,正確的命題叫真命題,錯(cuò)誤的命題叫做假命題.判斷命題的真假關(guān)鍵是要熟悉課本中的性質(zhì)定理.9、C【解析】

過點(diǎn)C作CM⊥AB,垂足為M,根據(jù)勾股定理求出BC的長,再根據(jù)DE是線段AC的垂直平分線可得△ADC等邊三角形,則CD=AD=AC=4,代入數(shù)值計(jì)算即可.【詳解】過點(diǎn)C作CM⊥AB,垂足為M,在Rt△AMC中,∵∠A=60°,AC=4,∴AM=2,MC=2,∴BM=AB-AM=3,在Rt△BMC中,BC===,∵DE是線段AC的垂直平分線,∴AD=DC,∵∠A=60°,∴△ADC等邊三角形,∴CD=AD=AC=4,∴△BDC的周長=DB+DC+BC=AD+DB+BC=AB+BC=5+.故答案選C.【點(diǎn)睛】本題考查了勾股定理,解題的關(guān)鍵是熟練的掌握勾股定理的運(yùn)算.10、C【解析】利用正方形的性質(zhì)結(jié)合銳角三角函數(shù)關(guān)系得出正方形的邊長,進(jìn)而得出變化規(guī)律即可得出答案.解:如圖所示:∵正方形A1B1C1D1的邊長為1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,∴D1E1=C1D1sin30°=,則B2C2===()1,同理可得:B3C3==()2,故正方形AnBnCnDn的邊長是:()n﹣1.則正方形A2017B2017C2017D2017的邊長是:()2.故選C.“點(diǎn)睛”此題主要考查了正方形的性質(zhì)以及銳角三角函數(shù)關(guān)系,得出正方形的邊長變化規(guī)律是解題關(guān)鍵.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、4【解析】試題分析:設(shè)OB的長度為x,則根據(jù)二次函數(shù)的對稱性可得:點(diǎn)B的坐標(biāo)為(x+2,0),點(diǎn)A的坐標(biāo)為(2-x,0),則OB-OA=x+2-(x-2)=4.點(diǎn)睛:本題主要考查的就是二次函數(shù)的性質(zhì).如果二次函數(shù)與x軸的兩個(gè)交點(diǎn)坐標(biāo)為(,0)和(,0),則函數(shù)的對稱軸為直線:x=.在解決二次函數(shù)的題目時(shí),我們一定要注意區(qū)分點(diǎn)的坐標(biāo)和線段的長度之間的區(qū)別,如果點(diǎn)在x的正半軸,則點(diǎn)的橫坐標(biāo)就是線段的長度,如果點(diǎn)在x的負(fù)半軸,則點(diǎn)的橫坐標(biāo)的相反數(shù)就是線段的長度.12、【解析】試題分析:如圖,連接OB.∵E、F是反比例函數(shù)(x>0)的圖象上的點(diǎn),EA⊥x軸于A,F(xiàn)C⊥y軸于C,∴S△AOE=S△COF=×1=.∵AE=BE,∴S△BOE=S△AOE=,S△BOC=S△AOB=1.∴S△BOF=S△BOC﹣S△COF=1﹣=.∴F是BC的中點(diǎn).∴S△OEF=S矩形AOCB﹣S△AOE﹣S△COF﹣S△BEF=6﹣﹣﹣×=.13、1【解析】

由旋轉(zhuǎn)的性質(zhì)可得∠A=∠A'=50°,∠BCB'=∠ACA',由直角三角形的性質(zhì)可求∠ACA'=1°=∠B′CB.【詳解】解:∵把△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到△A'B'C',∴∠A=∠A'=50°,∠BCB'=∠ACA'∵A'B'⊥AC∴∠A'+∠ACA'=90°∴∠ACA'=1°∴∠BCB'=1°故答案為:1.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì),熟練運(yùn)用旋轉(zhuǎn)的性質(zhì)是本題的關(guān)鍵.14、-1<X<2【解析】經(jīng)過點(diǎn)A,∴不等式x>kx+b>-2的解集為.15、6【解析】

點(diǎn)P在以O(shè)為圓心OA為半徑的圓上,P是兩個(gè)圓的交點(diǎn),當(dāng)⊙O與⊙M外切時(shí),AB最小,根據(jù)條件求出AO即可求解;【詳解】解:點(diǎn)P在以O(shè)為圓心OA為半徑的圓上,∴P是兩個(gè)圓的交點(diǎn),當(dāng)⊙O與⊙M外切時(shí),AB最小,∵⊙M的半徑為2,圓心M(3,4),∴PM=5,∴OA=3,∴AB=6,故答案為6;【點(diǎn)睛】本題考查圓與圓的位置關(guān)系;能夠?qū)栴}轉(zhuǎn)化為兩圓外切時(shí)AB最小是解題的關(guān)鍵.16、【解析】a3-a=a(a2-1)=三、解答題(共8題,共72分)17、(1)(2)(3).【解析】

(1)由勾股定理求出BP的長,D是邊AB的中點(diǎn),P為AC的中點(diǎn),所以點(diǎn)E是△ABC的重心,然后求得BE的長.(2)過點(diǎn)B作BF∥CA交CD的延長線于點(diǎn)F,所以,然后可求得EF=8,所以,所以,因?yàn)镻D⊥AB,D是邊AB的中點(diǎn),在△ABC中可求得cosA的值.(3)由,∠PBD=∠ABP,證得△PBD∽△ABP,再證明△DPE∽△DCP得到,PD可求.【詳解】解:(1)∵P為AC的中點(diǎn),AC=8,∴CP=4,∵∠ACB=90°,BC=6,∴BP=,∵D是邊AB的中點(diǎn),P為AC的中點(diǎn),∴點(diǎn)E是△ABC的重心,∴,(2)過點(diǎn)B作BF∥CA交CD的延長線于點(diǎn)F,∴,∵BD=DA,∴FD=DC,BF=AC,∵CE=2,ED=3,則CD=5,∴EF=8,∴,∴,∴,設(shè)CP=k,則PA=3k,∵PD⊥AB,D是邊AB的中點(diǎn),∴PA=PB=3k,∴,∴,∵,∴,(3)∵∠ACB=90°,D是邊AB的中點(diǎn),∴,∵,∴,∵∠PBD=∠ABP,∴△PBD∽△ABP,∴∠BPD=∠A,∵∠A=∠DCA,∴∠DPE=∠DCP,∵∠PDE=∠CDP,△DPE∽△DCP,∴,∵DE=3,DC=5,∴.【點(diǎn)睛】本題是一道三角形的綜合性題目,熟練掌握三角形的重心,三角形相似的判定和性質(zhì)以及三角函數(shù)是解題的關(guān)鍵.18、(1)y=-,y=-2x-1(2)1【解析】試題分析:(1)將點(diǎn)A坐標(biāo)代入反比例函數(shù)求出m的值,從而得到點(diǎn)A的坐標(biāo)以及反比例函數(shù)解析式,再將點(diǎn)B坐標(biāo)代入反比例函數(shù)求出n的值,從而得到點(diǎn)B的坐標(biāo),然后利用待定系數(shù)法求一次函數(shù)解析式求解;(2)設(shè)AB與x軸相交于點(diǎn)C,根據(jù)一次函數(shù)解析式求出點(diǎn)C的坐標(biāo),從而得到點(diǎn)OC的長度,再根據(jù)S△AOB=S△AOC+S△BOC列式計(jì)算即可得解.試題解析:(1)將A(﹣3,m+8)代入反比例函數(shù)y=得,=m+8,解得m=﹣6,m+8=﹣6+8=2,所以,點(diǎn)A的坐標(biāo)為(﹣3,2),反比例函數(shù)解析式為y=﹣,將點(diǎn)B(n,﹣6)代入y=﹣得,﹣=﹣6,解得n=1,所以,點(diǎn)B的坐標(biāo)為(1,﹣6),將點(diǎn)A(﹣3,2),B(1,﹣6)代入y=kx+b得,,解得,所以,一次函數(shù)解析式為y=﹣2x﹣1;(2)設(shè)AB與x軸相交于點(diǎn)C,令﹣2x﹣1=0解得x=﹣2,所以,點(diǎn)C的坐標(biāo)為(﹣2,0),所以,OC=2,S△AOB=S△AOC+S△BOC,=×2×3+×2×1,=3+1,=1.考點(diǎn):反比例函數(shù)與一次函數(shù)的交點(diǎn)問題.19、(1)y關(guān)于x的函數(shù)解析式為;(2)恒溫系統(tǒng)設(shè)定恒溫為20°C;(3)恒溫系統(tǒng)最多關(guān)閉10小時(shí),蔬菜才能避免受到傷害.【解析】分析:(1)應(yīng)用待定系數(shù)法分段求函數(shù)解析式;(2)觀察圖象可得;(3)代入臨界值y=10即可.詳解:(1)設(shè)線段AB解析式為y=k1x+b(k≠0)∵線段AB過點(diǎn)(0,10),(2,14)代入得解得∴AB解析式為:y=2x+10(0≤x<5)∵B在線段AB上當(dāng)x=5時(shí),y=20∴B坐標(biāo)為(5,20)∴線段BC的解析式為:y=20(5≤x<10)設(shè)雙曲線CD解析式為:y=(k2≠0)∵C(10,20)∴k2=200∴雙曲線CD解析式為:y=(10≤x≤24)∴y關(guān)于x的函數(shù)解析式為:(2)由(1)恒溫系統(tǒng)設(shè)定恒溫為20°C(3)把y=10代入y=中,解得,x=20∴20-10=10答:恒溫系統(tǒng)最多關(guān)閉10小時(shí),蔬菜才能避免受到傷害.點(diǎn)睛:本題為實(shí)際應(yīng)用背景的函數(shù)綜合題,考查求得一次函數(shù)、反比例函數(shù)和常函數(shù)關(guān)系式.解答時(shí)應(yīng)注意臨界點(diǎn)的應(yīng)用.20、(1)y=﹣5x+350;(2)w=﹣5x2+450x﹣7000(30≤x≤40);(3)當(dāng)售價(jià)定為45元時(shí),商場每周銷售這種防塵口罩所獲得的利潤w(元)最大,最大利潤是1元.【解析】試題分析:(1)根據(jù)題意可以直接寫出y與x之間的函數(shù)關(guān)系式;(2)根據(jù)題意可以直接寫出w與x之間的函數(shù)關(guān)系式,由供貨廠家規(guī)定市場價(jià)不得低于30元/包,且商場每周完成不少于150包的銷售任務(wù)可以確定x的取值范圍;(3)根據(jù)第(2)問中的函數(shù)解析式和x的取值范圍,可以解答本題.試題解析:解:(1)由題意可得:y=200﹣(x﹣30)×5=﹣5x+350即周銷售量y(包)與售價(jià)x(元/包)之間的函數(shù)關(guān)系式是:y=﹣5x+350;(2)由題意可得,w=(x﹣20)×(﹣5x+350)=﹣5x2+450x﹣7000(30≤x≤70),即商場每周銷售這種防塵口罩所獲得的利潤w(元)與售價(jià)x(元/包)之間的函數(shù)關(guān)系式是:w=﹣5x2+450x﹣7000(30≤x≤40);(3)∵w=﹣5x2+450x﹣7000=﹣5(x﹣45)2+1∵二次項(xiàng)系數(shù)﹣5<0,∴x=45時(shí),w取得最大值,最大值為1.答:當(dāng)售價(jià)定為45元時(shí),商場每周銷售這種防塵口罩所獲得的利潤最大,最大利潤是1元.點(diǎn)睛:本題考查了二次函數(shù)的應(yīng)用,解題的關(guān)鍵是明確題意,可以寫出相應(yīng)的函數(shù)解析式,并確定自變量的取值范圍以及可以求出函數(shù)的最值.21、【解析】

過點(diǎn)P作PD⊥OC于D,PE⊥OA于E,則四邊形ODPE為矩形,先解Rt△PBD,得出BD=PD?tan26.6°;解Rt△CBD,得出CD=PD?tan37°;再根據(jù)CD﹣BD=BC,列出方程,求出PD=2,進(jìn)而求出PE=4,AE=5,然后在△APE中利用三角函數(shù)的定義即可求解.【詳解】解:如圖,過點(diǎn)P作PD⊥OC于D,PE⊥OA于E,則四邊形ODPE為矩形.在Rt△PBD中,∵∠BDP=90°,∠BPD=26.6°,∴BD=PD?tan∠BPD=PD?tan26.6°.在Rt△CBD中,∵∠CDP=90°,∠CPD=37°,∴CD=PD?tan∠CPD=PD?tan37°.∵CD﹣BD=BC,∴PD?tan37°﹣PD?tan26.6°=1.∴0.75PD﹣0.50PD=1,解得PD=2.∴BD=PD?tan26.6°≈2×0.50=3.∵OB=220,∴PE=OD=OB﹣BD=4.∵OE=PD=2,∴AE=OE﹣OA=2﹣200=5.∴.22、(1)DF=EF+BE.理由見解析;(2)CF=1.【解析】(1)把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合,證出△AEF≌△AFG,根據(jù)全等三角形的性質(zhì)得出EF=FG,即可得出答案;(2)根據(jù)旋轉(zhuǎn)的性質(zhì)的AG=AE,CG=BE,∠ACG=∠B,∠EAG=90°,∠FCG=∠ACB+∠ACG=∠ACB+∠B=90°,根據(jù)勾股定理有FG2=FC2+CG2=BE2+FC2;關(guān)鍵全等三角形的性質(zhì)得到FG=EF,利用勾股定理可得CF

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論