版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022屆內蒙古鄂爾多斯準格爾旗第四中學中考猜題數(shù)學試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.某機構調查顯示,深圳市20萬初中生中,沉迷于手機上網的初中生約有16000人,則這部分沉迷于手機上網的初中生數(shù)量,用科學記數(shù)法可表示為()A.1.6×104人 B.1.6×105人 C.0.16×105人 D.16×103人2.如圖,在中,E為邊CD上一點,將沿AE折疊至處,與CE交于點F,若,,則的大小為()A.20° B.30° C.36° D.40°3.如圖,正方形ABCD的頂點C在正方形AEFG的邊AE上,AB=2,AE=,則點G到BE的距離是()A. B. C. D.4.如圖,將矩形ABCD沿對角線BD折疊,點C落在點E處,BE交AD于點F,已知∠BDC=62°,則∠DFE的度數(shù)為()A.31° B.28° C.62° D.56°5.如圖,菱形ABCD的對角線相交于點O,過點D作DE∥AC,且DE=AC,連接CE、OE,連接AE,交OD于點F,若AB=2,∠ABC=60°,則AE的長為()A. B. C. D.6.已知在一個不透明的口袋中有4個形狀、大小、材質完全相同的球,其中1個紅色球,3個黃色球.從口袋中隨機取出一個球(不放回),接著再取出一個球,則取出的兩個都是黃色球的概率為()A.34 B.23 C.97.某工廠現(xiàn)在平均每天比原計劃多生產50臺機器,現(xiàn)在生產600臺所需時間與原計劃生產450臺機器所需時間相同.設原計劃平均每天生產x臺機器,根據(jù)題意,下面所列方程正確的是()A.= B.=C.= D.=8.如圖,已知反比函數(shù)的圖象過Rt△ABO斜邊OB的中點D,與直角邊AB相交于C,連結AD、OC,若△ABO的周長為,AD=2,則△ACO的面積為()A. B.1 C.2 D.49.在方格紙中,選擇標有序號①②③④中的一個小正方形涂黑,與圖中陰影部分構成中心對稱圖形.該小正方形的序號是()A.① B.② C.③ D.④10.如圖,已知點A,B分別是反比例函數(shù)y=(x<0),y=(x>0)的圖象上的點,且∠AOB=90°,tan∠BAO=,則k的值為()A.2 B.﹣2 C.4 D.﹣4二、填空題(共7小題,每小題3分,滿分21分)11.已知a2+a=1,則代數(shù)式3﹣a﹣a2的值為_____.12.如圖,Rt△ABC中,∠BAC=90°,AB=3,AC=6,點D,E分別是邊BC,AC上的動點,則DA+DE的最小值為_____.13.已知一個多邊形的每一個外角都等于,則這個多邊形的邊數(shù)是.14.某風扇在網上累計銷量約1570000臺,請將1570000用科學記數(shù)法表示為_____.15.如圖,若∠1+∠2=180°,∠3=110°,則∠4=.16.已知圓錐的高為3,底面圓的直徑為8,則圓錐的側面積為_____.17.如圖,校園內有一棵與地面垂直的樹,數(shù)學興趣小組兩次測量它在地面上的影子,第一次是陽光與地面成60°角時,第二次是陽光與地面成30°角時,兩次測量的影長相差8米,則樹高_____________米(結果保留根號).三、解答題(共7小題,滿分69分)18.(10分)如圖,以AB邊為直徑的⊙O經過點P,C是⊙O上一點,連結PC交AB于點E,且∠ACP=60°,PA=PD.試判斷PD與⊙O的位置關系,并說明理由;若點C是弧AB的中點,已知AB=4,求CE?CP的值.19.(5分)為落實“綠水青山就是金山銀山”的發(fā)展理念,某市政部門招標一工程隊負責在山腳下修建一座水庫的土方施工任務.該工程隊有兩種型號的挖掘機,已知3臺型和5臺型挖掘機同時施工一小時挖土165立方米;4臺型和7臺型挖掘機同時施工一小時挖土225立方米.每臺型挖掘機一小時的施工費用為300元,每臺型挖掘機一小時的施工費用為180元.分別求每臺型,型挖掘機一小時挖土多少立方米?若不同數(shù)量的型和型挖掘機共12臺同時施工4小時,至少完成1080立方米的挖土量,且總費用不超過12960元.問施工時有哪幾種調配方案,并指出哪種調配方案的施工費用最低,最低費用是多少元?20.(8分)如圖,在正方形ABCD中,點E、F、G、H分別是AB、BC、CD、DA邊上的動點,且AE=BF=CG=DH.(1)求證:△AEH≌△CGF;(2)在點E、F、G、H運動過程中,判斷直線EG是否經過某一個定點,如果是,請證明你的結論;如果不是,請說明理由21.(10分)計算:|-2|+2﹣1﹣cos61°﹣(1﹣)1.22.(10分)如圖1,在平面直角坐標系中,O為坐標原點,拋物線y=ax2+bx+3交x軸于B、C兩點(點B在左,點C在右),交y軸于點A,且OA=OC,B(﹣1,0).(1)求此拋物線的解析式;(2)如圖2,點D為拋物線的頂點,連接CD,點P是拋物線上一動點,且在C、D兩點之間運動,過點P作PE∥y軸交線段CD于點E,設點P的橫坐標為t,線段PE長為d,寫出d與t的關系式(不要求寫出自變量t的取值范圍);(3)如圖3,在(2)的條件下,連接BD,在BD上有一動點Q,且DQ=CE,連接EQ,當∠BQE+∠DEQ=90°時,求此時點P的坐標.23.(12分)深圳某書店為了迎接“讀書節(jié)”制定了活動計劃,以下是活動計劃書的部分信息:“讀書節(jié)“活動計劃書書本類別科普類文學類進價(單位:元)1812備注(1)用不超過16800元購進兩類圖書共1000本;(2)科普類圖書不少于600本;…(1)已知科普類圖書的標價是文學類圖書標價的1.5倍,若顧客用540元購買的圖書,能單獨購買科普類圖書的數(shù)量恰好比單獨購買文學類圖書的數(shù)量少10本,請求出兩類圖書的標價;(2)經市場調査后發(fā)現(xiàn):他們高估了“讀書節(jié)”對圖書銷售的影響,便調整了銷售方案,科普類圖書每本標價降低a(0<a<5)元銷售,文學類圖書價格不變,那么書店應如何進貨才能獲得最大利潤?24.(14分)某校開展“我最喜愛的一項體育活動”調查,要求每名學生必選且只能選一項,現(xiàn)隨機抽查了m名學生,并將其結果繪制成如下不完整的條形圖和扇形圖.請結合以上信息解答下列問題:(1)m=;(2)請補全上面的條形統(tǒng)計圖;(3)在圖2中,“乒乓球”所對應扇形的圓心角的度數(shù)為;(4)已知該校共有1200名學生,請你估計該校約有名學生最喜愛足球活動.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】
科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>10時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】用科學記數(shù)法表示16000,應記作1.6×104,故選A.【點睛】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.2、C【解析】
由平行四邊形的性質得出∠D=∠B=52°,由折疊的性質得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性質求出∠AEF=72°,由三角形內角和定理求出∠AED′=108°,即可得出∠FED′的大?。驹斀狻俊咚倪呅蜛BCD是平行四邊形,∴,由折疊的性質得:,,∴,,∴;故選C.【點睛】本題考查了平行四邊形的性質、折疊的性質、三角形的外角性質以及三角形內角和定理;熟練掌握平行四邊形的性質和折疊的性質,求出∠AEF和∠AED′是解決問題的關鍵.3、A【解析】
根據(jù)平行線的判定,可得AB與GE的關系,根據(jù)平行線間的距離相等,可得△BEG與△AEG的關系,根據(jù)根據(jù)勾股定理,可得AH與BE的關系,再根據(jù)勾股定理,可得BE的長,根據(jù)三角形的面積公式,可得G到BE的距離.【詳解】連接GB、GE,由已知可知∠BAE=45°.又∵GE為正方形AEFG的對角線,∴∠AEG=45°.∴AB∥GE.∵AE=4,AB與GE間的距離相等,∴GE=8,S△BEG=S△AEG=SAEFG=1.過點B作BH⊥AE于點H,∵AB=2,∴BH=AH=.∴HE=3.∴BE=2.設點G到BE的距離為h.∴S△BEG=?BE?h=×2×h=1.∴h=.即點G到BE的距離為.故選A.【點睛】本題主要考查了幾何變換綜合題.涉及正方形的性質,全等三角形的判定及性質,等積式及四點共圓周的知識,綜合性強.解題的關鍵是運用等積式及四點共圓的判定及性質求解.4、D【解析】
先利用互余計算出∠FDB=28°,再根據(jù)平行線的性質得∠CBD=∠FDB=28°,接著根據(jù)折疊的性質得∠FBD=∠CBD=28°,然后利用三角形外角性質計算∠DFE的度數(shù).【詳解】解:∵四邊形ABCD為矩形,∴AD∥BC,∠ADC=90°,∵∠FDB=90°-∠BDC=90°-62°=28°,∵AD∥BC,∴∠CBD=∠FDB=28°,∵矩形ABCD沿對角線BD折疊,∴∠FBD=∠CBD=28°,∴∠DFE=∠FBD+∠FDB=28°+28°=56°.故選D.【點睛】本題考查了平行線的性質:兩直線平行,同位角相等;兩直線平行,同旁內角互補;兩直線平行,內錯角相等.5、C【解析】在菱形ABCD中,OC=AC,AC⊥BD,∴DE=OC,∵DE∥AC,∴四邊形OCED是平行四邊形,∵AC⊥BD,∴平行四邊形OCED是矩形,∵在菱形ABCD中,∠ABC=60°,∴△ABC為等邊三角形,∴AD=AB=AC=2,OA=AC=1,在矩形OCED中,由勾股定理得:CE=OD=,在Rt△ACE中,由勾股定理得:AE=;故選C.點睛:本題考查了菱形的性質,先求出四邊形OCED是平行四邊形,再根據(jù)菱形的對角線互相垂直求出∠COD=90°,證明四邊形OCED是矩形,再根據(jù)菱形的性質得出AC=AB,再根據(jù)勾股定理得出AE的長度即可.6、D【解析】試題分析:列舉出所有情況,看取出的兩個都是黃色球的情況數(shù)占總情況數(shù)的多少即可.試題解析:畫樹狀圖如下:共有12種情況,取出2個都是黃色的情況數(shù)有6種,所以概率為12故選D.考點:列表法與樹狀法.7、B【解析】
設原計劃平均每天生產x臺機器,則實際平均每天生產(x+50)臺機器,根據(jù)題意可得:現(xiàn)在生產600臺所需時間與原計劃生產450臺機器所需時間相同,據(jù)此列方程即可.【詳解】設原計劃平均每天生產x臺機器,則實際平均每天生產(x+50)臺機器,由題意得:.故選B.【點睛】本題考查了由實際問題抽象出分式方程,解答本題的關鍵是讀懂題意,設出未知數(shù),找出合適的等量關系,列方程.8、A【解析】
在直角三角形AOB中,由斜邊上的中線等于斜邊的一半,求出OB的長,根據(jù)周長求出直角邊之和,設其中一直角邊AB=x,表示出OA,利用勾股定理求出AB與OA的長,過D作DE垂直于x軸,得到E為OA中點,求出OE的長,在直角三角形DOE中,利用勾股定理求出DE的長,利用反比例函數(shù)k的幾何意義求出k的值,確定出三角形AOC面積即可.【詳解】在Rt△AOB中,AD=2,AD為斜邊OB的中線,∴OB=2AD=4,由周長為4+2,得到AB+AO=2,設AB=x,則AO=2-x,根據(jù)勾股定理得:AB2+OA2=OB2,即x2+(2-x)2=42,整理得:x2-2x+4=0,解得x1=+,x2=-,∴AB=+,OA=-,過D作DE⊥x軸,交x軸于點E,可得E為AO中點,∴OE=OA=(-)(假設OA=+,與OA=-,求出結果相同),在Rt△DEO中,利用勾股定理得:DE==(+)),∴k=-DE?OE=-(+))×(-))=1.∴S△AOC=DE?OE=,故選A.【點睛】本題屬于反比例函數(shù)綜合題,涉及的知識有:勾股定理,直角三角形斜邊的中線性質,三角形面積求法,以及反比例函數(shù)k的幾何意義,熟練掌握反比例的圖象與性質是解本題關鍵.9、B【解析】根據(jù)中心對稱圖形的概念,中心對稱圖形是圖形沿對稱中心旋轉180度后與原圖重合。因此,通過觀察發(fā)現(xiàn),當涂黑②時,所形成的圖形關于點A中心對稱。故選B。10、D【解析】
首先過點A作AC⊥x軸于C,過點B作BD⊥x軸于D,易得△OBD∽△AOC,又由點A,B分別在反比例函數(shù)y=(x<0),y=(x>0)的圖象上,即可得S△OBD=,S△AOC=|k|,然后根據(jù)相似三角形面積的比等于相似比的平方,即可求出k的值【詳解】解:過點A作AC⊥x軸于C,過點B作BD⊥x軸于D,
∴∠ACO=∠ODB=90°,
∴∠OBD+∠BOD=90°,
∵∠AOB=90°,
∴∠BOD+∠AOC=90°,
∴∠OBD=∠AOC,
∴△OBD∽△AOC,
又∵∠AOB=90°,tan∠BAO=,
∴=,
∴=,即,
解得k=±4,
又∵k<0,
∴k=-4,
故選:D.【點睛】此題考查了相似三角形的判定與性質、反比例函數(shù)的性質以及直角三角形的性質.解題時注意掌握數(shù)形結合思想的應用,注意掌握輔助線的作法。二、填空題(共7小題,每小題3分,滿分21分)11、2【解析】∵,∴,故答案為2.12、【解析】【分析】如圖,作A關于BC的對稱點A',連接AA',交BC于F,過A'作AE⊥AC于E,交BC于D,則AD=A'D,此時AD+DE的值最小,就是A'E的長,根據(jù)相似三角形對應邊的比可得結論.【詳解】如圖,作A關于BC的對稱點A',連接AA',交BC于F,過A'作AE⊥AC于E,交BC于D,則AD=A'D,此時AD+DE的值最小,就是A'E的長;Rt△ABC中,∠BAC=90°,AB=3,AC=6,∴BC==9,S△ABC=AB?AC=BC?AF,∴3×6=9AF,AF=2,∴AA'=2AF=4,∵∠A'FD=∠DEC=90°,∠A'DF=∠CDE,∴∠A'=∠C,∵∠AEA'=∠BAC=90°,∴△AEA'∽△BAC,∴,∴,∴A'E=,即AD+DE的最小值是,故答案為.【點睛】本題考查軸對稱﹣最短問題、三角形相似的性質和判定、兩點之間線段最短、垂線段最短等知識,解題的關鍵是靈活運用軸對稱以及垂線段最短解決最短問題.13、5【解析】
∵多邊形的每個外角都等于72°,∵多邊形的外角和為360°,∴360°÷72°=5,∴這個多邊形的邊數(shù)為5.故答案為5.14、1.57×1【解析】
科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】將1570000用科學記數(shù)法表示為1.57×1.故答案為1.57×1.【點睛】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.15、110°.【解析】
解:∵∠1+∠2=180°,∴a∥b,∴∠3=∠4,又∵∠3=110°,∴∠4=110°.故答案為110°.16、20π【解析】
利用勾股定理可求得圓錐的母線長,然后根據(jù)圓錐的側面積公式進行計算即可.【詳解】底面直徑為8,底面半徑=4,底面周長=8π,由勾股定理得,母線長==5,故圓錐的側面積=×8π×5=20π,故答案為:20π.【點睛】本題主要考查了圓錐的側面積的計算方法.解題的關鍵是熟記圓錐的側面展開扇形的面積計算方法.17、【解析】設出樹高,利用所給角的正切值分別表示出兩次影子的長,然后作差建立方程即可.解:如圖所示,在RtABC中,tan∠ACB=,∴BC=,同理:BD=,∵兩次測量的影長相差8米,∴=8,∴x=4,故答案為4.“點睛”本題考查了平行投影的應用,太陽光線下物體影子的長短不僅與物體有關,而且與時間有關,不同時間隨著光線方向的變化,影子的方向也在變化,解此類題,一定要看清方向.解題關鍵是根據(jù)三角函數(shù)的幾何意義得出各線段的比例關系,從而得出答案.三、解答題(共7小題,滿分69分)18、(1)PD是⊙O的切線.證明見解析.(2)1.【解析】試題分析:(1)連結OP,根據(jù)圓周角定理可得∠AOP=2∠ACP=120°,然后計算出∠PAD和∠D的度數(shù),進而可得∠OPD=90°,從而證明PD是⊙O的切線;(2)連結BC,首先求出∠CAB=∠ABC=∠APC=45°,然后可得AC長,再證明△CAE∽△CPA,進而可得,然后可得CE?CP的值.試題解析:(1)如圖,PD是⊙O的切線.證明如下:連結OP,∵∠ACP=60°,∴∠AOP=120°,∵OA=OP,∴∠OAP=∠OPA=30°,∵PA=PD,∴∠PAO=∠D=30°,∴∠OPD=90°,∴PD是⊙O的切線.(2)連結BC,∵AB是⊙O的直徑,∴∠ACB=90°,又∵C為弧AB的中點,∴∠CAB=∠ABC=∠APC=45°,∵AB=4,AC=Absin45°=.∵∠C=∠C,∠CAB=∠APC,∴△CAE∽△CPA,∴,∴CP?CE=CA2=()2=1.考點:相似三角形的判定與性質;圓心角、弧、弦的關系;直線與圓的位置關系;探究型.19、(1)每臺型挖掘機一小時挖土30立方米,每臺型挖據(jù)機一小時挖土15立方米;(2)共有三種調配方案.方案一:型挖據(jù)機7臺,型挖掘機5臺;方案二:型挖掘機8臺,型挖掘機4臺;方案三:型挖掘機9臺,型挖掘機3臺.當A型挖掘機7臺,型挖掘機5臺的施工費用最低,最低費用為12000元.【解析】分析:(1)根據(jù)題意列出方程組即可;(2)利用總費用不超過12960元求出方案數(shù)量,再利用一次函數(shù)增減性求出最低費用.詳解:(1)設每臺型,型挖掘機一小時分別挖土立方米和立方米,根據(jù)題意,得解得所以,每臺型挖掘機一小時挖土30立方米,每臺型挖據(jù)機一小時挖土15立方米.(2)設型挖掘機有臺,總費用為元,則型挖據(jù)機有臺.根據(jù)題意,得,因為,解得,又因為,解得,所以.所以,共有三種調配方案.方案一:當時,,即型挖據(jù)機7臺,型挖掘機5臺;方案二:當時,,即型挖掘機8臺,型挖掘機4臺;方案三:當時,,即型挖掘機9臺,型挖掘機3臺.,由一次函數(shù)的性質可知,隨的減小而減小,當時,,此時型挖掘機7臺,型挖掘機5臺的施工費用最低,最低費用為12000元.點睛:本題考查了二元一次方程組和一次函數(shù)增減性,解答時先根據(jù)題意確定自變量取值范圍,再應用一次函數(shù)性質解答問題.20、(1)見解析;(2)直線EG經過一個定點,這個定點為正方形的中心(AC、BD的交點);理由見解析.【解析】分析:(1)由正方形的性質得出∠A=∠C=90°,AB=BC=CD=DA,由AE=BF=CG=DH證出AH=CF,由SAS證明△AEH≌△CGF即可求解;(2)連接AC、EG,交點為O;先證明△AOE≌△COG,得出OA=OC,證出O為對角線AC、BD的交點,即O為正方形的中心.詳解:(1)證明:∵四邊形ABCD是正方形,∴∠A=∠C=90°,AB=BC=CD=DA,∵AE=BF=CG=DH,∴AH=CF,在△AEH與△CGF中,AH=CF,∠A=∠C,AE=CG,∴△AEH≌△CGF(SAS);(2)直線EG經過一個定點,這個定點為正方形的中心(AC、BD的交點);理由如下:連接AC、EG,交點為O;如圖所示:∵四邊形ABCD是正方形,∴AB∥CD,∴∠OAE=∠OCG,在△AOE和△COG中,∠OAE=∠OCG,∠AOE=∠COG,AE=CG,∴△AOE≌△COG(AAS),∴OA=OC,OE=OG,即O為AC的中點,∵正方形的對角線互相平分,∴O為對角線AC、BD的交點,即O為正方形的中心.點睛:考查了正方形的性質與判定、全等三角形的判定與性質等知識;本題綜合性強,有一定難度,特別是(2)中,需要通過作輔助線證明三角形全等才能得出結果.21、1-【解析】
利用零指數(shù)冪和絕對值的性質、特殊角的三角函數(shù)值、負指數(shù)次冪的性質進行計算即可.【詳解】解:原式=.【點睛】本題考查了零指數(shù)冪和絕對值的性質、特殊角的三角函數(shù)值、負指數(shù)次冪的性質,熟練掌握性質及定義是解題的關鍵.22、(1)y=﹣x2+2x+3;(2)d=﹣t2+4t﹣3;(3)P(,).【解析】
(1)由拋物線y=ax2+bx+3與y軸交于點A,可求得點A的坐標,又OA=OC,可求得點C的坐標,然后分別代入B,C的坐標求出a,b,即可求得二次函數(shù)的解析式;(2)首先延長PE交x軸于點H,現(xiàn)將解析式換為頂點解析式求得D(1,4),設直線CD的解析式為y=kx+b,再將點C(3,0)、D(1,4)代入,得y=﹣2x+6,則E(t,﹣2t+6),P(t,﹣t2+2t+3),PH=﹣t2+2t+3,EH=﹣2t+6,再根據(jù)d=PH﹣EH即可得答案;(3)首先,作DK⊥OC于點K,作QM∥x軸交DK于點T,延長PE、EP交OC于H、交QM于M,作ER⊥DK于點R,記QE與DK的交點為N,根據(jù)題意在(2)的條件下先證明△DQT≌△ECH,再根據(jù)全等三角形的性質即可得ME=4﹣2(﹣2t+6),QM=t﹣1+(3﹣t),即可求得答案.【詳解】解:(1)當x=0時,y=3,∴A(0,3)即OA=3,∵OA=OC,∴OC=3,∴C(3,0),∵拋物線y=ax2+bx+3經過點B(﹣1,0),C(3,0)∴,解得:,∴拋物線的解析式為:y=﹣x2+2x+3;(2)如圖1,延長PE交x軸于點H,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),設直線CD的解析式為y=kx+b,將點C(3,0)、D(1,4)代入,得:,解得:,∴y=﹣2x+6,∴E(t,﹣2t+6),P(t,﹣t2+2t+3),∴PH=﹣t2+2t+3,EH=﹣2t+6,∴d=PH﹣EH=﹣t2+2t+3﹣(﹣2t+6)=﹣t2+4t﹣3;(3)如圖2,作DK⊥OC于點K,作QM∥x軸交DK于點T,延長PE、EP交OC于H、交QM于M,作ER⊥DK于點R,記QE與DK的交點為N,∵D(1,4),B(﹣1,0),C(3,0),∴BK=2,KC=2,∴DK垂直平分BC,∴BD=CD,∴∠BDK=∠CDK,∵∠BQE=∠QDE+∠DEQ,∠BQE+∠DEQ=90°,∴∠QDE+∠DEQ+∠DEQ=90°,即2∠CDK+2∠DEQ=90°,∴∠CDK+∠DEQ=45°,即∠RNE=45°,∵ER⊥DK,∴∠NER=45°,∴∠MEQ=∠MQE=45°,∴QM=ME,∵DQ=CE,∠DTQ=∠EHC、∠QDT=∠CEH,∴△DQT≌△ECH,∴DT=EH,QT=CH,∴ME=4﹣2(﹣2t+6),QM=MT+QT=MT+CH=t﹣1+(3﹣t),4﹣2(﹣2t+6)=t﹣1+(3﹣t),解得:t=,∴P(,).【點睛】本題考查了二次函數(shù)的綜合題,解題的關鍵是熟練的掌握二次函數(shù)的相關知識點.23、(1)A類圖書的標價為27元,B類圖書的標價為18元;(2)當A類圖書每本降價少于3元時,A類圖書購進800本,B
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 北京 法律顧問合同范例
- 炒貨加工轉讓合同范例
- 儀維修合同范例
- 物流公司搬家合同范例
- 中介托管房屋合同范例
- 綠化安裝合同范例
- 銅仁幼兒師范高等??茖W?!队彤嬱o物1》2023-2024學年第一學期期末試卷
- 銅陵學院《中國畫創(chuàng)作》2023-2024學年第一學期期末試卷
- 完整版100以內加減法混合運算4000道118
- 銅陵學院《建筑施工項目管理》2023-2024學年第一學期期末試卷
- 光伏發(fā)電技術項目投標書(技術標)
- 安全標準化建設事件事故管理事故事件統(tǒng)計分析臺賬
- 2024年上海海洋大學馬克思主義基本原理概論(期末考試題+答案)
- 社會實踐-形考任務四-國開(CQ)-參考資料
- 《第02課 抗美援朝》教學設計(附學案)
- 【110kV變電站電氣一次部分設計探究5800字(論文)】
- 小班故事《小狗賣冷飲》課件
- 線上房展會活動方案
- 2023水庫大壩震后安全檢查技術指南
- PCB制造成本參數(shù)
- 操作系統(tǒng)智慧樹知到期末考試答案2024年
評論
0/150
提交評論