內蒙包頭市昆都侖區(qū)達標名校2023-2024學年中考數(shù)學模試卷含解析_第1頁
內蒙包頭市昆都侖區(qū)達標名校2023-2024學年中考數(shù)學模試卷含解析_第2頁
內蒙包頭市昆都侖區(qū)達標名校2023-2024學年中考數(shù)學模試卷含解析_第3頁
內蒙包頭市昆都侖區(qū)達標名校2023-2024學年中考數(shù)學模試卷含解析_第4頁
內蒙包頭市昆都侖區(qū)達標名校2023-2024學年中考數(shù)學模試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

內蒙包頭市昆都侖區(qū)達標名校2023-2024學年中考數(shù)學模試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,已知數(shù)軸上的點A、B表示的實數(shù)分別為a,b,那么下列等式成立的是()A. B.C. D.2.如圖,函數(shù)y=kx+b(k≠0)與y=(m≠0)的圖象交于點A(2,3),B(-6,-1),則不等式kx+b>的解集為()A. B. C. D.3.關于x的不等式組的所有整數(shù)解是()A.0,1 B.﹣1,0,1 C.0,1,2 D.﹣2,0,1,24.如圖的幾何體是由一個正方體切去一個小正方體形成的,它的主視圖是()A. B. C. D.5.如圖所示,在△ABC中,∠C=90°,AC=4,BC=3,將△ABC繞點A逆時針旋轉,使點C落在線段AB上的點E處,點B落在點D處,則BD兩點間的距離為()A.2 B. C. D.6.在直角坐標系中,我們把橫、縱坐標都為整數(shù)的點叫做整點.對于一條直線,當它與一個圓的公共點都是整點時,我們把這條直線稱為這個圓的“整點直線”.已知⊙O是以原點為圓心,半徑為圓,則⊙O的“整點直線”共有()條A.7 B.8 C.9 D.107.在代數(shù)式中,m的取值范圍是()A.m≤3 B.m≠0 C.m≥3 D.m≤3且m≠08.小明在九年級進行的六次數(shù)學測驗成績如下(單位:分):76、82、91、85、84、85,則這次數(shù)學測驗成績的眾數(shù)和中位數(shù)分別為()A.91,88 B.85,88 C.85,85 D.85,84.59.下列運算中,正確的是()A.x2+5x2=6x4 B.x3 C. D.10.如圖,,且.、是上兩點,,.若,,,則的長為()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在梯形ACDB中,AB∥CD,∠C+∠D=90°,AB=2,CD=8,E,F(xiàn)分別是AB,CD的中點,則EF=_____.12.在△ABC中,點D在邊BC上,且BD:DC=1:2,如果設=,=,那么等于__(結果用、的線性組合表示).13.如圖,在△ABC中,點D、E分別在AB、AC上,且DE∥BC,已知AD=2,DB=4,DE=1,則BC=_____.14.如圖,AC是以AB為直徑的⊙O的弦,點D是⊙O上的一點,過點D作⊙O的切線交直線AC于點E,AD平分∠BAE,若AB=10,DE=3,則AE的長為_____.15.在如圖所示的正方形方格紙中,每個小的四邊形都是相同的正方形,A、B、C、D都是格點,AB與CD相交于M,則AM:BM=__.16.計算的結果是_____三、解答題(共8題,共72分)17.(8分)先化簡,再求值:(﹣2)÷,其中x滿足x2﹣x﹣4=018.(8分)已知關于x的一元二次方程x2﹣6x+(2m+1)=0有實數(shù)根.求m的取值范圍;如果方程的兩個實數(shù)根為x1,x2,且2x1x2+x1+x2≥20,求m的取值范圍.19.(8分)如圖,在四邊形ABCD中,AB=AD,BC=DC,AC、BD相交于點O,點E在AO上,且OE=OC.求證:∠1=∠2;連結BE、DE,判斷四邊形BCDE的形狀,并說明理由.20.(8分)如圖,AB為⊙O的直徑,AC、DC為弦,∠ACD=60°,P為AB延長線上的點,∠APD=30°.求證:DP是⊙O的切線;若⊙O的半徑為3cm,求圖中陰影部分的面積.21.(8分)如圖,B、E、C、F在同一直線上,AB=DE,BE=CF,∠B=∠DEF,求證:AC=DF.22.(10分)已知點E為正方形ABCD的邊AD上一點,連接BE,過點C作CN⊥BE,垂足為M,交AB于點N.(1)求證:△ABE≌△BCN;(2)若N為AB的中點,求tan∠ABE.23.(12分)如圖,AC是⊙O的直徑,點P在線段AC的延長線上,且PC=CO,點B在⊙O上,且∠CAB=30°.(1)求證:PB是⊙O的切線;(2)若D為圓O上任一動點,⊙O的半徑為5cm時,當弧CD長為時,四邊形ADPB為菱形,當弧CD長為時,四邊形ADCB為矩形.24.如圖,一次函數(shù)y=ax+b的圖象與反比例函數(shù)的圖象交于A,B兩點,與X軸交于點C,與Y軸交于點D,已知,A(n,1),點B的坐標為(﹣2,m)(1)求反比例函數(shù)的解析式和一次函數(shù)的解析式;(2)連結BO,求△AOB的面積;(3)觀察圖象直接寫出一次函數(shù)的值大于反比例函數(shù)的值時x的取值范圍是.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

根據(jù)圖示,可得:b<0<a,|b|>|a|,據(jù)此判斷即可.【詳解】∵b<0<a,|b|>|a|,

∴a+b<0,

∴|a+b|=-a-b.

故選B.【點睛】此題主要考查了實數(shù)與數(shù)軸的特征和應用,以及絕對值的含義和求法,要熟練掌握.2、B【解析】

根據(jù)函數(shù)的圖象和交點坐標即可求得結果.【詳解】解:不等式kx+b>的解集為:-6<x<0或x>2,

故選B.【點睛】此題考查反比例函數(shù)與一次函數(shù)的交點問題,解題關鍵是注意掌握數(shù)形結合思想的應用.3、B【解析】

分別求出每一個不等式的解集,根據(jù)口訣:同大取大、同小取小、大小小大中間找、大大小小無解了確定不等式組的解集,據(jù)此即可得出答案.【詳解】解不等式﹣2x<4,得:x>﹣2,解不等式3x﹣5<1,得:x<2,則不等式組的解集為﹣2<x<2,所以不等式組的整數(shù)解為﹣1、0、1,故選:B.【點睛】考查的是解一元一次不等式組,正確求出每一個不等式解集是基礎,熟知“同大取大;同小取?。淮笮⌒〈笾虚g找;大大小小找不到”的原則是解答此題的關鍵.4、D【解析】試題分析:根據(jù)三視圖的法則可知B為俯視圖,D為主視圖,主視圖為一個正方形.5、C【解析】解:連接BD.在△ABC中,∵∠C=90°,AC=4,BC=3,∴AB=2.∵將△ABC繞點A逆時針旋轉,使點C落在線段AB上的點E處,點B落在點D處,∴AE=4,DE=3,∴BE=2.在Rt△BED中,BD=.故選C.點睛:本題考查了勾股定理和旋轉的基本性質,解決此類問題的關鍵是掌握旋轉的基本性質,特別是線段之間的關系.題目整體較為簡單,適合隨堂訓練.6、D【解析】試題分析:根據(jù)圓的半徑可知:在圓上的整數(shù)點為(2,2)、(2,-2),(-2,-2),(-2,2)這四個點,經過任意兩點的“整點直線”有6條,經過其中的任意一點且圓相切的“整點直線”有4條,則合計共有10條.7、D【解析】

根據(jù)二次根式有意義的條件即可求出答案.【詳解】由題意可知:解得:m≤3且m≠0故選D.【點睛】本題考查二次根式有意義的條件,解題的關鍵是熟練運用二次根式有意義的條件,本題屬于基礎題型.8、D【解析】試題分析:根據(jù)眾數(shù)的定義:出現(xiàn)次數(shù)最多的數(shù),中位數(shù)定義:把所有的數(shù)從小到大排列,位置處于中間的數(shù),即可得到答案.眾數(shù)出現(xiàn)次數(shù)最多的數(shù),85出現(xiàn)了2次,次數(shù)最多,所以眾數(shù)是:85,把所有的數(shù)從小到大排列:76,82,84,85,85,91,位置處于中間的數(shù)是:84,85,因此中位數(shù)是:(85+84)÷2=84.5,故選D.考點:眾數(shù),中位數(shù)點評:此題主要考查了眾數(shù)與中位數(shù)的意義,關鍵是正確把握兩種數(shù)的定義,即可解決問題9、C【解析】分析:直接利用積的乘方運算法則及合并同類項和同底數(shù)冪的乘除運算法則分別分析得出結果.詳解:A.x2+5x2=,本項錯誤;B.,本項錯誤;C.,正確;D.,本項錯誤.故選C.點睛:本題主要考查了積的乘方運算及合并同類項和同底數(shù)冪的乘除運算,解答本題的關鍵是正確掌握運算法則.10、D【解析】分析:詳解:如圖,∵AB⊥CD,CE⊥AD,∴∠1=∠2,又∵∠3=∠4,∴180°-∠1-∠4=180°-∠2-∠3,即∠A=∠C.∵BF⊥AD,∴∠CED=∠BFD=90°,∵AB=CD,∴△ABF≌△CDE,∴AF=CE=a,ED=BF=b,又∵EF=c,∴AD=a+b-c.故選:D.點睛:本題主要考查全等三角形的判定與性質,證明△ABF≌△CDE是關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、3【解析】

延長AC和BD,交于M點,M、E、F三點共線,EF=MF-ME.【詳解】延長AC和BD,交于M點,M、E、F三點共線,∵∠C+∠D=90°,∴△MCD是直角三角形,∴MF=,同理ME=,∴EF=MF-ME=4-1=3.【點睛】本題考查了直角三角形斜邊中線的性質.12、【解析】

根據(jù)三角形法則求出即可解決問題;【詳解】如圖,∵=,=,∴=+=-,∵BD=BC,∴=.故答案為.【點睛】本題考查平面向量,解題的關鍵是熟練掌握三角形法則,屬于中考??碱}型.13、1【解析】

先由DE∥BC,可證得△ADE∽△ABC,進而可根據(jù)相似三角形得到的比例線段求得BC的長.【詳解】解:∵DE∥BC,∴△ADE∽△ABC,∴DE:BC=AD:AB,∵AD=2,DB=4,∴AB=AD+BD=6,∴1:BC=2:6,∴BC=1,故答案為:1.【點睛】考查了相似三角形的性質和判定,關鍵是求出相似后得出比例式,在判定兩個三角形相似時,應注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構造相似三角形.14、1或9【解析】(1)點E在AC的延長線上時,過點O作OFAC交AC于點F,如圖所示∵OD=OA,∴∠OAD=∠ODA,∵AD平分∠BAE,∴∠OAD=∠ODA=∠DAC,∴OD//AE,∵DE是圓的切線,∴DE⊥OD,∴∠ODE=∠E=90o,∴四邊形ODEF是矩形,∴OF=DE,EF=OD=5,又∵OF⊥AC,∴AF=,∴AE=AF+EF=5+4=9.(2)當點E在CA的線上時,過點O作OFAC交AC于點F,如圖所示同(1)可得:EF=OD=5,OF=DE=3,在直角三角形AOF中,AF=,∴AE=EF-AF=5-4=1.15、5:1【解析】

根據(jù)題意作出合適的輔助線,然后根據(jù)三角形相似即可解答本題.【詳解】解:作AE∥BC交DC于點E,交DF于點F,設每個小正方形的邊長為a,則△DEF∽△DCN,∴==,∴EF=a,∵AF=2a,∴AE=a,∵△AME∽△BMC,∴===,故答案為:5:1.【點睛】本題考查相似三角形的判定與性質,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結合的思想解答.16、【解析】【分析】根據(jù)二次根式的運算法則進行計算即可求出答案.【詳解】==,故答案為.【點睛】本題考查二次根式的運算,解題的關鍵是熟練運用二次根式的運算法則.三、解答題(共8題,共72分)17、1【解析】

首先運用乘法分配律將所求的代數(shù)式去括號,然后再合并化簡,最后整體代入求解.【詳解】解:(﹣2)÷==x2﹣3﹣2x+2=x2﹣2x﹣1,∵x2﹣x﹣4=0,∴x2﹣2x=8,∴原式=8﹣1=1.【點睛】分式混合運算要注意先去括號;分子、分母能因式分解的先因式分解;除法要統(tǒng)一為乘法運算.注意整體代入思想在代數(shù)求值計算中的應用.18、(1)m≤1;(2)3≤m≤1.【解析】試題分析:(1)根據(jù)判別式的意義得到△=(-6)2-1(2m+1)≥0,然后解不等式即可;(2)根據(jù)根與系數(shù)的關系得到x1+x2=6,x1x2=2m+1,再利用2x1x2+x1+x2≥20得到2(2m+1)+6≥20,然后解不等式和利用(1)中的結論可確定滿足條件的m的取值范圍.試題解析:(1)根據(jù)題意得△=(-6)2-1(2m+1)≥0,解得m≤1;(2)根據(jù)題意得x1+x2=6,x1x2=2m+1,而2x1x2+x1+x2≥20,所以2(2m+1)+6≥20,解得m≥3,而m≤1,所以m的范圍為3≤m≤1.19、(1)證明見解析;(2)四邊形BCDE是菱形,理由見解析.【解析】

(1)證明△ADC≌△ABC后利用全等三角形的對應角相等證得結論.(2)首先判定四邊形BCDE是平行四邊形,然后利用對角線垂直的平行四邊形是菱形判定菱形即可.【詳解】解:(1)證明:∵在△ADC和△ABC中,∴△ADC≌△ABC(SSS).∴∠1=∠2.(2)四邊形BCDE是菱形,理由如下:如答圖,∵∠1=∠2,DC=BC,∴AC垂直平分BD.∵OE=OC,∴四邊形DEBC是平行四邊形.∵AC⊥BD,∴四邊形DEBC是菱形.【點睛】考點:1.全等三角形的判定和性質;2.線段垂直平分線的性質;3.菱形的判定.20、(1)證明見解析;(2).【解析】

(1)連接OD,求出∠AOD,求出∠DOB,求出∠ODP,根據(jù)切線判定推出即可.(2)求出OP、DP長,分別求出扇形DOB和△ODP面積,即可求出答案.【詳解】解:(1)證明:連接OD,∵∠ACD=60°,∴由圓周角定理得:∠AOD=2∠ACD=120°.∴∠DOP=180°﹣120°=60°.∵∠APD=30°,∴∠ODP=180°﹣30°﹣60°=90°.∴OD⊥DP.∵OD為半徑,∴DP是⊙O切線.(2)∵∠ODP=90°,∠P=30°,OD=3cm,∴OP=6cm,由勾股定理得:DP=3cm.∴圖中陰影部分的面積21、見解析【解析】

由BE=CF可得BC=EF,即可判定,再利用全等三角形的性質證明即可.【詳解】∵BE=CF,∴,即BC=EF,又∵AB=DE,∠B=∠DEF,∴在與中,,∴,∴AC=DF.【點睛】本題主要考查了三角形全等的判定,熟練掌握三角形全等的判定定理是解決本題的關鍵.22、(1)證明見解析;(2)1【解析】

(1)根據(jù)正方形的性質得到AB=BC,∠A=∠CBN=90°,∠1+∠2=90°,根據(jù)垂線和三角形內角和定理得到∠2+∠3=90°,推出∠1=∠3,根據(jù)ASA推出△ABE≌△BCN;(2)tan∠ABE=AEAB【詳解】(1)證明:∵四邊形ABCD為正方形∴AB=BC,∠A=∠CBN=90°,∠1+∠2=90°∵CM⊥BE,∴∠2+∠3=90°∴∠1=∠3在△ABE和△BCN中∠A=∴△ABE≌△BCN(ASA);(2)∵N為AB中點,∴BN=12又∵△ABE≌△BCN,∴AE=BN=12在Rt△ABE中,tan∠ABE═AEAB【點睛】本題主要考查了正方形的性質、三角形的內角和定理、垂線、全等三角形的性質和判定以及銳角三角函數(shù)等知識點的掌握和理解,證出△ABE≌△BCN是解此題的關鍵.23、(1)證明見解析(2)cm,cm【解析】【分析】(1)連接OB,要證明PB是切線,只需證明OB⊥PB即可;(2)利用菱形、矩形的性質,求出圓心角∠COD即可解決問題.【詳解】(1)如圖連接OB、BC,∵OA=OB,∴∠OAB=∠OBA=30°,∴∠COB=∠OAB=∠OBA=60°,∵OB=OC,∴△OBC是等邊三角形,∴BC=OC,∵PC=OA=OC,∴BC=CO=CP,∴∠PBO=90°,∴OB⊥PB,∴PB是⊙O的切線;(2)①的長為cm時

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論