版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
云南省江川區(qū)第二中學2023-2024學年高一下數(shù)學期末考試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.將函數(shù)的圖像上所有的點向左平移個單位長度,再把所得圖像上各點的橫坐標伸長到原來的3倍(縱坐標不變),得到函數(shù)的圖像,則在區(qū)間上的最小值為()A. B. C. D.2.已知不等式的解集為,則不等式的解集為()A. B.C. D.3.設函數(shù),則滿足的x的取值范圍是()A. B. C. D.4.從甲、乙等5名學生中隨機選出2人,則甲被選中的概率為()A. B.C. D.5.已知函數(shù)圖象的一條對稱軸是,則函數(shù)的最大值為()A.5 B.3 C. D.6.已知函數(shù)向左平移個單位長度后,其圖象關于軸對稱,則的最小值為()A. B. C. D.7.若直線與直線互相平行,則的值為()A.4 B. C.5 D.8.數(shù)列中,,且,則數(shù)列前2019項和為()A. B. C. D.9.向量,則()A. B.C.與的夾角為60° D.與的夾角為30°10.在中,已知,,若點在斜邊上,,則的值為().A.6 B.12 C.24 D.48二、填空題:本大題共6小題,每小題5分,共30分。11.在邊長為2的正三角形ABC內任取一點P,則使點P到三個頂點的距離至少有一個小于1的概率是________.12.已知數(shù)列:,,,,,,,,,,,,,,,,,則__________.13.無限循環(huán)小數(shù)化成最簡分數(shù)為________14.設數(shù)列的前項和為滿足:,則_________.15.在中,為邊中點,且,,則______.16.一船自西向東勻速航行,上午10時到達一座燈塔的南偏西距塔64海里的處,下午2時到達這座燈塔的東南方向的處,則這只船的航行速度為__________海里/小時.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.動直線m:3x+8y+3λx+λy+21=0(λ∈R)過定點M,直線l過點M且傾斜角α滿足cosα,數(shù)列{an}的前n項和為Sn,點P(Sn,an+1)在直線l上.(1)求數(shù)列{an}的通項公式an;(2)設bn,數(shù)列{bn}的前n項和Tn,如果對任意n∈N*,不等式成立,求整數(shù)k的最大值.18.已知點是函數(shù)的圖象上一點,等比數(shù)列的前n項和為,數(shù)列的首項為c,且前n項和滿足:當時,都有.(1)求c的值;(2)求證:為等差數(shù)列,并求出.(3)若數(shù)列前n項和為,是否存在實數(shù)m,使得對于任意的都有,若存在,求出m的取值范圍,若不存在,說明理由.19.設數(shù)列的前項和為,且.(1)求數(shù)列的通項公式;(2)設,求數(shù)列的前項和.20.如圖,四棱錐P-ABCD的底面是矩形,PA⊥平面ABCD,E,F(xiàn)分別是AB,PD的中點,且PA=AD.(Ⅰ)求證:AF∥平面PEC;(Ⅱ)求證:平面PEC⊥平面PCD.21.已知圓,為坐標原點,動點在圓外,過點作圓的切線,設切點為.(1)若點運動到處,求此時切線的方程;(2)求滿足的點的軌跡方程.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
先按照圖像變換的知識求得的解析式,然后根據(jù)三角函數(shù)求最值的方法,求得在上的最小值.【詳解】圖像上所有的點向左平移個單位長度得到,把所得圖像上各點的橫坐標伸長到原來的倍(縱坐標不變)得到,由得,故在區(qū)間上的最小值為.故選A.【點睛】本小題主要考查三角函數(shù)圖像變換,考查三角函數(shù)值域的求法,屬于基礎題.2、A【解析】
根據(jù)一元二次不等式的解集與一元二次方程根的關系,結合韋達定理可構造方程求得;利用一元二次不等式的解法可求得結果.【詳解】的解集為和是方程的兩根,且,解得:解得:,即不等式的解集為故選:【點睛】本題考查一元二次不等式的解法、一元二次不等式的解集與一元二次方程根的關系等知識的應用;關鍵是能夠通過一元二次不等式的解集確定一元二次方程的根,進而利用韋達定理構造方程求得變量.3、B【解析】
分別解和時條件對應的不等式即可.【詳解】①當時,,此時,不合題意;②當時,,可化為即,解得.綜上,的x的取值范圍是.故選:B.【點睛】本題考查了分段函數(shù)不等式的解法,考查了分類討論思想,屬于基礎題.4、B【解析】試題分析:從甲乙等名學生中隨機選出人,基本事件的總數(shù)為,甲被選中包含的基本事件的個數(shù),所以甲被選中的概率,故選B.考點:古典概型及其概率的計算.5、B【解析】
函數(shù)圖象的一條對稱軸是,可得,解得.可得函數(shù),再利用輔助角公式、倍角公式、三角函數(shù)的有界性即可得出.【詳解】函數(shù)圖象的一條對稱軸是,,解得.則函數(shù)當時取等號.函數(shù)的最大值為1.故選.【點睛】本題主要考查三角函數(shù)的性質應用以及利用二倍角公式和輔助角公式進行三角恒等變換.6、A【解析】
根據(jù)函數(shù)的圖象變換規(guī)律,三角函數(shù)的圖象關于軸對稱,即為偶函數(shù).,求得的最小值.【詳解】把函數(shù)向左平移個單位長度后.可得的圖象.再根據(jù)所得圖象關于軸對稱,即為偶函數(shù).所以即,當時,的值最小.所以的最小值為:故選:A【點睛】本題主要考查函數(shù)的圖象變換規(guī)律,三角函數(shù)的圖象的對稱性,屬于基礎題.7、C【解析】
根據(jù)兩條存在斜率的直線平行,斜率相等且在縱軸上的截距不相等這一性質,可以求出的值.【詳解】直線的斜率為,在縱軸的截距為,因此若直線與直線互相平行,則一定有直線的斜率為,在縱軸的截距不等于,于是有且,解得,故本題選C.【點睛】本題考查了已知兩直線平行求參數(shù)問題.其時本題也可以運用下列性質解題:若直線與直線平行,則有且.8、B【解析】
由,可得,化為:,利用“累加求和”方法可得,再利用裂項求和法即可得解.【詳解】解:∵,∴,整理得:,∴,又∴,可得:.則數(shù)列前2019項和為:.故選B.【點睛】本題主要考查了數(shù)列遞推關系、“累加求和”方法、裂項求和,考查了推理能力、轉化能力與計算能力,屬于中檔題.9、B【解析】試題分析:由,可得,所以,故選B.考點:向量的運算.10、C【解析】試題分析:因為,,,所以==+==,故選C.考點:1、平面向量的加減運算;2、平面向量的數(shù)量積運算.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】以A,B,C為圓心,以1為半徑作圓,與△ABC交出三個扇形,當P落在其內時符合要求,∴P==.12、【解析】
根據(jù)數(shù)列的規(guī)律和可知的取值為,則分母為;又為分母為的項中的第項,則分子為,從而得到結果.【詳解】當時,;當時,的分母為:又的分子為:本題正確結果:【點睛】本題考查根據(jù)數(shù)列的規(guī)律求解數(shù)列中的項,關鍵是能夠根據(jù)分子的變化特點確定的取值.13、【解析】
利用無窮等比數(shù)列求和的方法即可.【詳解】.故答案為:【點睛】本題主要考查了無窮等比數(shù)列的求和問題,屬于基礎題型.14、【解析】
利用,求得關于的遞推關系式,利用配湊法證得是等比數(shù)列,由此求得數(shù)列的通項公式,進而求得的表達式,從而求得的值.【詳解】當時,.由于,而,故,故答案為:.【點睛】本小題主要考查配湊法求數(shù)列的通項公式,考查化歸與轉化的數(shù)學思想方法,屬于中檔題.15、0【解析】
根據(jù)向量,,取模平方相減得到答案.【詳解】兩個等式平方相減得到:故答案為0【點睛】本題考查了向量的加減,模長,意在考查學生的計算能力.16、【解析】由,行駛了4小時,這只船的航行速度為海里/小時.【點睛】本題為解直角三角形應用題,利用直角三角形邊角關系表示出兩點間的距離,在用輔助角公式變形求值,最后利用速度公式求出結果.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)an=6?(﹣1)n﹣1;(1)最大值為1.【解析】
(1)由直線恒過定點可得M(1,﹣3),求得直線l的方程,可得an+6=1Sn,運用數(shù)列的遞推式和等比數(shù)列的通項公式,可得所求;(1)bn?(﹣1)n﹣1,討論n為偶數(shù)或奇數(shù),可得Tn,再由不等式恒成立問題解法,可得所求k的范圍,可得最大值.【詳解】(1)3x+8y+3λx+λy+11=0即為(3x+8y+11)+λ(3x+y)=0,由3x+y=0且3x+8y+11=0,解得x=1,y=﹣3,可得M(1,﹣3),可得直線l的斜率為tanα1,即直線l的方程為y+3=1(x﹣1),即有y=1x﹣5,即有an+1=1Sn﹣5,即an+6=1Sn,當n=1時,可得a1+6=1S1=1a1,即a1=6,n≥1時,an﹣1+6=1Sn﹣1,又an+6=1Sn,相減可得1an=an﹣an﹣1,即an=﹣an﹣1,可得數(shù)列{an}的通項公式an=6?(﹣1)n﹣1;(1)bn,即bn?(﹣1)n﹣1,當n為偶數(shù)時,Tnn;當n為奇數(shù)時,Tnn,當n為偶數(shù)時,不等式成立,即為1n﹣7即k≤1n﹣1,可得k≤1;當n為奇數(shù)時,不等式成立,即為1n﹣7即4k≤6n﹣1,可得k,綜上可得k≤1,即k的最大值為1.【點睛】本題考查數(shù)列的遞推式的運用,直線方程的運用,數(shù)列的分組求和,以及不等式恒成立問題解法,考查化簡運算能力,屬于中檔題.18、(1)1;(2)證明見解析,;(3)存在,.【解析】
(1)根據(jù)題意可得,再根據(jù)等比數(shù)列的性質即可求出c(2)根據(jù)題意可得,然后求出和(3)利用裂項求和法求出前n項和為,然后就可得出m的范圍【詳解】(1)因為所以,即即前n項和為,所以,因為是等比數(shù)列所以有,即解得(2)且數(shù)列構成一個首項為1,公差為1的等差數(shù)列所以,即
所以(3)因為對于任意的都有所以【點睛】常見的數(shù)列求和方法有公式法即等差等比數(shù)列的求和公式、分組求和法、裂項相消法、錯位相減法.19、(1);(2)【解析】
(1)由,且,可得當也適合,;(2)∵20、(Ⅰ)見解析(Ⅱ)見解析【解析】
(Ⅰ)取PC的中點G,連結FG、EG,AF∥EG又EG?平面PCE,AF?平面PCE,AF∥平面PCE;(Ⅱ)由(Ⅰ)得EG∥AF,只需證明AF⊥面PDC,即可得到平面PEC⊥平面PCD.【詳解】證明:(Ⅰ)取PC的中點G,連結FG、EG,∴FG為△CDP的中位線,F(xiàn)G∥CD,F(xiàn)G=CD.∵四邊形ABCD為矩形,E為AB的中點,∴AE∥CD,AE=CD.∴FG=AE,F(xiàn)G∥AE,∴四邊形AEGF是平行四邊形,∴AF∥EG又EG?平面PCE,AF?平面PCE,∴AF∥平面PCE;(Ⅱ)∵PA=AD.∴AF⊥PDPA⊥平面ABCD,∴PA⊥CD,又因為CD⊥AB,AP∩AB=A,∴CD⊥面APD∴CD⊥AF,且PD∩CD=D,∴AF⊥面PDC由(Ⅰ)得EG∥AF,∴EG⊥面PDC又EG?平面PCE,∴平面PEC⊥平面PCD.【點睛】本題考查了空間線面平行、面面垂直的判定,屬于中檔題.21、(1)或;(2).【解析】
解:把圓C的方程化為標準方程為(x+1)2+(y-2)2=4,∴圓心為C(-1,2),半徑r=2.(1)當l的斜率不存在時,此時l的方程為x=1,C到l的距離d=2=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2030年中國嬰兒培養(yǎng)箱行業(yè)發(fā)展現(xiàn)狀及投資競爭力分析報告
- 2024-2030年中國女士文胸行業(yè)市場銷售策略及未來發(fā)展前景展望報告
- 2024-2030年中國垃圾壓實機行業(yè)運行動態(tài)及投資發(fā)展前景調研報告
- 2024-2030年中國衛(wèi)生巾原紙行業(yè)發(fā)展狀況規(guī)劃分析報告
- 2024年幕墻施工承攬協(xié)議標準文本
- 2024年版協(xié)議文件管理及存儲規(guī)范版
- 梅河口康美職業(yè)技術學院《多媒體信息檢索》2023-2024學年第一學期期末試卷
- 2024年度沈陽二手房買賣合同抵押權登記服務3篇
- 滿洲里俄語職業(yè)學院《矩陣論矩陣論》2023-2024學年第一學期期末試卷
- 2024年標準期房買賣協(xié)議細則版
- 2024年人教版八年級生物上冊期末考試卷(附答案)
- 第三方代收款的協(xié)議書范文模板
- 項目竣工驗收及移交方案
- 跨境電商基礎與實務 課件 項目七 跨境支付與結算
- 平面的投影完整版本
- 2024年大學試題(管理類)-薪酬管理考試近5年真題集錦(頻考類試題)帶答案
- 生命安全與救援學習通超星期末考試答案章節(jié)答案2024年
- 北師大版四年級上冊書法練習指導-教案
- 《規(guī)律作息-健康睡眠》主題班會課件
- Unit5 Our New rooms Lesson1(教學設計)2024-2025學年重大版英語五年級上冊
- 2024至2030年中國采棉機行業(yè)深度調研及投資戰(zhàn)略分析報告
評論
0/150
提交評論