2024屆河南省封丘縣第一中學(xué)高考仿真卷數(shù)學(xué)試題含解析_第1頁
2024屆河南省封丘縣第一中學(xué)高考仿真卷數(shù)學(xué)試題含解析_第2頁
2024屆河南省封丘縣第一中學(xué)高考仿真卷數(shù)學(xué)試題含解析_第3頁
2024屆河南省封丘縣第一中學(xué)高考仿真卷數(shù)學(xué)試題含解析_第4頁
2024屆河南省封丘縣第一中學(xué)高考仿真卷數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆河南省封丘縣第一中學(xué)高考仿真卷數(shù)學(xué)試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知拋物線的焦點(diǎn)為,是拋物線上兩個(gè)不同的點(diǎn),若,則線段的中點(diǎn)到軸的距離為()A.5 B.3 C. D.22.在中,角所對(duì)的邊分別為,已知,則()A.或 B. C. D.或3.下列函數(shù)中,在區(qū)間上為減函數(shù)的是()A. B. C. D.4.給出個(gè)數(shù),,,,,,其規(guī)律是:第個(gè)數(shù)是,第個(gè)數(shù)比第個(gè)數(shù)大,第個(gè)數(shù)比第個(gè)數(shù)大,第個(gè)數(shù)比第個(gè)數(shù)大,以此類推,要計(jì)算這個(gè)數(shù)的和.現(xiàn)已給出了該問題算法的程序框圖如圖,請(qǐng)?jiān)趫D中判斷框中的①處和執(zhí)行框中的②處填上合適的語句,使之能完成該題算法功能()A.; B.;C.; D.;5.設(shè),,,則()A. B. C. D.6.《易·系辭上》有“河出圖,洛出書”之說,河圖、洛書是中華文化,陰陽術(shù)數(shù)之源,其中河圖的排列結(jié)構(gòu)是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中.如圖,白圈為陽數(shù),黑點(diǎn)為陰數(shù).若從這10個(gè)數(shù)中任取3個(gè)數(shù),則這3個(gè)數(shù)中至少有2個(gè)陽數(shù)且能構(gòu)成等差數(shù)列的概率為()A. B. C. D.7.“十二平均律”是通用的音律體系,明代朱載堉最早用數(shù)學(xué)方法計(jì)算出半音比例,為這個(gè)理論的發(fā)展做出了重要貢獻(xiàn).十二平均律將一個(gè)純八度音程分成十二份,依次得到十三個(gè)單音,從第二個(gè)單音起,每一個(gè)單音的頻率與它的前一個(gè)單音的頻率的比都等于.若第一個(gè)單音的頻率為f,則第八個(gè)單音的頻率為A. B.C. D.8.已知函數(shù),,若總有恒成立.記的最小值為,則的最大值為()A.1 B. C. D.9.已知復(fù)數(shù),其中為虛數(shù)單位,則()A. B. C.2 D.10.已知過點(diǎn)且與曲線相切的直線的條數(shù)有().A.0 B.1 C.2 D.311.如圖,在三棱柱中,底面為正三角形,側(cè)棱垂直底面,.若分別是棱上的點(diǎn),且,,則異面直線與所成角的余弦值為()A. B. C. D.12.已知(),i為虛數(shù)單位,則()A. B.3 C.1 D.5二、填空題:本題共4小題,每小題5分,共20分。13.已知等差數(shù)列滿足,,則的值為________.14.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為,粗實(shí)線畫出的是某幾何體的三視圖,則該幾何體的體積為________.15.在的二項(xiàng)展開式中,x的系數(shù)為________.(用數(shù)值作答)16.某公司生產(chǎn)甲、乙兩種桶裝產(chǎn)品.已知生產(chǎn)甲產(chǎn)品1桶需耗原料1千克、原料2千克;生產(chǎn)乙產(chǎn)品1桶需耗原料2千克,原料1千克.每桶甲產(chǎn)品的利潤(rùn)是300元,每桶乙產(chǎn)品的利潤(rùn)是400元.公司在生產(chǎn)這兩種產(chǎn)品的計(jì)劃中,要求每天消耗原料都不超過12千克.通過合理安排生產(chǎn)計(jì)劃,從每天生產(chǎn)的甲、乙兩種產(chǎn)品中,公司共可獲得的最大利潤(rùn)是__________元.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),其中.(1)討論函數(shù)的零點(diǎn)個(gè)數(shù);(2)求證:.18.(12分)已知函數(shù).(1)討論函數(shù)f(x)的極值點(diǎn)的個(gè)數(shù);(2)若f(x)有兩個(gè)極值點(diǎn)證明.19.(12分)已知函數(shù).(1)當(dāng)時(shí),解關(guān)于x的不等式;(2)當(dāng)時(shí),若對(duì)任意實(shí)數(shù),都成立,求實(shí)數(shù)的取值范圍.20.(12分)已知數(shù)列的前項(xiàng)和為,且點(diǎn)在函數(shù)的圖像上;(1)求數(shù)列的通項(xiàng)公式;(2)設(shè)數(shù)列滿足:,,求的通項(xiàng)公式;(3)在第(2)問的條件下,若對(duì)于任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;21.(12分)(本小題滿分12分)已知橢圓C:x2a2+y(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)過點(diǎn)A(1,0)的直線與橢圓C交于點(diǎn)M,N,設(shè)P為橢圓上一點(diǎn),且OM+ON=t22.(10分)在四棱錐中,底面是邊長(zhǎng)為2的菱形,是的中點(diǎn).(1)證明:平面;(2)設(shè)是線段上的動(dòng)點(diǎn),當(dāng)點(diǎn)到平面距離最大時(shí),求三棱錐的體積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】

由拋物線方程可得焦點(diǎn)坐標(biāo)及準(zhǔn)線方程,由拋物線的定義可知,繼而可求出,從而可求出的中點(diǎn)的橫坐標(biāo),即為中點(diǎn)到軸的距離.【詳解】解:由拋物線方程可知,,即,.設(shè)則,即,所以.所以線段的中點(diǎn)到軸的距離為.故選:D.【點(diǎn)睛】本題考查了拋物線的定義,考查了拋物線的方程.本題的關(guān)鍵是由拋物線的定義求得兩點(diǎn)橫坐標(biāo)的和.2、D【解析】

根據(jù)正弦定理得到,化簡(jiǎn)得到答案.【詳解】由,得,∴,∴或,∴或.故選:【點(diǎn)睛】本題考查了正弦定理解三角形,意在考查學(xué)生的計(jì)算能力.3、C【解析】

利用基本初等函數(shù)的單調(diào)性判斷各選項(xiàng)中函數(shù)在區(qū)間上的單調(diào)性,進(jìn)而可得出結(jié)果.【詳解】對(duì)于A選項(xiàng),函數(shù)在區(qū)間上為增函數(shù);對(duì)于B選項(xiàng),函數(shù)在區(qū)間上為增函數(shù);對(duì)于C選項(xiàng),函數(shù)在區(qū)間上為減函數(shù);對(duì)于D選項(xiàng),函數(shù)在區(qū)間上為增函數(shù).故選:C.【點(diǎn)睛】本題考查函數(shù)在區(qū)間上單調(diào)性的判斷,熟悉一些常見的基本初等函數(shù)的單調(diào)性是判斷的關(guān)鍵,屬于基礎(chǔ)題.4、A【解析】

要計(jì)算這個(gè)數(shù)的和,這就需要循環(huán)50次,這樣可以確定判斷語句①,根據(jù)累加最的變化規(guī)律可以確定語句②.【詳解】因?yàn)橛?jì)算這個(gè)數(shù)的和,循環(huán)變量的初值為1,所以步長(zhǎng)應(yīng)該為1,故判斷語句①應(yīng)為,第個(gè)數(shù)是,第個(gè)數(shù)比第個(gè)數(shù)大,第個(gè)數(shù)比第個(gè)數(shù)大,第個(gè)數(shù)比第個(gè)數(shù)大,這樣可以確定語句②為,故本題選A.【點(diǎn)睛】本題考查了補(bǔ)充循環(huán)結(jié)構(gòu),正確讀懂題意是解本題的關(guān)鍵.5、A【解析】

先利用換底公式將對(duì)數(shù)都化為以2為底,利用對(duì)數(shù)函數(shù)單調(diào)性可比較,再由中間值1可得三者的大小關(guān)系.【詳解】,,,因此,故選:A.【點(diǎn)睛】本題主要考查了利用對(duì)數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性比較大小,屬于基礎(chǔ)題.6、C【解析】

先根據(jù)組合數(shù)計(jì)算出所有的情況數(shù),再根據(jù)“3個(gè)數(shù)中至少有2個(gè)陽數(shù)且能構(gòu)成等差數(shù)列”列舉得到滿足條件的情況,由此可求解出對(duì)應(yīng)的概率.【詳解】所有的情況數(shù)有:種,3個(gè)數(shù)中至少有2個(gè)陽數(shù)且能構(gòu)成等差數(shù)列的情況有:,共種,所以目標(biāo)事件的概率.故選:C.【點(diǎn)睛】本題考查概率與等差數(shù)列的綜合,涉及到背景文化知識(shí),難度一般.求解該類問題可通過古典概型的概率求解方法進(jìn)行分析;當(dāng)情況數(shù)較多時(shí),可考慮用排列數(shù)、組合數(shù)去計(jì)算.7、D【解析】分析:根據(jù)等比數(shù)列的定義可知每一個(gè)單音的頻率成等比數(shù)列,利用等比數(shù)列的相關(guān)性質(zhì)可解.詳解:因?yàn)槊恳粋€(gè)單音與前一個(gè)單音頻率比為,所以,又,則故選D.點(diǎn)睛:此題考查等比數(shù)列的實(shí)際應(yīng)用,解決本題的關(guān)鍵是能夠判斷單音成等比數(shù)列.等比數(shù)列的判斷方法主要有如下兩種:(1)定義法,若()或(),數(shù)列是等比數(shù)列;(2)等比中項(xiàng)公式法,若數(shù)列中,且(),則數(shù)列是等比數(shù)列.8、C【解析】

根據(jù)總有恒成立可構(gòu)造函數(shù),求導(dǎo)后分情況討論的最大值可得最大值最大值,即.根據(jù)題意化簡(jiǎn)可得,求得,再換元求導(dǎo)分析最大值即可.【詳解】由題,總有即恒成立.設(shè),則的最大值小于等于0.又,若則,在上單調(diào)遞增,無最大值.若,則當(dāng)時(shí),,在上單調(diào)遞減,當(dāng)時(shí),,在上單調(diào)遞增.故在處取得最大值.故,化簡(jiǎn)得.故,令,可令,故,當(dāng)時(shí),,在遞減;當(dāng)時(shí),,在遞增.故在處取得極大值,為.故的最大值為.故選:C【點(diǎn)睛】本題主要考查了根據(jù)導(dǎo)數(shù)求解函數(shù)的最值問題,需要根據(jù)題意分析導(dǎo)數(shù)中參數(shù)的范圍,再分析函數(shù)的最值,進(jìn)而求導(dǎo)構(gòu)造函數(shù)求解的最大值.屬于難題.9、D【解析】

把已知等式變形,然后利用數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),再由復(fù)數(shù)模的公式計(jì)算得答案.【詳解】解:,則.故選:D.【點(diǎn)睛】本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)模的求法,是基礎(chǔ)題.10、C【解析】

設(shè)切點(diǎn)為,則,由于直線經(jīng)過點(diǎn),可得切線的斜率,再根據(jù)導(dǎo)數(shù)的幾何意義求出曲線在點(diǎn)處的切線斜率,建立關(guān)于的方程,從而可求方程.【詳解】若直線與曲線切于點(diǎn),則,又∵,∴,∴,解得,,∴過點(diǎn)與曲線相切的直線方程為或,故選C.【點(diǎn)睛】本題主要考查了利用導(dǎo)數(shù)求曲線上過某點(diǎn)切線方程的斜率,求解曲線的切線的方程,其中解答中熟記利用導(dǎo)數(shù)的幾何意義求解切線的方程是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.11、B【解析】

建立空間直角坐標(biāo)系,利用向量法計(jì)算出異面直線與所成角的余弦值.【詳解】依題意三棱柱底面是正三角形且側(cè)棱垂直于底面.設(shè)的中點(diǎn)為,建立空間直角坐標(biāo)系如下圖所示.所以,所以.所以異面直線與所成角的余弦值為.故選:B【點(diǎn)睛】本小題主要考查異面直線所成的角的求法,屬于中檔題.12、C【解析】

利用復(fù)數(shù)代數(shù)形式的乘法運(yùn)算化簡(jiǎn)得答案.【詳解】由,得,解得.故選:C.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘法運(yùn)算,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、11【解析】

由等差數(shù)列的下標(biāo)和性質(zhì)可得,由即可求出公差,即可求解;【詳解】解:設(shè)等差數(shù)列的公差為,,又因?yàn)?,解得故答案為:【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式及等差數(shù)列的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.14、【解析】

根據(jù)三視圖知該幾何體是三棱柱與半圓錐的組合體,結(jié)合圖中數(shù)據(jù)求出它的體積.【詳解】根據(jù)三視圖知,該幾何體是三棱柱與半圓錐的組合體,如圖所示:結(jié)合圖中數(shù)據(jù),計(jì)算它的體積為.故答案為:.【點(diǎn)睛】本題考查了根據(jù)三視圖求簡(jiǎn)單組合體的體積應(yīng)用問題,是基礎(chǔ)題.15、-40【解析】

由題意,可先由公式得出二項(xiàng)展開式的通項(xiàng),再令10-3r=1,得r=3即可得出x項(xiàng)的系數(shù)【詳解】的二項(xiàng)展開式的通項(xiàng)公式為,r=0,1,2,3,4,5,令,所以的二項(xiàng)展開式中x項(xiàng)的系數(shù)為.故答案為:-40.【點(diǎn)睛】本題考查二項(xiàng)式定理的應(yīng)用,解題關(guān)鍵是靈活掌握二項(xiàng)式展開式通項(xiàng)的公式,屬于基礎(chǔ)題.16、1元【解析】設(shè)分別生產(chǎn)甲乙兩種產(chǎn)品為桶,桶,利潤(rùn)為元

則根據(jù)題意可得目標(biāo)函數(shù),作出可行域,如圖所示作直線然后把直線向可行域平移,

由圖象知當(dāng)直線經(jīng)過時(shí),目標(biāo)函數(shù)的截距最大,此時(shí)最大,

由可得,即此時(shí)最大,

即該公司每天生產(chǎn)的甲4桶,乙4桶,可獲得最大利潤(rùn),最大利潤(rùn)為1.【點(diǎn)睛】本題考查用線性規(guī)劃知識(shí)求利潤(rùn)的最大值,根據(jù)條件建立不等式關(guān)系,以及利用線性規(guī)劃的知識(shí)進(jìn)行求解是解決本題的關(guān)鍵.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)時(shí),有一個(gè)零點(diǎn);當(dāng)且時(shí),有兩個(gè)零點(diǎn);(2)見解析【解析】

(1)利用的導(dǎo)函數(shù),求得的最大值的表達(dá)式,對(duì)進(jìn)行分類討論,由此判斷出的零點(diǎn)的個(gè)數(shù).(2)由,得到和,構(gòu)造函數(shù),利用導(dǎo)數(shù)證得,即有,從而證得,即.【詳解】(1),∴當(dāng)時(shí),,當(dāng)時(shí),在上遞增,在上遞減,.令在上遞減,在上遞增,,當(dāng)且僅當(dāng)時(shí)取等號(hào).①時(shí),有一個(gè)零點(diǎn);②時(shí),,此時(shí)有兩個(gè)零點(diǎn);③時(shí),,令在上遞增,,此時(shí)有兩個(gè)零點(diǎn);綜上:時(shí),有一個(gè)零點(diǎn);當(dāng)且時(shí),有兩個(gè)零點(diǎn);(2)由(1)可知:,令在上遞增,.【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的零點(diǎn),考查利用導(dǎo)數(shù)證明不等式,考查分類討論的數(shù)學(xué)思想方法,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.18、(1)見解析(2)見解析【解析】

(1)求得函數(shù)的定義域和導(dǎo)函數(shù),對(duì)分成三種情況進(jìn)行分類討論,判斷出的極值點(diǎn)個(gè)數(shù).(2)由(1)知,結(jié)合韋達(dá)定理求得的關(guān)系式,由此化簡(jiǎn)的表達(dá)式為,通過構(gòu)造函數(shù)法,結(jié)合導(dǎo)數(shù)證得,由此證得成立.【詳解】(1)函數(shù)的定義域?yàn)榈?,(i)當(dāng)時(shí);,因?yàn)闀r(shí),時(shí),,所以是函數(shù)的一個(gè)極小值點(diǎn);(ii)若時(shí),若,即時(shí),,在是減函數(shù),無極值點(diǎn).若,即時(shí),有兩根,不妨設(shè)當(dāng)和時(shí),,當(dāng)時(shí),,是函數(shù)的兩個(gè)極值點(diǎn),綜上所述時(shí),僅有一個(gè)極值點(diǎn);時(shí),無極值點(diǎn);時(shí),有兩個(gè)極值點(diǎn).(2)由(1)知,當(dāng)且僅當(dāng)時(shí),有極小值點(diǎn)和極大值點(diǎn),且是方程的兩根,,則所以設(shè),則,又,即,所以所以是上的單調(diào)減函數(shù),有兩個(gè)極值點(diǎn),則【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的極值點(diǎn),考查利用導(dǎo)數(shù)證明不等式,考查分類討論的數(shù)學(xué)思想方法,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.19、(1)(2)【解析】

(1)當(dāng)時(shí),利用含有一個(gè)絕對(duì)值不等式的解法,求得不等式的解集.(2)對(duì)分成和兩類,利用零點(diǎn)分段法去絕對(duì)值,將表示為分段函數(shù)的形式,求得的最小值,進(jìn)而求得的取值范圍.【詳解】(1)當(dāng)時(shí),由得由得解:,得∴當(dāng)時(shí),關(guān)于的不等式的解集為(2)①當(dāng)時(shí),,所以在上是減函數(shù),在是增函數(shù),所以,由題設(shè)得,解得.②當(dāng)時(shí),同理求得.綜上所述,的取值范圍為.【點(diǎn)睛】本小題主要考查含有一個(gè)絕對(duì)值不等式的求法,考查利用零點(diǎn)分段法解含有兩個(gè)絕對(duì)值的不等式,屬于中檔題.20、(1)(2)當(dāng)n為偶數(shù)時(shí),;當(dāng)n為奇數(shù)時(shí),.(3)【解析】

(1)根據(jù),討論與兩種情況,即可求得數(shù)列的通項(xiàng)公式;(2)由(1)利用遞推公式及累加法,即可求得當(dāng)n為奇數(shù)或偶數(shù)時(shí)的通項(xiàng)公式.也可利用數(shù)學(xué)歸納法,先猜想出通項(xiàng)公式,再用數(shù)學(xué)歸納法證明.(3)分類討論,當(dāng)n為奇數(shù)或偶數(shù)時(shí),分別求得的最大值,即可求得的取值范圍.【詳解】(1)由題意可知,.當(dāng)時(shí),,當(dāng)時(shí),也滿足上式.所以.(2)解法一:由(1)可知,即.當(dāng)時(shí),,①當(dāng)時(shí),,所以,②當(dāng)時(shí),,③當(dāng)時(shí),,所以,④……當(dāng)時(shí),n為偶數(shù)當(dāng)時(shí),n為偶數(shù)所以以上個(gè)式子相加,得.又,所以當(dāng)n為偶數(shù)時(shí),.同理,當(dāng)n為奇數(shù)時(shí),,所以,當(dāng)n為奇數(shù)時(shí),.解法二:猜測(cè):當(dāng)n為奇數(shù)時(shí),.猜測(cè):當(dāng)n為偶數(shù)時(shí),.以下用數(shù)學(xué)歸納法證明:,命題成立;假設(shè)當(dāng)時(shí),命題成立;當(dāng)n為奇數(shù)時(shí),,當(dāng)時(shí),n為偶數(shù),由得故,時(shí),命題也成立.綜上可知,當(dāng)n為奇數(shù)時(shí)同理,當(dāng)n為偶數(shù)時(shí),命題仍成立.(3)由(2)可知.①當(dāng)n為偶數(shù)時(shí),,所以隨n的增大而減小從而當(dāng)n為偶數(shù)時(shí),的最大值是.②當(dāng)n為奇數(shù)時(shí),,所以隨n的增大而增大,且.綜上,的最大值是1.因此,若對(duì)于任意的,不等式恒成立,只需,故實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題考查了累加法求數(shù)列通項(xiàng)公式的應(yīng)用,分類討論奇偶項(xiàng)的通項(xiàng)公式及求和方法,數(shù)學(xué)歸納法證明數(shù)列的應(yīng)用,數(shù)列的單調(diào)性及參數(shù)的取值范圍,屬于難題.21、(1)x24+【解析】試題分析:本題主要考查橢圓的標(biāo)準(zhǔn)方程及其幾何性質(zhì)、直線與橢圓的位置關(guān)系等基礎(chǔ)知識(shí),考查學(xué)生的分析問題解決問題的能力、轉(zhuǎn)化能力、計(jì)算能力.第一問,先利用離心率、

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論