版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
青海省西寧五中等三校2023-2024學(xué)年高三第二次聯(lián)考數(shù)學(xué)試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知集合,則()A. B. C. D.2.命題“”的否定是()A. B.C. D.3.已知,,,是球的球面上四個不同的點(diǎn),若,且平面平面,則球的表面積為()A. B. C. D.4.若,滿足約束條件,則的取值范圍為()A. B. C. D.5.若,則下列關(guān)系式正確的個數(shù)是()①②③④A.1 B.2 C.3 D.46.已知函數(shù)fx=sinωx+π6+A.16,13 B.17.設(shè)為虛數(shù)單位,復(fù)數(shù),則實(shí)數(shù)的值是()A.1 B.-1 C.0 D.28.已知變量的幾組取值如下表:12347若與線性相關(guān),且,則實(shí)數(shù)()A. B. C. D.9.如圖,已知直線與拋物線相交于A,B兩點(diǎn),且A、B兩點(diǎn)在拋物線準(zhǔn)線上的投影分別是M,N,若,則的值是()A. B. C. D.10.過直線上一點(diǎn)作圓的兩條切線,,,為切點(diǎn),當(dāng)直線,關(guān)于直線對稱時,()A. B. C. D.11.設(shè)雙曲線(a>0,b>0)的右焦點(diǎn)為F,右頂點(diǎn)為A,過F作AF的垂線與雙曲線交于B,C兩點(diǎn),過B,C分別作AC,AB的垂線交于點(diǎn)D.若D到直線BC的距離小于,則該雙曲線的漸近線斜率的取值范圍是()A.B.C.D.12.三棱柱中,底面邊長和側(cè)棱長都相等,,則異面直線與所成角的余弦值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線的左、右焦點(diǎn)和點(diǎn)為某個等腰三角形的三個頂點(diǎn),則雙曲線C的離心率為________.14.若,則的最小值是______.15.設(shè)等比數(shù)列的前項(xiàng)和為,若,則數(shù)列的公比是.16.在中,角,,的對邊長分別為,,,滿足,,則的面積為__.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列的前項(xiàng)和為,且滿足.(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)證明:.18.(12分)在直角坐標(biāo)系xOy中,直線的參數(shù)方程為(t為參數(shù)).以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為.(1)寫出圓C的直角坐標(biāo)方程;(2)設(shè)直線l與圓C交于A,B兩點(diǎn),,求的值.19.(12分)等差數(shù)列的前項(xiàng)和為,已知,.(Ⅰ)求數(shù)列的通項(xiàng)公式及前項(xiàng)和為;(Ⅱ)設(shè)為數(shù)列的前項(xiàng)的和,求證:.20.(12分)在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C:ρcos2θ=4asinθ?(a>0),直線l的參數(shù)方程為x=-2+22t,y=-1+(I)寫出曲線C的直角坐標(biāo)方程和直線l的普通方程(不要求具體過程);(II)設(shè)P(-2,-1),若|PM|,|MN|,|PN|成等比數(shù)列,求a的值.21.(12分)在中,角的對邊分別為,若.(1)求角的大??;(2)若,為外一點(diǎn),,求四邊形面積的最大值.22.(10分)已知圓上有一動點(diǎn),點(diǎn)的坐標(biāo)為,四邊形為平行四邊形,線段的垂直平分線交于點(diǎn).(Ⅰ)求點(diǎn)的軌跡的方程;(Ⅱ)過點(diǎn)作直線與曲線交于兩點(diǎn),點(diǎn)的坐標(biāo)為,直線與軸分別交于兩點(diǎn),求證:線段的中點(diǎn)為定點(diǎn),并求出面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
計(jì)算,再計(jì)算交集得到答案【詳解】,表示偶數(shù),故.故選:.【點(diǎn)睛】本題考查了集合的交集,意在考查學(xué)生的計(jì)算能力.2、D【解析】
根據(jù)全稱命題的否定是特稱命題,對命題進(jìn)行改寫即可.【詳解】全稱命題的否定是特稱命題,所以命題“,”的否定是:,.故選D.【點(diǎn)睛】本題考查全稱命題的否定,難度容易.3、A【解析】
由題意畫出圖形,求出多面體外接球的半徑,代入表面積公式得答案.【詳解】如圖,取BC中點(diǎn)G,連接AG,DG,則,,分別取與的外心E,F(xiàn),分別過E,F(xiàn)作平面ABC與平面DBC的垂線,相交于O,則O為四面體的球心,由,得正方形OEGF的邊長為,則,四面體的外接球的半徑,球O的表面積為.故選A.【點(diǎn)睛】本題考查多面體外接球表面積的求法,考查空間想象能力與思維能力,是中檔題.4、B【解析】
根據(jù)約束條件作出可行域,找到使直線的截距取最值得點(diǎn),相應(yīng)坐標(biāo)代入即可求得取值范圍.【詳解】畫出可行域,如圖所示:由圖可知,當(dāng)直線經(jīng)過點(diǎn)時,取得最小值-5;經(jīng)過點(diǎn)時,取得最大值5,故.故選:B【點(diǎn)睛】本題考查根據(jù)線性規(guī)劃求范圍,屬于基礎(chǔ)題.5、D【解析】
a,b可看成是與和交點(diǎn)的橫坐標(biāo),畫出圖象,數(shù)形結(jié)合處理.【詳解】令,,作出圖象如圖,由,的圖象可知,,,②正確;,,有,①正確;,,有,③正確;,,有,④正確.故選:D.【點(diǎn)睛】本題考查利用函數(shù)圖象比較大小,考查學(xué)生數(shù)形結(jié)合的思想,是一道中檔題.6、A【解析】
將fx整理為3sinωx+π3,根據(jù)x的范圍可求得ωx+π3∈π【詳解】f當(dāng)x∈0,π時,又f0=3sin由fx在0,π上的值域?yàn)?2解得:ω∈本題正確選項(xiàng):A【點(diǎn)睛】本題考查利用正弦型函數(shù)的值域求解參數(shù)范圍的問題,關(guān)鍵是能夠結(jié)合正弦型函數(shù)的圖象求得角的范圍的上下限,從而得到關(guān)于參數(shù)的不等式.7、A【解析】
根據(jù)復(fù)數(shù)的乘法運(yùn)算化簡,由復(fù)數(shù)的意義即可求得的值.【詳解】復(fù)數(shù),由復(fù)數(shù)乘法運(yùn)算化簡可得,所以由復(fù)數(shù)定義可知,解得,故選:A.【點(diǎn)睛】本題考查了復(fù)數(shù)的乘法運(yùn)算,復(fù)數(shù)的意義,屬于基礎(chǔ)題.8、B【解析】
求出,把坐標(biāo)代入方程可求得.【詳解】據(jù)題意,得,所以,所以.故選:B.【點(diǎn)睛】本題考查線性回歸直線方程,由性質(zhì)線性回歸直線一定過中心點(diǎn)可計(jì)算參數(shù)值.9、C【解析】
直線恒過定點(diǎn),由此推導(dǎo)出,由此能求出點(diǎn)的坐標(biāo),從而能求出的值.【詳解】設(shè)拋物線的準(zhǔn)線為,直線恒過定點(diǎn),如圖過A、B分別作于M,于N,由,則,點(diǎn)B為AP的中點(diǎn)、連接OB,則,∴,點(diǎn)B的橫坐標(biāo)為,∴點(diǎn)B的坐標(biāo)為,把代入直線,解得,故選:C.【點(diǎn)睛】本題考查直線與圓錐曲線中參數(shù)的求法,考查拋物線的性質(zhì),是中檔題,解題時要注意等價(jià)轉(zhuǎn)化思想的合理運(yùn)用,屬于中檔題.10、C【解析】
判斷圓心與直線的關(guān)系,確定直線,關(guān)于直線對稱的充要條件是與直線垂直,從而等于到直線的距離,由切線性質(zhì)求出,得,從而得.【詳解】如圖,設(shè)圓的圓心為,半徑為,點(diǎn)不在直線上,要滿足直線,關(guān)于直線對稱,則必垂直于直線,∴,設(shè),則,,∴,.故選:C.【點(diǎn)睛】本題考查直線與圓的位置關(guān)系,考查直線的對稱性,解題關(guān)鍵是由圓的兩條切線關(guān)于直線對稱,得出與直線垂直,從而得就是圓心到直線的距離,這樣在直角三角形中可求得角.11、A【解析】
由題意,根據(jù)雙曲線的對稱性知在軸上,設(shè),則由得:,因?yàn)榈街本€的距離小于,所以,即,所以雙曲線漸近線斜率,故選A.12、B【解析】
設(shè),,,根據(jù)向量線性運(yùn)算法則可表示出和;分別求解出和,,根據(jù)向量夾角的求解方法求得,即可得所求角的余弦值.【詳解】設(shè)棱長為1,,,由題意得:,,,又即異面直線與所成角的余弦值為:本題正確選項(xiàng):【點(diǎn)睛】本題考查異面直線所成角的求解,關(guān)鍵是能夠通過向量的線性運(yùn)算、數(shù)量積運(yùn)算將問題轉(zhuǎn)化為向量夾角的求解問題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由等腰三角形及雙曲線的對稱性可知或,進(jìn)而利用兩點(diǎn)間距離公式求解即可.【詳解】由題設(shè)雙曲線的左、右焦點(diǎn)分別為,,因?yàn)樽?、右焦點(diǎn)和點(diǎn)為某個等腰三角形的三個頂點(diǎn),當(dāng)時,,由可得,等式兩邊同除可得,解得(舍);當(dāng)時,,由可得,等式兩邊同除可得,解得,故答案為:【點(diǎn)睛】本題考查求雙曲線的離心率,考查雙曲線的幾何性質(zhì)的應(yīng)用,考查分類討論思想.14、8【解析】
根據(jù),利用基本不等式可求得函數(shù)最值.【詳解】,,當(dāng)且僅當(dāng)且,即時,等號成立.時,取得最小值.故答案為:【點(diǎn)睛】本題考查基本不等式,構(gòu)造基本不等式的形式是解題關(guān)鍵.15、.【解析】
當(dāng)q=1時,.當(dāng)時,,所以.16、.【解析】
由二次方程有解的條件,結(jié)合輔助角公式和正弦函數(shù)的值域可求,進(jìn)而可求,然后結(jié)合余弦定理可求,代入,計(jì)算可得所求.【詳解】解:把看成關(guān)于的二次方程,則,即,即為,化為,而,則,由于,可得,可得,即,代入方程可得,,,由余弦定理可得,,解得:(負(fù)的舍去),.故答案為.【點(diǎn)睛】本題主要考查一元二次方程的根的存在條件及輔助角公式及余弦定理和三角形的面積公式的應(yīng)用,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ),.(Ⅱ)見解析【解析】
(1)由,分和兩種情況,即可求得數(shù)列的通項(xiàng)公式;(2)由題,得,利用等比數(shù)列求和公式,即可得到本題答案.【詳解】(Ⅰ)解:由題,得當(dāng)時,,得;當(dāng)時,,整理,得.?dāng)?shù)列是以1為首項(xiàng),2為公比的等比數(shù)列,,;(Ⅱ)證明:由(Ⅰ)知,,故.故得證.【點(diǎn)睛】本題主要考查根據(jù)的關(guān)系式求通項(xiàng)公式以及利用等比數(shù)列的前n項(xiàng)和公式求和并證明不等式,考查學(xué)生的運(yùn)算求解能力和推理證明能力.18、(1);(2)20【解析】
(1)利用即可得到答案;(2)利用直線參數(shù)方程的幾何意義,.【詳解】解:(1)由,得圓C的直角坐標(biāo)方程為,即.(2)將直線l的參數(shù)方程代入圓C的直角坐標(biāo)方程,得,即,設(shè)兩交點(diǎn)A,B所對應(yīng)的參數(shù)分別為,,從而,則.【點(diǎn)睛】本題考查了極坐標(biāo)方程與普通方程的互化、直線參數(shù)方程的幾何意義等知識,考查學(xué)生的計(jì)算能力,是一道容易題.19、(Ⅰ),(Ⅱ)見解析【解析】
(Ⅰ)根據(jù)等差數(shù)列公式直接計(jì)算得到答案.(Ⅱ),根據(jù)裂項(xiàng)求和法計(jì)算得到得到證明.【詳解】(Ⅰ)等差數(shù)列的公差為,由,得,,即,,解得,.∴,.(Ⅱ),∴,∴,即.【點(diǎn)睛】本題考查了等差數(shù)列的基本量的計(jì)算,裂項(xiàng)求和,意在考查學(xué)生對于數(shù)列公式方法的靈活運(yùn)用.20、(I)x2=4aya>0,x-y+1=0【解析】
(I)利用所給的極坐標(biāo)方程和參數(shù)方程,直接整理化簡得到直角坐標(biāo)方程和普通方程;(II)聯(lián)立直線的參數(shù)方程和C的直角坐標(biāo)方程,結(jié)合韋達(dá)定理以及等比數(shù)列的性質(zhì)即可求得答案.【詳解】(I)曲線C:ρcos2可得ρ2cos2直線l的參數(shù)方程為x=-2+22t,x-y=-1,得x-y+1=0;(II)將x=-2+22t,y=-1+2t韋達(dá)定理:t1由題意得MN2=PM可得(t即32(a+1)解得a=【點(diǎn)睛】本題考查了極坐標(biāo)方程、參數(shù)方程與直角坐標(biāo)和普通方程的互化,以及參數(shù)方程的綜合知識,結(jié)合等比數(shù)列,熟練運(yùn)用知識,屬于較易題.21、(1)(2)【解析】
(1)根據(jù)正弦定理化簡等式可得,即;(2)根據(jù)題意,利用余弦定理可得,再表示出,表示出四邊形,進(jìn)而可得最值.【詳解】(1),由正弦定理得:在中,,則,即,,即.(2)在中,又,則為等邊三角形,又,-當(dāng)時,四邊形的面積取最大值,最大值為.【點(diǎn)睛】本題主要考查了正弦定理,余弦定理,三角形面積公式的應(yīng)用,屬于基礎(chǔ)題.22、(Ⅰ);(Ⅱ)4.【解析】
(Ⅰ)先畫出圖形,結(jié)合垂直平分線和平行四邊形性質(zhì)可得為一定值,,故可確定點(diǎn)軌跡為橢圓(),進(jìn)而求解;(Ⅱ)設(shè)直線方程為,點(diǎn)坐標(biāo)分
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 新疆某水庫施工組織設(shè)計(jì)
- 合伙企業(yè)利潤分配的順序-記賬實(shí)操
- 2023年大直徑硅單晶及新型半導(dǎo)體材料資金籌措計(jì)劃書
- 節(jié)水愛水國旗下講話(31篇)
- 高三畢業(yè)典禮學(xué)生演講稿
- 重陽節(jié)主題活動主持詞開場白
- 微笑日主題活動方案
- 項(xiàng)目經(jīng)理人競聘演講稿范文(3篇)
- 綜合辦公室個人工作總結(jié)開頭
- 第22章 相似形 綜合檢測
- 2024年春上海開放大學(xué)《危機(jī)公共關(guān)系》計(jì)分作業(yè)1-3
- 中醫(yī)優(yōu)勢病種診療方案優(yōu)化建議
- 第9課 發(fā)展社會主義民主政治(課件)-【中職專用】高一思想政治《中國特色社會主義》(高教版2023·基礎(chǔ)模塊)
- 醫(yī)院院外會診申請單、醫(yī)師外出會診審核表、醫(yī)師外出會診回執(zhí)
- 茶葉公司安全生產(chǎn)管理制度
- 個體診所備案信息表
- 八年級語文期中考試成績分析及教學(xué)反思(3篇)
- 電工操作證考試題庫電工基礎(chǔ)知識題庫
- 人教版六年級下冊Unit 4 Then and now單元整體作業(yè)設(shè)計(jì)
- 我國競技體育后備人才培養(yǎng)現(xiàn)狀與對策
- 2023年12月廣西物流職業(yè)技術(shù)學(xué)院招考聘用106人筆試近6年高頻考題難、易錯點(diǎn)薈萃答案帶詳解附后
評論
0/150
提交評論