版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年天津市薊州區(qū)第三聯(lián)合區(qū)重點達(dá)標(biāo)名校中考五模數(shù)學(xué)試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.我國古代數(shù)學(xué)著作《九章算術(shù)》中,將底面是直角三角形,且側(cè)棱與底面垂直的三棱柱稱為“塹堵”某“塹堵”的三視圖如圖所示(網(wǎng)格圖中每個小正方形的邊長均為1),則該“塹堵”的側(cè)面積為()A.16+16 B.16+8 C.24+16 D.4+42.如圖,半徑為3的⊙A經(jīng)過原點O和點C(0,2),B是y軸左側(cè)⊙A優(yōu)弧上一點,則tan∠OBC為()A. B.2 C. D.3.在一個直角三角形中,有一個銳角等于45°,則另一個銳角的度數(shù)是()A.75° B.60° C.45° D.30°4.如圖所示的幾何體,它的左視圖是()A. B. C. D.5.在實數(shù)﹣,0.21,,,,0.20202中,無理數(shù)的個數(shù)為()A.1 B.2 C.3 D.46.下列圖形中,是軸對稱圖形但不是中心對稱圖形的是()A.直角梯形B.平行四邊形C.矩形D.正五邊形7.如圖,直線AB∥CD,∠C=44°,∠E為直角,則∠1等于()A.132° B.134° C.136° D.138°8.如圖,已知AB∥CD,AD=CD,∠1=40°,則∠2的度數(shù)為()A.60° B.65° C.70° D.75°9.把a(bǔ)?的根號外的a移到根號內(nèi)得()A. B.﹣ C.﹣ D.10.1.桌面上放置的幾何體中,主視圖與左視圖可能不同的是()A.圓柱B.正方體C.球D.直立圓錐二、填空題(本大題共6個小題,每小題3分,共18分)11.用不等號“>”或“<”連接:sin50°_____cos50°.12.在矩形ABCD中,AB=4,BC=9,點E是AD邊上一動點,將邊AB沿BE折疊,點A的對應(yīng)點為A′,若點A′到矩形較長兩對邊的距離之比為1:3,則AE的長為_____.13.如圖,已知⊙O是△ABD的外接圓,AB是⊙O的直徑,CD是⊙O的弦,∠ABD=58°,則∠BCD的度數(shù)是_____.14.據(jù)報道,截止2018年2月,我國在澳大利亞的留學(xué)生已經(jīng)達(dá)到17.3萬人,將17.3萬用科學(xué)記數(shù)法表示為__________.15.如圖,P(m,m)是反比例函數(shù)在第一象限內(nèi)的圖象上一點,以P為頂點作等邊△PAB,使AB落在x軸上,則△POB的面積為_____.16.如圖,某小型水庫欄水壩的橫斷面是四邊形ABCD,DC∥AB,測得迎水坡的坡角α=30°,已知背水坡的坡比為1.2:1,壩頂部DC寬為2m,壩高為6m,則壩底AB的長為_____m.三、解答題(共8題,共72分)17.(8分)桌面上放有4張卡片,正面分別標(biāo)有數(shù)字1,2,3,4,這些卡片除數(shù)字外完全相同.把這些卡片反面朝上洗勻后放在桌面上,甲從中任意抽出一張,記下卡片上的數(shù)字后仍放反面朝上放回洗勻,乙從中任意抽出一張,記下卡片上的數(shù)字,然后將這兩數(shù)相加.(1)請用列表或畫樹狀圖的方法求兩數(shù)和為5的概率;(2)若甲與乙按上述方式做游戲,當(dāng)兩數(shù)之和為5時,甲勝;反之則乙勝;若甲勝一次得12分,那么乙勝一次得多少分,才能使這個游戲?qū)﹄p方公平?18.(8分)如圖,AB=16,O為AB中點,點C在線段OB上(不與點O,B重合),將OC繞點O逆時針旋轉(zhuǎn)270°后得到扇形COD,AP,BQ分別切優(yōu)弧CD于點P,Q,且點P,Q在AB異側(cè),連接OP.求證:AP=BQ;當(dāng)BQ=時,求的長(結(jié)果保留);若△APO的外心在扇形COD的內(nèi)部,求OC的取值范圍.19.(8分)制作一種產(chǎn)品,需先將材料加熱達(dá)到60℃后,再進(jìn)行操作,設(shè)該材料溫度為y(℃)從加熱開始計算的時間為x(min).據(jù)了解,當(dāng)該材料加熱時,溫度y與時間x成一次函數(shù)關(guān)系:停止加熱進(jìn)行操作時,溫度y與時間x成反比例關(guān)系(如圖).已知在操作加熱前的溫度為15℃,加熱5分鐘后溫度達(dá)到60℃.分別求出將材料加熱和停止加熱進(jìn)行操作時,y與x的函數(shù)關(guān)系式;根據(jù)工藝要求,當(dāng)材料的溫度低于15℃時,須停止操作,那么從開始加熱到停止操作,共經(jīng)歷了多少時間?20.(8分)正方形ABCD中,點P為直線AB上一個動點(不與點A,B重合),連接DP,將DP繞點P旋轉(zhuǎn)90°得到EP,連接DE,過點E作CD的垂線,交射線DC于M,交射線AB于N.問題出現(xiàn):(1)當(dāng)點P在線段AB上時,如圖1,線段AD,AP,DM之間的數(shù)量關(guān)系為;題探究:(2)①當(dāng)點P在線段BA的延長線上時,如圖2,線段AD,AP,DM之間的數(shù)量關(guān)系為;②當(dāng)點P在線段AB的延長線上時,如圖3,請寫出線段AD,AP,DM之間的數(shù)量關(guān)系并證明;問題拓展:(3)在(1)(2)的條件下,若AP=,∠DEM=15°,則DM=.21.(8分)甲、乙兩個商場出售相同的某種商品,每件售價均為3000元,并且多買都有一定的優(yōu)惠.甲商場的優(yōu)惠條件是:第一件按原售價收費,其余每件優(yōu)惠30%;乙商場的優(yōu)惠條件是:每件優(yōu)惠25%.設(shè)所買商品為x件時,甲商場收費為y1元,乙商場收費為y2元.分別求出y1,y2與x之間的關(guān)系式;當(dāng)甲、乙兩個商場的收費相同時,所買商品為多少件?當(dāng)所買商品為5件時,應(yīng)選擇哪個商場更優(yōu)惠?請說明理由.22.(10分)如圖,已知在Rt△ABC中,∠ACB=90°,AC>BC,CD是Rt△ABC的高,E是AC的中點,ED的延長線與CB的延長線相交于點F.求證:DF是BF和CF的比例中項;在AB上取一點G,如果AE?AC=AG?AD,求證:EG?CF=ED?DF.23.(12分)如圖,分別延長?ABCD的邊到,使,連接EF,分別交于,連結(jié)求證:.24.如圖,△ABC,△CDE均是等腰直角三角形,∠ACB=∠DCE=90°,點E在AB上,求證:△CDA≌△CEB.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】
分析出此三棱柱的立體圖像即可得出答案.【詳解】由三視圖可知主視圖為一個側(cè)面,另外兩個側(cè)面全等,是長×高=×4=,所以側(cè)面積之和為×2+4×4=16+16,所以答案選擇A項.【點睛】本題考查了由三視圖求側(cè)面積,畫出該圖的立體圖形是解決本題的關(guān)鍵.2、C【解析】試題分析:連結(jié)CD,可得CD為直徑,在Rt△OCD中,CD=6,OC=2,根據(jù)勾股定理求得OD=4所以tan∠CDO=,由圓周角定理得,∠OBC=∠CDO,則tan∠OBC=,故答案選C.考點:圓周角定理;銳角三角函數(shù)的定義.3、C【解析】
根據(jù)直角三角形兩銳角互余即可解決問題.【詳解】解:∵直角三角形兩銳角互余,∴另一個銳角的度數(shù)=90°﹣45°=45°,故選C.【點睛】本題考查直角三角形的性質(zhì),記住直角三角形兩銳角互余是解題的關(guān)鍵.4、D【解析】分析:根據(jù)從左邊看得到的圖形是左視圖,可得答案.詳解:從左邊看是等長的上下兩個矩形,上邊的矩形小,下邊的矩形大,兩矩形的公共邊是虛線,故選D.點睛:本題考查了簡單組合體的三視圖,從左邊看得到的圖形是左視圖.5、C【解析】在實數(shù)﹣,0.21,,,,0.20202中,根據(jù)無理數(shù)的定義可得其中無理數(shù)有﹣,,,共三個.故選C.6、D【解析】分析:根據(jù)軸對稱圖形與中心對稱圖形的概念結(jié)合矩形、平行四邊形、直角梯形、正五邊形的性質(zhì)求解.詳解:A.直角梯形不是軸對稱圖形,也不是中心對稱圖形,故此選項錯誤;B.平行四邊形不是軸對稱圖形,是中心對稱圖形,故此選項錯誤;C.矩形是軸對稱圖形,也是中心對稱圖形,故此選項錯誤;D.正五邊形是軸對稱圖形,不是中心對稱圖形,故此選項正確.故選D.點睛:本題考查了軸對稱圖形和中心對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形沿對稱軸折疊后可重合;中心對稱圖形是要尋找對稱中心,圖形旋轉(zhuǎn)180°后與原圖形重合.7、B【解析】過E作EF∥AB,求出AB∥CD∥EF,根據(jù)平行線的性質(zhì)得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:過E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC為直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故選B.“點睛”本題考查了平行線的性質(zhì)的應(yīng)用,能正確作出輔助線是解此題的關(guān)鍵.8、C【解析】
由等腰三角形的性質(zhì)可求∠ACD=70°,由平行線的性質(zhì)可求解.【詳解】∵AD=CD,∠1=40°,∴∠ACD=70°,∵AB∥CD,∴∠2=∠ACD=70°,故選:C.【點睛】本題考查了等腰三角形的性質(zhì),平行線的性質(zhì),是基礎(chǔ)題.9、C【解析】
根據(jù)二次根式有意義的條件可得a<0,原式變形為﹣(﹣a)?,然后利用二次根式的性質(zhì)得到,再把根號內(nèi)化簡即可.【詳解】解:∵﹣>0,∴a<0,∴原式=﹣(﹣a)?,=,=﹣.故選C.【點睛】本題考查的是二次根式的化簡,主要是判斷根號有意義的條件,然后確定值的范圍再進(jìn)行化簡,是??碱}型.10、B【解析】試題分析:根據(jù)從正面看得到的視圖是主視圖,從左邊看得到的圖形是左視圖,從上面看得到的圖形是俯視圖,正方體主視圖與左視圖可能不同,故選B.考點:簡單幾何體的三視圖.二、填空題(本大題共6個小題,每小題3分,共18分)11、>【解析】試題解析:∵cos50°=sin40°,sin50°>sin40°,∴sin50°>cos50°.故答案為>.點睛:當(dāng)角度在0°~90°間變化時,①正弦值隨著角度的增大(或減?。┒龃螅ɑ驕p?。虎谟嘞抑惦S著角度的增大(或減小)而減?。ɑ蛟龃螅?;③正切值隨著角度的增大(或減?。┒龃螅ɑ驕p?。?2、或【解析】
由,,得,所以.再以①和②兩種情況分類討論即可得出答案.【詳解】因為翻折,所以,,過作,交AD于F,交BC于G,根據(jù)題意,,.若點在矩形ABCD的內(nèi)部時,如圖則GF=AB=4,由可知.又..又....若則,..則...若則,..則...故答案或.【點睛】本題主要考查了翻折問題和相似三角形判定,靈活運(yùn)用是關(guān)鍵錯因分析:難題,失分原因有3點:(1)不能靈活運(yùn)用矩形和折疊與動點問題疊的性質(zhì);(2)沒有分情況討論,由于點A′A′到矩形較長兩對邊的距離之比為1:3,需要分A′M:A′N=1:3,A′M:A′N=1:3和A′M:A′N=3:1,A′M:A′N=3:1這兩種情況;(3)不能根據(jù)相似三角形對應(yīng)邊成比例求出三角形的邊長.13、32°【解析】
根據(jù)直徑所對的圓周角是直角得到∠ADB=90°,求出∠A的度數(shù),根據(jù)圓周角定理解答即可.【詳解】∵AB是⊙O的直徑,
∴∠ADB=90°,
∵∠ABD=58°,
∴∠A=32°,
∴∠BCD=32°,
故答案為32°.14、1.73×1.【解析】
科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).【詳解】將17.3萬用科學(xué)記數(shù)法表示為1.73×1.故答案為1.73×1.【點睛】本題考查了正整數(shù)指數(shù)科學(xué)計數(shù)法,根據(jù)科學(xué)計算法的要求,正確確定出a和n的值是解答本題的關(guān)鍵.15、.【解析】
如圖,過點P作PH⊥OB于點H,∵點P(m,m)是反比例函數(shù)y=在第一象限內(nèi)的圖象上的一個點,∴9=m2,且m>0,解得,m=3.∴PH=OH=3.∵△PAB是等邊三角形,∴∠PAH=60°.∴根據(jù)銳角三角函數(shù),得AH=.∴OB=3+∴S△POB=OB?PH=.16、(7+6)【解析】
過點C作CE⊥AB,DF⊥AB,垂足分別為:E,F(xiàn),得到兩個直角三角形和一個矩形,在Rt△AEF中利用DF的長,求得線段AF的長;在Rt△BCE中利用CE的長求得線段BE的長,然后與AF、EF相加即可求得AB的長.【詳解】解:如圖所示:過點C作CE⊥AB,DF⊥AB,垂足分別為:E,F(xiàn),
∵壩頂部寬為2m,壩高為6m,
∴DC=EF=2m,EC=DF=6m,
∵α=30°,
∴BE=(m),
∵背水坡的坡比為1.2:1,
∴,
解得:AF=5(m),
則AB=AF+EF+BE=5+2+6=(7+6)m,
故答案為(7+6)m.【點睛】本題考查了解直角三角形的應(yīng)用,解題的關(guān)鍵是利用銳角三角函數(shù)的概念和坡度的概念求解.三、解答題(共8題,共72分)17、(1)詳見解析;(2)4分.【解析】
(1)根據(jù)題意用列表法求出答案;(2)算出甲乙獲勝的概率,從而求出乙勝一次的得分.【詳解】(1)列表如下:由列表可得:P(數(shù)字之和為5)=,(2)因為P(甲勝)=,P(乙勝)=,∴甲勝一次得12分,要使這個游戲?qū)﹄p方公平,乙勝一次得分應(yīng)為:12÷3=4分.【點睛】本題考查概率問題中的公平性問題,解決本題的關(guān)鍵是計算出各種情況的概率,然后比較即可.18、(1)詳見解析;(2);(3)4<OC<1.【解析】
(1)連接OQ,由切線性質(zhì)得∠APO=∠BQO=90°,由直角三角形判定HL得Rt△APO≌Rt△BQO,再由全等三角形性質(zhì)即可得證.(2)由(1)中全等三角形性質(zhì)得∠AOP=∠BOQ,從而可得P、O、Q三點共線,在Rt△BOQ中,根據(jù)余弦定義可得cosB=,由特殊角的三角函數(shù)值可得∠B=30°,∠BOQ=60°,根據(jù)直角三角形的性質(zhì)得OQ=4,結(jié)合題意可得∠QOD度數(shù),由弧長公式即可求得答案.(3)由直角三角形性質(zhì)可得△APO的外心是OA的中點,結(jié)合題意可得OC取值范圍.【詳解】(1)證明:連接OQ.∵AP、BQ是⊙O的切線,∴OP⊥AP,OQ⊥BQ,∴∠APO=∠BQO=90°,在Rt△APO和Rt△BQO中,,∴Rt△APO≌Rt△BQO,∴AP=BQ.(2)∵Rt△APO≌Rt△BQO,∴∠AOP=∠BOQ,∴P、O、Q三點共線,∵在Rt△BOQ中,cosB=,∴∠B=30°,∠BOQ=60°,∴OQ=OB=4,∵∠COD=90°,∴∠QOD=90°+60°=150°,∴優(yōu)弧QD的長=,(3)解:設(shè)點M為Rt△APO的外心,則M為OA的中點,
∵OA=1,
∴OM=4,
∴當(dāng)△APO的外心在扇形COD的內(nèi)部時,OM<OC,
∴OC的取值范圍為4<OC<1.【點睛】本題考查了三角形的外接圓與外心、弧長的計算、扇形面積的計算、旋轉(zhuǎn)的性質(zhì)以及全等三角形的判定與性質(zhì),解題的關(guān)鍵是:(1)利用全等三角形的判定定理HL證出Rt△APO≌Rt△BQO;(2)通過解直角三角形求出圓的半徑;(3)牢記直角三角形外心為斜邊的中點是解題的關(guān)鍵.19、(1);(2)20分鐘.【解析】
(1)材料加熱時,設(shè)y=ax+15(a≠0),由題意得60=5a+15,解得a=9,則材料加熱時,y與x的函數(shù)關(guān)系式為y=9x+15(0≤x≤5).停止加熱時,設(shè)y=(k≠0),由題意得60=,解得k=300,則停止加熱進(jìn)行操作時y與x的函數(shù)關(guān)系式為y=(x≥5);(2)把y=15代入y=,得x=20,因此從開始加熱到停止操作,共經(jīng)歷了20分鐘.答:從開始加熱到停止操作,共經(jīng)歷了20分鐘.20、(1)DM=AD+AP;(2)①DM=AD﹣AP;②DM=AP﹣AD;(3)3﹣或﹣1.【解析】
(1)根據(jù)正方形的性質(zhì)和全等三角形的判定和性質(zhì)得出△ADP≌△PFN,進(jìn)而解答即可;(2)①根據(jù)正方形的性質(zhì)和全等三角形的判定和性質(zhì)得出△ADP≌△PFN,進(jìn)而解答即可;②根據(jù)正方形的性質(zhì)和全等三角形的判定和性質(zhì)得出△ADP≌△PFN,進(jìn)而解答即可;(3)分兩種情況利用勾股定理和三角函數(shù)解答即可.【詳解】(1)DM=AD+AP,理由如下:∵正方形ABCD,∴DC=AB,∠DAP=90°,∵將DP繞點P旋轉(zhuǎn)90°得到EP,連接DE,過點E作CD的垂線,交射線DC于M,交射線AB于N,∴DP=PE,∠PNE=90°,∠DPE=90°,∵∠ADP+∠DPA=90°,∠DPA+∠EPN=90°,∴∠DAP=∠EPN,在△ADP與△NPE中,,∴△ADP≌△NPE(AAS),∴AD=PN,AP=EN,∴AN=DM=AP+PN=AD+AP;(2)①DM=AD﹣AP,理由如下:∵正方形ABCD,∴DC=AB,∠DAP=90°,∵將DP繞點P旋轉(zhuǎn)90°得到EP,連接DE,過點E作CD的垂線,交射線DC于M,交射線AB于N,∴DP=PE,∠PNE=90°,∠DPE=90°,∵∠ADP+∠DPA=90°,∠DPA+∠EPN=90°,∴∠DAP=∠EPN,在△ADP與△NPE中,,∴△ADP≌△NPE(AAS),∴AD=PN,AP=EN,∴AN=DM=PN﹣AP=AD﹣AP;②DM=AP﹣AD,理由如下:∵∠DAP+∠EPN=90°,∠EPN+∠PEN=90°,∴∠DAP=∠PEN,又∵∠A=∠PNE=90°,DP=PE,∴△DAP≌△PEN,∴AD=PN,∴DM=AN=AP﹣PN=AP﹣AD;(3)有兩種情況,如圖2,DM=3﹣,如圖3,DM=﹣1;①如圖2:∵∠DEM=15°,∴∠PDA=∠PDE﹣∠ADE=45°﹣15°=30°,在Rt△PAD中AP=,AD==3,∴DM=AD﹣AP=3﹣;②如圖3:∵∠DEM=15°,∴∠PDA=∠PDE﹣∠ADE=45°﹣15°=30°,在Rt△PAD中AP=,AD=AP?tan30°==1,∴DM=AP﹣AD=﹣1.故答案為;DM=AD+AP;DM=AD﹣AP;3﹣或﹣1.【點睛】此題是四邊形綜合題,主要考查了正方形的性質(zhì)全等三角形的判定和性質(zhì),分類討論的數(shù)學(xué)思想解決問題,判斷出△ADP≌△PFN是解本題的關(guān)鍵.21、(1);y2=2250x;(2)甲、乙兩個商場的收費相同時,所買商品為6件;(3)所買商品為5件時,應(yīng)選擇乙商場更優(yōu)惠.【解析】試題分析:(1)由兩家商場的優(yōu)惠方案分別列式整理即可;(2)由收費相同,列出方程求解即可;(3)由函數(shù)解析式分別求出x=5時的函數(shù)值,即可得解試題解析:(1)當(dāng)x=1時,y1=3000;當(dāng)x>1時,y1=3000+3000(x﹣1)×(1﹣30%)=2100x+1.∴;y2=3000x(1﹣25%)=2250x,∴y2=2250x;(2)當(dāng)甲、乙兩個商場的收費相同時,2100x+1=2250x,解得x=6,答:甲、乙兩個商場的收費相同時,所買商品為6件;(3)x=5時,y1=2100x+1=2100×5+1=11400,y2=2250x=2250×5=11250,∵11400>11250,∴所買商品為5件時,應(yīng)選擇
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024餐飲業(yè)室內(nèi)裝修服務(wù)協(xié)議
- 幼兒課件特點教學(xué)課件
- 濟(jì)南版2018-2019學(xué)年七年級生物下冊全一冊檢測
- 初中籃球教案知識講解
- 排球?qū)m椪n教案
- 企業(yè)房地產(chǎn)項目貸款合同范本
- 代理合同范本x
- 二手物流設(shè)備轉(zhuǎn)讓協(xié)議
- IT行業(yè)勞動合同辦公地點
- 個體診所藥品管理法規(guī)遵守
- 管樁水平承載力計算
- 國美香港借殼上市過程及策略分析
- 污水處理站過濾罐濾料更換方案
- 攝影基礎(chǔ)知識入門與技術(shù).ppt
- 民事案件卷宗目錄封面11
- 2022年2022年古籍樣式排版模板
- 藝術(shù)裝飾藝術(shù)運(yùn)動
- 樊登讀書會營銷策略分析
- 建設(shè)單位安全生產(chǎn)管理體系(完整版)
- 國潮風(fēng)喜迎中秋節(jié)傳統(tǒng)節(jié)日介紹主題班會PPT模板
- 幼兒園參觀學(xué)校活動方案5篇
評論
0/150
提交評論