版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
浙江省杭州市西湖高中2024屆高三下學(xué)期聯(lián)考數(shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知復(fù)數(shù)z=2i1-i,則A.第一象限 B.第二象限 C.第三象限 D.第四象限2.以下三個(gè)命題:①在勻速傳遞的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每10分鐘從中抽取一件產(chǎn)品進(jìn)行某項(xiàng)指標(biāo)檢測,這樣的抽樣是分層抽樣;②若兩個(gè)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對值越接近于1;③對分類變量與的隨機(jī)變量的觀測值來說,越小,判斷“與有關(guān)系”的把握越大;其中真命題的個(gè)數(shù)為()A.3 B.2 C.1 D.03.若的展開式中二項(xiàng)式系數(shù)和為256,則二項(xiàng)式展開式中有理項(xiàng)系數(shù)之和為()A.85 B.84 C.57 D.564.已知函數(shù),為圖象的對稱中心,若圖象上相鄰兩個(gè)極值點(diǎn),滿足,則下列區(qū)間中存在極值點(diǎn)的是()A. B. C. D.5.如圖是來自古希臘數(shù)學(xué)家希波克拉底所研究的幾何圖形,此圖由三個(gè)半圓構(gòu)成,三個(gè)半圓的直徑分別為直角三角形的斜邊,直角邊.已知以直角邊為直徑的半圓的面積之比為,記,則()A. B. C. D.6.設(shè)非零向量,,,滿足,,且與的夾角為,則“”是“”的().A.充分非必要條件 B.必要非充分條件C.充分必要條件 D.既不充分也不必要條件7.拋物線的焦點(diǎn)為,則經(jīng)過點(diǎn)與點(diǎn)且與拋物線的準(zhǔn)線相切的圓的個(gè)數(shù)有()A.1個(gè) B.2個(gè) C.0個(gè) D.無數(shù)個(gè)8.已知集合,集合,則()A. B. C. D.9.是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件10.根據(jù)最小二乘法由一組樣本點(diǎn)(其中),求得的回歸方程是,則下列說法正確的是()A.至少有一個(gè)樣本點(diǎn)落在回歸直線上B.若所有樣本點(diǎn)都在回歸直線上,則變量同的相關(guān)系數(shù)為1C.對所有的解釋變量(),的值一定與有誤差D.若回歸直線的斜率,則變量x與y正相關(guān)11.已知定義在R上的偶函數(shù)滿足,當(dāng)時(shí),,函數(shù)(),則函數(shù)與函數(shù)的圖象的所有交點(diǎn)的橫坐標(biāo)之和為()A.2 B.4 C.5 D.612.已知的面積是,,,則()A.5 B.或1 C.5或1 D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,半球內(nèi)有一內(nèi)接正四棱錐,該四棱錐的體積為,則該半球的體積為__________.14.設(shè)數(shù)列為等差數(shù)列,其前項(xiàng)和為,已知,,若對任意都有成立,則的值為__________.15.設(shè)變量,滿足約束條件,則目標(biāo)函數(shù)的最小值為______.16.函數(shù)的定義域?yàn)開_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知關(guān)于的不等式有解.(1)求實(shí)數(shù)的最大值;(2)若,,均為正實(shí)數(shù),且滿足.證明:.18.(12分)已知橢圓的左、右焦點(diǎn)分別為,離心率為,為橢圓上一動(dòng)點(diǎn)(異于左右頂點(diǎn)),面積的最大值為.(1)求橢圓的方程;(2)若直線與橢圓相交于點(diǎn)兩點(diǎn),問軸上是否存在點(diǎn),使得是以為直角頂點(diǎn)的等腰直角三角形?若存在,求點(diǎn)的坐標(biāo);若不存在,請說明理由.19.(12分)某精密儀器生產(chǎn)車間每天生產(chǎn)個(gè)零件,質(zhì)檢員小張每天都會(huì)隨機(jī)地從中抽取50個(gè)零件進(jìn)行檢查是否合格,若較多零件不合格,則需對其余所有零件進(jìn)行檢查.根據(jù)多年的生產(chǎn)數(shù)據(jù)和經(jīng)驗(yàn),這些零件的長度服從正態(tài)分布(單位:微米),且相互獨(dú)立.若零件的長度滿足,則認(rèn)為該零件是合格的,否則該零件不合格.(1)假設(shè)某一天小張抽查出不合格的零件數(shù)為,求及的數(shù)學(xué)期望;(2)小張某天恰好從50個(gè)零件中檢查出2個(gè)不合格的零件,若以此頻率作為當(dāng)天生產(chǎn)零件的不合格率.已知檢查一個(gè)零件的成本為10元,而每個(gè)不合格零件流入市場帶來的損失為260元.假設(shè)充分大,為了使損失盡量小,小張是否需要檢查其余所有零件,試說明理由.附:若隨機(jī)變量服從正態(tài)分布,則.20.(12分)已知函數(shù),為實(shí)數(shù),且.(Ⅰ)當(dāng)時(shí),求的單調(diào)區(qū)間和極值;(Ⅱ)求函數(shù)在區(qū)間,上的值域(其中為自然對數(shù)的底數(shù)).21.(12分)已知函數(shù)的定義域?yàn)?(1)求實(shí)數(shù)的取值范圍;(2)設(shè)實(shí)數(shù)為的最小值,若實(shí)數(shù),,滿足,求的最小值.22.(10分)已知函數(shù).(1)解不等式;(2)記函數(shù)的最小值為,正實(shí)數(shù)、滿足,求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】分析:根據(jù)復(fù)數(shù)的運(yùn)算,求得復(fù)數(shù)z,再利用復(fù)數(shù)的表示,即可得到復(fù)數(shù)對應(yīng)的點(diǎn),得到答案.詳解:由題意,復(fù)數(shù)z=2i1-i所以復(fù)數(shù)z在復(fù)平面內(nèi)對應(yīng)的點(diǎn)的坐標(biāo)為(-1,-1),位于復(fù)平面內(nèi)的第三象限,故選C.點(diǎn)睛:本題主要考查了復(fù)數(shù)的四則運(yùn)算及復(fù)數(shù)的表示,其中根據(jù)復(fù)數(shù)的四則運(yùn)算求解復(fù)數(shù)z是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力.2、C【解析】
根據(jù)抽樣方式的特征,可判斷①;根據(jù)相關(guān)系數(shù)的性質(zhì),可判斷②;根據(jù)獨(dú)立性檢驗(yàn)的方法和步驟,可判斷③.【詳解】①根據(jù)抽樣是間隔相同,且樣本間無明顯差異,故①應(yīng)是系統(tǒng)抽樣,即①為假命題;②兩個(gè)隨機(jī)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對值越接近于1;兩個(gè)隨機(jī)變量相關(guān)性越弱,則相關(guān)系數(shù)的絕對值越接近于0;故②為真命題;③對分類變量與的隨機(jī)變量的觀測值來說,越小,“與有關(guān)系”的把握程度越小,故③為假命題.故選:.【點(diǎn)睛】本題以命題的真假判斷為載體考查了抽樣方法、相關(guān)系數(shù)、獨(dú)立性檢驗(yàn)等知識(shí)點(diǎn),屬于基礎(chǔ)題.3、A【解析】
先求,再確定展開式中的有理項(xiàng),最后求系數(shù)之和.【詳解】解:的展開式中二項(xiàng)式系數(shù)和為256故,要求展開式中的有理項(xiàng),則則二項(xiàng)式展開式中有理項(xiàng)系數(shù)之和為:故選:A【點(diǎn)睛】考查二項(xiàng)式的二項(xiàng)式系數(shù)及展開式中有理項(xiàng)系數(shù)的確定,基礎(chǔ)題.4、A【解析】
結(jié)合已知可知,可求,進(jìn)而可求,代入,結(jié)合,可求,即可判斷.【詳解】圖象上相鄰兩個(gè)極值點(diǎn),滿足,即,,,且,,,,,,當(dāng)時(shí),為函數(shù)的一個(gè)極小值點(diǎn),而.故選:.【點(diǎn)睛】本題主要考查了正弦函數(shù)的圖象及性質(zhì)的簡單應(yīng)用,解題的關(guān)鍵是性質(zhì)的靈活應(yīng)用.5、D【解析】
由半圓面積之比,可求出兩個(gè)直角邊的長度之比,從而可知,結(jié)合同角三角函數(shù)的基本關(guān)系,即可求出,由二倍角公式即可求出.【詳解】解:由題意知,以為直徑的半圓面積,以為直徑的半圓面積,則,即.由,得,所以.故選:D.【點(diǎn)睛】本題考查了同角三角函數(shù)的基本關(guān)系,考查了二倍角公式.本題的關(guān)鍵是由面積比求出角的正切值.6、C【解析】
利用數(shù)量積的定義可得,即可判斷出結(jié)論.【詳解】解:,,,解得,,,解得,“”是“”的充分必要條件.故選:C.【點(diǎn)睛】本題主要考查平面向量數(shù)量積的應(yīng)用,考查推理能力與計(jì)算能力,屬于基礎(chǔ)題.7、B【解析】
圓心在的中垂線上,經(jīng)過點(diǎn),且與相切的圓的圓心到準(zhǔn)線的距離與到焦點(diǎn)的距離相等,圓心在拋物線上,直線與拋物線交于2個(gè)點(diǎn),得到2個(gè)圓.【詳解】因?yàn)辄c(diǎn)在拋物線上,又焦點(diǎn),,由拋物線的定義知,過點(diǎn)、且與相切的圓的圓心即為線段的垂直平分線與拋物線的交點(diǎn),這樣的交點(diǎn)共有2個(gè),故過點(diǎn)、且與相切的圓的不同情況種數(shù)是2種.故選:.【點(diǎn)睛】本題主要考查拋物線的簡單性質(zhì),本題解題的關(guān)鍵是求出圓心的位置,看出圓心必須在拋物線上,且在垂直平分線上.8、D【解析】
可求出集合,,然后進(jìn)行并集的運(yùn)算即可.【詳解】解:,;.故選.【點(diǎn)睛】考查描述法、區(qū)間的定義,對數(shù)函數(shù)的單調(diào)性,以及并集的運(yùn)算.9、B【解析】
分別判斷充分性和必要性得到答案.【詳解】所以(逆否命題)必要性成立當(dāng),不充分故是必要不充分條件,答案選B【點(diǎn)睛】本題考查了充分必要條件,屬于簡單題.10、D【解析】
對每一個(gè)選項(xiàng)逐一分析判斷得解.【詳解】回歸直線必過樣本數(shù)據(jù)中心點(diǎn),但樣本點(diǎn)可能全部不在回歸直線上﹐故A錯(cuò)誤;所有樣本點(diǎn)都在回歸直線上,則變量間的相關(guān)系數(shù)為,故B錯(cuò)誤;若所有的樣本點(diǎn)都在回歸直線上,則的值與相等,故C錯(cuò)誤;相關(guān)系數(shù)r與符號(hào)相同,若回歸直線的斜率,則,樣本點(diǎn)分布應(yīng)從左到右是上升的,則變量x與y正相關(guān),故D正確.故選D.【點(diǎn)睛】本題主要考查線性回歸方程的性質(zhì),意在考查學(xué)生對該知識(shí)的理解掌握水平和分析推理能力.11、B【解析】
由函數(shù)的性質(zhì)可得:的圖像關(guān)于直線對稱且關(guān)于軸對稱,函數(shù)()的圖像也關(guān)于對稱,由函數(shù)圖像的作法可知兩個(gè)圖像有四個(gè)交點(diǎn),且兩兩關(guān)于直線對稱,則與的圖像所有交點(diǎn)的橫坐標(biāo)之和為4得解.【詳解】由偶函數(shù)滿足,可得的圖像關(guān)于直線對稱且關(guān)于軸對稱,函數(shù)()的圖像也關(guān)于對稱,函數(shù)的圖像與函數(shù)()的圖像的位置關(guān)系如圖所示,可知兩個(gè)圖像有四個(gè)交點(diǎn),且兩兩關(guān)于直線對稱,則與的圖像所有交點(diǎn)的橫坐標(biāo)之和為4.故選:B【點(diǎn)睛】本題主要考查了函數(shù)的性質(zhì),考查了數(shù)形結(jié)合的思想,掌握函數(shù)的性質(zhì)是解題的關(guān)鍵,屬于中檔題.12、B【解析】∵,,∴①若為鈍角,則,由余弦定理得,解得;②若為銳角,則,同理得.故選B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由題意可知半球的半徑與正四棱錐的高相等,可得正四棱錐的棱與半徑的關(guān)系,進(jìn)而可寫出半球的半徑與四棱錐體積的關(guān)系,進(jìn)而求得結(jié)果.【詳解】設(shè)所給半球的半徑為,則四棱錐的高,則,由四棱錐的體積,半球的體積為:.【方法點(diǎn)睛】涉及球與棱柱、棱錐的切、接問題時(shí),一般過球心及多面體中的特殊點(diǎn)(一般為接、切點(diǎn))或線作截面,把空間問題轉(zhuǎn)化為平面問題,再利用平面幾何知識(shí)尋找?guī)缀误w中元素間的關(guān)系,或只畫內(nèi)切、外接的幾何體的直觀圖,確定球心的位置,弄清球的半徑(直徑)與該幾何體已知量的關(guān)系,列方程(組)求解.14、【解析】
由已知條件得出關(guān)于首項(xiàng)和公差的方程組,解出這兩個(gè)量,計(jì)算出,利用二次函數(shù)的基本性質(zhì)求出的最大值及其對應(yīng)的值,即可得解.【詳解】設(shè)等差數(shù)列的公差為,由,解得,.所以,當(dāng)時(shí),取得最大值,對任意都有成立,則為數(shù)列的最大值,因此,.故答案為:.【點(diǎn)睛】本題考查等差數(shù)列前項(xiàng)和最值的計(jì)算,一般利用二次函數(shù)的基本性質(zhì)求解,考查計(jì)算能力,屬于中等題.15、-8【解析】
通過約束條件,畫出可行域,將問題轉(zhuǎn)化為直線在軸截距最大的問題,通過圖像解決.【詳解】由題意可得可行域如下圖所示:令,則即為在軸截距的最大值由圖可知:當(dāng)過時(shí),在軸截距最大本題正確結(jié)果:【點(diǎn)睛】本題考查線性規(guī)劃中的型最值的求解問題,關(guān)鍵在于將所求最值轉(zhuǎn)化為在軸截距的問題.16、【解析】
根據(jù)函數(shù)成立的條件列不等式組,求解即可得定義域.【詳解】解:要使函數(shù)有意義,則,即.則定義域?yàn)?.故答案為:【點(diǎn)睛】本題主要考查定義域的求解,要熟練掌握張建函數(shù)成立的條件.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析【解析】
(1)由題意,只需找到的最大值即可;(2),構(gòu)造并利用基本不等式可得,即.【詳解】(1),∴的最大值為4.關(guān)于的不等式有解等價(jià)于,(?。┊?dāng)時(shí),上述不等式轉(zhuǎn)化為,解得,(ⅱ)當(dāng)時(shí),上述不等式轉(zhuǎn)化為,解得,綜上所述,實(shí)數(shù)的取值范圍為,則實(shí)數(shù)的最大值為3,即.(2)證明:根據(jù)(1)求解知,所以,又∵,,,,,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,即,∴,所以,.【點(diǎn)睛】本題考查絕對值不等式中的能成立問題以及綜合法證明不等式問題,是一道中檔題.18、(1);(2)見解析【解析】
(1)由面積最大值可得,又,以及,解得,即可得到橢圓的方程,(2)假設(shè)軸上存在點(diǎn),是以為直角頂點(diǎn)的等腰直角三角形,設(shè),,線段的中點(diǎn)為,根據(jù)韋達(dá)定理求出點(diǎn)的坐標(biāo),再根據(jù),,即可求出的值,可得點(diǎn)的坐標(biāo).【詳解】(1)面積的最大值為,則:又,,解得:,橢圓的方程為:(2)假設(shè)軸上存在點(diǎn),是以為直角頂點(diǎn)的等腰直角三角形設(shè),,線段的中點(diǎn)為由,消去可得:,解得:∴,,依題意有,由可得:,可得:由可得:,代入上式化簡可得:則:,解得:當(dāng)時(shí),點(diǎn)滿足題意;當(dāng)時(shí),點(diǎn)滿足題意故軸上存在點(diǎn),使得是以為直角頂點(diǎn)的等腰直角三角形【點(diǎn)睛】本題考查了橢圓的方程,直線和橢圓的位置關(guān)系,斜率公式,考查了運(yùn)算能力和轉(zhuǎn)化能力,屬于中檔題.19、(1)見解析(2)需要,見解析【解析】
(1)由零件的長度服從正態(tài)分布且相互獨(dú)立,零件的長度滿足即為合格,則每一個(gè)零件的長度合格的概率為,滿足二項(xiàng)分布,利用補(bǔ)集的思想求得,再根據(jù)公式求得;(2)由題可得不合格率為,檢查的成本為,求出不檢查時(shí)損失的期望,與成本作差,再與0比較大小即可判斷.【詳解】(1),由于滿足二項(xiàng)分布,故.(2)由題意可知不合格率為,若不檢查,損失的期望為;若檢查,成本為,由于,當(dāng)充分大時(shí),,所以為了使損失盡量小,小張需要檢查其余所有零件.【點(diǎn)睛】本題考查正態(tài)分布的應(yīng)用,考查二項(xiàng)分布的期望,考查補(bǔ)集思想的應(yīng)用,考查分析能力與數(shù)據(jù)處理能力.20、(Ⅰ)極大值0,沒有極小值;函數(shù)的遞增區(qū)間,遞減區(qū)間,(Ⅱ)見解析【解析】
(Ⅰ)由,令,得增區(qū)間為,令,得減區(qū)間為,所以有極大值,無極小值;(Ⅱ)由,分,和三種情況,考慮函數(shù)在區(qū)間上的值域,即可得到本題答案.【詳解】當(dāng)時(shí),,,當(dāng)時(shí),,函數(shù)單調(diào)遞增,當(dāng)時(shí),,函數(shù)單調(diào)遞減,故當(dāng)時(shí),函數(shù)取得極大值,沒有極小值;函數(shù)的增區(qū)間為,減區(qū)間為,,當(dāng)時(shí),,在上單調(diào)遞增,即函數(shù)的值域?yàn)椋划?dāng)時(shí),,在上單調(diào)遞減,即函數(shù)的值域?yàn)?;?dāng)時(shí),易得時(shí),,在上單調(diào)遞增,時(shí),,在上單調(diào)遞減,故當(dāng)時(shí),函數(shù)取得最大值,最小值為,中最小的,當(dāng)時(shí),,最小值;當(dāng),,最小值;綜上
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 上臺(tái)領(lǐng)獎(jiǎng)感言(5篇)
- DB12T 571-2015 歷史風(fēng)貌建筑安全性鑒定規(guī)程
- 中考百日誓師大會(huì)致辭
- 鐵山港課件教學(xué)課件
- 木地板課件教學(xué)課件
- 貧攻堅(jiān)課件教學(xué)課件
- 變網(wǎng)絡(luò)課件教學(xué)課件
- 清新區(qū)第二中學(xué)集團(tuán)九年級上學(xué)期語文期中聯(lián)考試卷
- 四年級數(shù)學(xué)(四則混合運(yùn)算)計(jì)算題專項(xiàng)練習(xí)與答案
- 美甲店合伙開店合作協(xié)議書(2篇)
- 上海離職協(xié)議書模板
- 2024年中考語文復(fù)習(xí)分類必刷:非連續(xù)性文本閱讀(含答案解析)
- 項(xiàng)目經(jīng)理或管理招聘面試題與參考回答(某大型國企)
- 2025高考數(shù)學(xué)一輪復(fù)習(xí)-4.1-任意角和弧度制及三角函數(shù)的概念【課件】
- 工程進(jìn)度款申請表
- 當(dāng)代社會(huì)政策分析 課件 第八章 兒童社會(huì)政策
- 2023年徽商銀行市區(qū)支行招聘綜合柜員信息筆試上岸歷年典型考題與考點(diǎn)剖析附帶答案詳解
- 2024年湖南化工職業(yè)技術(shù)學(xué)院單招職業(yè)技能測試題庫帶答案解析
- JGT 472-2015 鋼纖維混凝土
- TD/T 1061-2021 自然資源價(jià)格評估通則(正式版)
- 24春國家開放大學(xué)《建筑力學(xué)#》形考任務(wù)1-4參考答案
評論
0/150
提交評論