黑龍江省大慶市四中2023-2024學(xué)年高三最后一卷數(shù)學(xué)試卷含解析_第1頁(yè)
黑龍江省大慶市四中2023-2024學(xué)年高三最后一卷數(shù)學(xué)試卷含解析_第2頁(yè)
黑龍江省大慶市四中2023-2024學(xué)年高三最后一卷數(shù)學(xué)試卷含解析_第3頁(yè)
黑龍江省大慶市四中2023-2024學(xué)年高三最后一卷數(shù)學(xué)試卷含解析_第4頁(yè)
黑龍江省大慶市四中2023-2024學(xué)年高三最后一卷數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

黑龍江省大慶市四中2023-2024學(xué)年高三最后一卷數(shù)學(xué)試卷注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線:(,)的焦距為.點(diǎn)為雙曲線的右頂點(diǎn),若點(diǎn)到雙曲線的漸近線的距離為,則雙曲線的離心率是()A. B. C.2 D.32.已知等差數(shù)列{an},則“a2>a1”是“數(shù)列{an}為單調(diào)遞增數(shù)列”的()A.充分而不必要條件B.必要而不充分條件C.充分必要條件D.既不充分也不必要條件3.執(zhí)行程序框圖,則輸出的數(shù)值為()A. B. C. D.4.已知,,那么是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.關(guān)于圓周率,數(shù)學(xué)發(fā)展史上出現(xiàn)過(guò)許多很有創(chuàng)意的求法,如著名的蒲豐實(shí)驗(yàn)和查理斯實(shí)驗(yàn).受其啟發(fā),某同學(xué)通過(guò)下面的隨機(jī)模擬方法來(lái)估計(jì)的值:先用計(jì)算機(jī)產(chǎn)生個(gè)數(shù)對(duì),其中,都是區(qū)間上的均勻隨機(jī)數(shù),再統(tǒng)計(jì),能與構(gòu)成銳角三角形三邊長(zhǎng)的數(shù)對(duì)的個(gè)數(shù)﹔最后根據(jù)統(tǒng)計(jì)數(shù)來(lái)估計(jì)的值.若,則的估計(jì)值為()A. B. C. D.6.某四棱錐的三視圖如圖所示,則該四棱錐的表面積為()A.8 B. C. D.7.設(shè)是定義在實(shí)數(shù)集上的函數(shù),滿足條件是偶函數(shù),且當(dāng)時(shí),,則,,的大小關(guān)系是()A. B. C. D.8.南宋數(shù)學(xué)家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,所討論的高階等差數(shù)列與一般等差數(shù)列不同,前后兩項(xiàng)之差并不相等,但是逐項(xiàng)差數(shù)之差或者高次差成等差數(shù)列對(duì)這類高階等差數(shù)列的研究,在楊輝之后一般稱為“垛積術(shù)”.現(xiàn)有高階等差數(shù)列,其前7項(xiàng)分別為1,4,8,14,23,36,54,則該數(shù)列的第19項(xiàng)為()(注:)A.1624 B.1024 C.1198 D.15609.某調(diào)查機(jī)構(gòu)對(duì)全國(guó)互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計(jì),得到整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結(jié)論中不正確的是()注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過(guò)總?cè)藬?shù)的C.互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營(yíng)崗位的人數(shù)90后比80前多D.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多10.已知雙曲線的中心在原點(diǎn)且一個(gè)焦點(diǎn)為,直線與其相交于,兩點(diǎn),若中點(diǎn)的橫坐標(biāo)為,則此雙曲線的方程是A. B.C. D.11.已知定點(diǎn)都在平面內(nèi),定點(diǎn)是內(nèi)異于的動(dòng)點(diǎn),且,那么動(dòng)點(diǎn)在平面內(nèi)的軌跡是()A.圓,但要去掉兩個(gè)點(diǎn) B.橢圓,但要去掉兩個(gè)點(diǎn)C.雙曲線,但要去掉兩個(gè)點(diǎn) D.拋物線,但要去掉兩個(gè)點(diǎn)12.已知雙曲線的離心率為,拋物線的焦點(diǎn)坐標(biāo)為,若,則雙曲線的漸近線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.(5分)在平面直角坐標(biāo)系中,過(guò)點(diǎn)作傾斜角為的直線,已知直線與圓相交于兩點(diǎn),則弦的長(zhǎng)等于____________.14.已知函數(shù),若的最小值為,則實(shí)數(shù)的取值范圍是_________15.已知為等差數(shù)列,為其前n項(xiàng)和,若,,則_______.16.如圖,己知半圓的直徑,點(diǎn)是弦(包含端點(diǎn),)上的動(dòng)點(diǎn),點(diǎn)在弧上.若是等邊三角形,且滿足,則的最小值為_(kāi)__________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖1,四邊形為直角梯形,,,,,,為線段上一點(diǎn),滿足,為的中點(diǎn),現(xiàn)將梯形沿折疊(如圖2),使平面平面.(1)求證:平面平面;(2)能否在線段上找到一點(diǎn)(端點(diǎn)除外)使得直線與平面所成角的正弦值為?若存在,試確定點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.18.(12分)已知函數(shù).(Ⅰ)若是第二象限角,且,求的值;(Ⅱ)求函數(shù)的定義域和值域.19.(12分)已知三棱錐中側(cè)面與底面都是邊長(zhǎng)為2的等邊三角形,且面面,分別為線段的中點(diǎn).為線段上的點(diǎn),且.(1)證明:為線段的中點(diǎn);(2)求二面角的余弦值.20.(12分)△ABC的內(nèi)角的對(duì)邊分別為,已知△ABC的面積為(1)求;(2)若求△ABC的周長(zhǎng).21.(12分)如圖,在正四棱錐中,,點(diǎn)、分別在線段、上,.(1)若,求證:⊥;(2)若二面角的大小為,求線段的長(zhǎng).22.(10分)已知;.(1)若為真命題,求實(shí)數(shù)的取值范圍;(2)若為真命題且為假命題,求實(shí)數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

由點(diǎn)到直線距離公式建立的等式,變形后可求得離心率.【詳解】由題意,一條漸近線方程為,即,∴,,即,,.故選:A.【點(diǎn)睛】本題考查求雙曲線的離心率,掌握漸近線方程與點(diǎn)到直線距離公式是解題基礎(chǔ).2、C【解析】試題分析:根據(jù)充分條件和必要條件的定義進(jìn)行判斷即可.解:在等差數(shù)列{an}中,若a2>a1,則d>0,即數(shù)列{an}為單調(diào)遞增數(shù)列,若數(shù)列{an}為單調(diào)遞增數(shù)列,則a2>a1,成立,即“a2>a1”是“數(shù)列{an}為單調(diào)遞增數(shù)列”充分必要條件,故選C.考點(diǎn):必要條件、充分條件與充要條件的判斷.3、C【解析】

由題知:該程序框圖是利用循環(huán)結(jié)構(gòu)計(jì)算并輸出變量的值,計(jì)算程序框圖的運(yùn)行結(jié)果即可得到答案.【詳解】,,,,,滿足條件,,,,,滿足條件,,,,,滿足條件,,,,,滿足條件,,,,,不滿足條件,輸出.故選:C【點(diǎn)睛】本題主要考查程序框圖中的循環(huán)結(jié)構(gòu),屬于簡(jiǎn)單題.4、B【解析】

由,可得,解出即可判斷出結(jié)論.【詳解】解:因?yàn)椋遥?,解得.是的必要不充分條件.故選:.【點(diǎn)睛】本題考查了向量數(shù)量積運(yùn)算性質(zhì)、三角函數(shù)求值、簡(jiǎn)易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.5、B【解析】

先利用幾何概型的概率計(jì)算公式算出,能與構(gòu)成銳角三角形三邊長(zhǎng)的概率,然后再利用隨機(jī)模擬方法得到,能與構(gòu)成銳角三角形三邊長(zhǎng)的概率,二者概率相等即可估計(jì)出.【詳解】因?yàn)?,都是區(qū)間上的均勻隨機(jī)數(shù),所以有,,若,能與構(gòu)成銳角三角形三邊長(zhǎng),則,由幾何概型的概率計(jì)算公式知,所以.故選:B.【點(diǎn)睛】本題考查幾何概型的概率計(jì)算公式及運(yùn)用隨機(jī)數(shù)模擬法估計(jì)概率,考查學(xué)生的基本計(jì)算能力,是一個(gè)中檔題.6、D【解析】

根據(jù)三視圖還原幾何體為四棱錐,即可求出幾何體的表面積.【詳解】由三視圖知幾何體是四棱錐,如圖,且四棱錐的一條側(cè)棱與底面垂直,四棱錐的底面是正方形,邊長(zhǎng)為2,棱錐的高為2,所以,故選:【點(diǎn)睛】本題主要考查了由三視圖還原幾何體,棱錐表面積的計(jì)算,考查了學(xué)生的運(yùn)算能力,屬于中檔題.7、C【解析】∵y=f(x+1)是偶函數(shù),∴f(-x+1)=f(x+1),即函數(shù)f(x)關(guān)于x=1對(duì)稱.

∵當(dāng)x≥1時(shí),為減函數(shù),∵f(log32)=f(2-log32)=f()且==log34,log34<<3,∴b>a>c,

故選C8、B【解析】

根據(jù)高階等差數(shù)列的定義,求得等差數(shù)列的通項(xiàng)公式和前項(xiàng)和,利用累加法求得數(shù)列的通項(xiàng)公式,進(jìn)而求得.【詳解】依題意:1,4,8,14,23,36,54,……兩兩作差得:3,4,6,9,13,18,……兩兩作差得:1,2,3,4,5,……設(shè)該數(shù)列為,令,設(shè)的前項(xiàng)和為,又令,設(shè)的前項(xiàng)和為.易,,進(jìn)而得,所以,則,所以,所以.故選:B【點(diǎn)睛】本小題主要考查新定義數(shù)列的理解和運(yùn)用,考查累加法求數(shù)列的通項(xiàng)公式,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.9、D【解析】

根據(jù)兩個(gè)圖形的數(shù)據(jù)進(jìn)行觀察比較,即可判斷各選項(xiàng)的真假.【詳解】在A中,由整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分別餅狀圖得到互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占56%,所以是正確的;在B中,由整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分別餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖得到:,互聯(lián)網(wǎng)行業(yè)從業(yè)技術(shù)崗位的人數(shù)超過(guò)總?cè)藬?shù)的,所以是正確的;在C中,由整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分別餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分別條形圖得到:,互聯(lián)網(wǎng)行業(yè)從事運(yùn)營(yíng)崗位的人數(shù)90后比80后多,所以是正確的;在D中,互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后所占比例為,所以不能判斷互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多.故選:D.【點(diǎn)睛】本題主要考查了命題的真假判定,以及統(tǒng)計(jì)圖表中餅狀圖和條形圖的性質(zhì)等基礎(chǔ)知識(shí)的應(yīng)用,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.10、D【解析】

根據(jù)點(diǎn)差法得,再根據(jù)焦點(diǎn)坐標(biāo)得,解方程組得,,即得結(jié)果.【詳解】設(shè)雙曲線的方程為,由題意可得,設(shè),,則的中點(diǎn)為,由且,得,,即,聯(lián)立,解得,,故所求雙曲線的方程為.故選D.【點(diǎn)睛】本題主要考查利用點(diǎn)差法求雙曲線標(biāo)準(zhǔn)方程,考查基本求解能力,屬于中檔題.11、A【解析】

根據(jù)題意可得,即知C在以AB為直徑的圓上.【詳解】,,,又,,平面,又平面,故在以為直徑的圓上,又是內(nèi)異于的動(dòng)點(diǎn),所以的軌跡是圓,但要去掉兩個(gè)點(diǎn)A,B故選:A【點(diǎn)睛】本題主要考查了線面垂直、線線垂直的判定,圓的性質(zhì),軌跡問(wèn)題,屬于中檔題.12、A【解析】

求出拋物線的焦點(diǎn)坐標(biāo),得到雙曲線的離心率,然后求解a,b關(guān)系,即可得到雙曲線的漸近線方程.【詳解】拋物線y2=2px(p>0)的焦點(diǎn)坐標(biāo)為(1,0),則p=2,又e=p,所以e2,可得c2=4a2=a2+b2,可得:ba,所以雙曲線的漸近線方程為:y=±.故選:A.【點(diǎn)睛】本題考查雙曲線的離心率以及雙曲線漸近線方程的求法,涉及拋物線的簡(jiǎn)單性質(zhì)的應(yīng)用.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

方法一:依題意,知直線的方程為,代入圓的方程化簡(jiǎn)得,解得或,從而得或,則.方法二:依題意,知直線的方程為,代入圓的方程化簡(jiǎn)得,設(shè),則,故.方法三:將圓的方程配方得,其半徑,圓心到直線的距離,則.14、【解析】

,可得在時(shí),最小值為,時(shí),要使得最小值為,則對(duì)稱軸在1的右邊,且,求解出即滿足最小值為.【詳解】當(dāng),,當(dāng)且僅當(dāng)時(shí),等號(hào)成立.當(dāng)時(shí),為二次函數(shù),要想在處取最小,則對(duì)稱軸要滿足并且,即,解得.【點(diǎn)睛】本題考查分段函數(shù)的最值問(wèn)題,對(duì)每段函數(shù)先進(jìn)行分類討論,找到每段的最小值,然后再對(duì)兩段函數(shù)的最小值進(jìn)行比較,得到結(jié)果,題目較綜合,屬于中檔題.15、1【解析】試題分析:因?yàn)槭堑炔顢?shù)列,所以,即,又,所以,所以.故答案為1.【考點(diǎn)】等差數(shù)列的基本性質(zhì)【名師點(diǎn)睛】在等差數(shù)列五個(gè)基本量,,,,中,已知其中三個(gè)量,可以根據(jù)已知條件,結(jié)合等差數(shù)列的通項(xiàng)公式、前項(xiàng)和公式列出關(guān)于基本量的方程(組)來(lái)求余下的兩個(gè)量,計(jì)算時(shí)須注意整體代換思想及方程思想的應(yīng)用.16、1【解析】

建系,設(shè),表示出點(diǎn)坐標(biāo),則,根據(jù)的范圍得出答案.【詳解】解:以為原點(diǎn)建立平面坐標(biāo)系如圖所示:則,,,,設(shè),則,,,,,,,顯然當(dāng)取得最大值4時(shí),取得最小值1.故答案為:1.【點(diǎn)睛】本題考查了平面向量的數(shù)量積運(yùn)算,坐標(biāo)運(yùn)算,屬于中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析;(2)存在點(diǎn)是線段的中點(diǎn),使得直線與平面所成角的正弦值為.【解析】

(1)在直角梯形中,根據(jù),,得為等邊三角形,再由余弦定理求得,滿足,得到,再根據(jù)平面平面,利用面面垂直的性質(zhì)定理證明.(2)建立空間直角坐標(biāo)系:假設(shè)在上存在一點(diǎn)使直線與平面所成角的正弦值為,且,,求得平面的一個(gè)法向量,再利用線面角公式求解.【詳解】(1)證明:在直角梯形中,,,因此為等邊三角形,從而,又,由余弦定理得:,∴,即,且折疊后與位置關(guān)系不變,又∵平面平面,且平面平面.∴平面,∵平面,∴平面平面.(2)∵為等邊三角形,為的中點(diǎn),∴,又∵平面平面,且平面平面,∴平面,取的中點(diǎn),連結(jié),則,從而,以為坐標(biāo)原點(diǎn)建立如圖所示的空間直角坐標(biāo)系:則,,則,假設(shè)在上存在一點(diǎn)使直線與平面所成角的正弦值為,且,,∵,∴,故,∴,又,該平面的法向量為,,令得,∴,解得或(舍),綜上可知,存在點(diǎn)是線段的中點(diǎn),使得直線與平面所成角的正弦值為.【點(diǎn)睛】本題主要考查面面垂直的性質(zhì)定理和向量法研究線面角問(wèn)題,還考查了轉(zhuǎn)化化歸的思想和運(yùn)算求解的能力,屬于中檔題.18、(Ⅰ)(Ⅱ)函數(shù)的定義域?yàn)?,值域?yàn)椤窘馕觥?/p>

(1)由為第二象限角及的值,利用同角三角函數(shù)間的基本關(guān)系求出及的值,再代入中即可得到結(jié)果.(2)函數(shù)解析式利用二倍角和輔助角公式將化為一個(gè)角的正弦函數(shù),根據(jù)的范圍,即可得到函數(shù)值域.【詳解】解:(1)因?yàn)槭堑诙笙藿?,且,所?所以,所以.(2)函數(shù)的定義域?yàn)?化簡(jiǎn),得,因?yàn)?,且,,所以,所?所以函數(shù)的值域?yàn)?(注:或許有人會(huì)認(rèn)為“因?yàn)椋浴保鋵?shí)不然,因?yàn)?)【點(diǎn)睛】本題考查同角三角函數(shù)的基本關(guān)系式,三角函數(shù)函數(shù)值求解以及定義域和值域的求解問(wèn)題,涉及到利用二倍角公式和輔助角公式整理三角函數(shù)關(guān)系式的問(wèn)題,意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力,屬于??碱}型.19、(1)見(jiàn)解析;(2)【解析】

(1)設(shè)為中點(diǎn),連結(jié),先證明,可證得,假設(shè)不為線段的中點(diǎn),可得平面,這與矛盾,即得證;(2)以為原點(diǎn),以分別為軸建立空間直角坐標(biāo)系,分別求解平面,平面的法向量的法向量,利用二面角的向量公式,即得解.【詳解】(1)設(shè)為中點(diǎn),連結(jié).∴,,又平面,平面,∴.又分別為中點(diǎn),,又,∴.假設(shè)不為線段的中點(diǎn),則與是平面內(nèi)內(nèi)的相交直線,從而平面,這與矛盾,所以為線段的中點(diǎn).(2)以為原點(diǎn),由條件面面,∴,以分別為軸建立空間直角坐標(biāo)系,則,,,,,,.設(shè)平面的法向量為所以取,則,.同法可求得平面的法向量為∴,由圖知二面角為銳二面角,二面角的余弦值為.【點(diǎn)睛】本題考查了立體幾何與空間向量綜合,考查了學(xué)生邏輯推理,空間想象,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.20、(1)(2).【解析】試題分析:(1)由三角形面積公式建立等式,再利用正弦定理將邊化成角,從而得出的值;(2)由和計(jì)算出,從而求出角,根據(jù)題設(shè)和余弦定理可以求出和的值,從而求出的周長(zhǎng)為.試題解析:(1)由題設(shè)得,即.由正弦定理得.故.(2)由題設(shè)及(1)得,即.所以,故.由題設(shè)得,即.由余弦定理得,即,得.故的周長(zhǎng)為.點(diǎn)睛:在處理解三角形問(wèn)題時(shí),要注意抓住題目所給的條件,當(dāng)題設(shè)中給定三角形的面積,可以使用面積公式建立等式,再將所有邊的關(guān)系轉(zhuǎn)化為角的關(guān)系,有時(shí)需將角的關(guān)系轉(zhuǎn)化為邊的關(guān)系;解三角形問(wèn)題常見(jiàn)的一種考題是“已知一條邊的長(zhǎng)度和它所對(duì)的角,求面積或周長(zhǎng)的取值范圍”或者“已知一條邊的長(zhǎng)度和它所對(duì)的角,再有另外一個(gè)條件,求面積或周長(zhǎng)的值”,這類問(wèn)題的通法思路是:全部轉(zhuǎn)化為角的關(guān)系,建立函數(shù)關(guān)系式,如,從而求出范圍,或利用余弦定理以及基本不等式求范圍;求具體的值直接利用余弦定理和給定條件即可.21、(1)證明見(jiàn)解析;(2).【解析】試題分析:由于圖形是正四棱錐,因此設(shè)AC、BD交點(diǎn)為O,則以O(shè)A為x軸正方向,以O(shè)B為y軸正方向,OP為z軸正方

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論