版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022學年甘肅省高臺縣中考數(shù)學考試模擬沖刺卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列計算正確的是()A.3a﹣2a=1 B.a2+a5=a7 C.(ab)3=ab3 D.a2?a4=a62.小亮家與姥姥家相距24km,小亮8:00從家出發(fā),騎自行車去姥姥家.媽媽8:30從家出發(fā),乘車沿相同路線去姥姥家.在同一直角坐標系中,小亮和媽媽的行進路程s(km)與時間t(h)的函數(shù)圖象如圖所示.根據圖象得出下列結論,其中錯誤的是()A.小亮騎自行車的平均速度是12km/hB.媽媽比小亮提前0.5h到達姥姥家C.媽媽在距家12km處追上小亮D.9:30媽媽追上小亮3.如圖,菱形ABCD中,E.F分別是AB、AC的中點,若EF=3,則菱形ABCD的周長是()A.12 B.16 C.20 D.244.已知反比例函數(shù)y=﹣,當﹣3<x<﹣2時,y的取值范圍是()A.0<y<1 B.1<y<2 C.2<y<3 D.﹣3<y<﹣25.如圖,空心圓柱體的左視圖是()A. B. C. D.6.如圖,AB是⊙O的直徑,點C,D,E在⊙O上,若∠AED=20°,則∠BCD的度數(shù)為()A.100° B.110° C.115° D.120°7.現(xiàn)有兩根木棒,它們的長分別是20cm和30cm,若不改變木棒的長短,要釘成一個三角形木架,則應在下列四根木棒中選取()A.10cm的木棒 B.40cm的木棒 C.50cm的木棒 D.60cm的木棒8.一次函數(shù)與反比例函數(shù)在同一個坐標系中的圖象可能是()A. B. C. D.9.這個數(shù)是()A.整數(shù) B.分數(shù) C.有理數(shù) D.無理數(shù)10.在同一直角坐標系中,二次函數(shù)y=x2與反比例函數(shù)y=1x(x>0)的圖象如圖所示,若兩個函數(shù)圖象上有三個不同的點A(x1,m),B(x2,m),C(x3,m),其中m為常數(shù),令ω=x1+x2+x3A.1B.mC.m2D.111.△ABC的三條邊長分別是5,13,12,則其外接圓半徑和內切圓半徑分別是()A.13,5 B.6.5,3 C.5,2 D.6.5,212.下列運算正確的是()A.(a2)3=a5 B.(a-b)2=a2-b2 C.3=3 D.=-3二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知x=2是關于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一個根,則k的值為_____.14.已知是二元一次方程組的解,則m+3n的立方根為__.15.如圖,已知點C為反比例函數(shù)上的一點,過點C向坐標軸引垂線,垂足分別為A、B,那么四邊形AOBC的面積為___________.16.計算:3﹣(﹣2)=____.17.已知正方形ABCD的邊長為8,E為平面內任意一點,連接DE,將線段DE繞點D順時針旋轉90°得到DG,當點B,D,G在一條直線上時,若DG=2,則CE的長為_____.18.點A(﹣3,y1),B(2,y2),C(3,y3)在拋物線y=2x2﹣4x+c上,則y1,y2,y3的大小關系是_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,拋物線y=﹣x2+bx+c與x軸交于點A(﹣1,0)和點B,與y軸交于C(0,3),直線y=+m經過點C,與拋物線的另一交點為點D,點P是直線CD上方拋物線上的一個動點,過點P作PF⊥x軸于點F,交直線CD于點E,設點P的橫坐標為m.(1)求拋物線解析式并求出點D的坐標;(2)連接PD,△CDP的面積是否存在最大值?若存在,請求出面積的最大值;若不存在,請說明理由;(3)當△CPE是等腰三角形時,請直接寫出m的值.20.(6分)如圖,在平面直角坐標系xOy中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y=(m≠0)的圖象交于第二、四象限內的A、B兩點,與x軸交于點C,點A(﹣2,3),點B(6,n).(1)求該反比例函數(shù)和一次函數(shù)的解析式;(2)求△AOB的面積;(3)若M(x1,y1),N(x2,y2)是反比例函數(shù)y=(m≠0)的圖象上的兩點,且x1<x2,y1<y2,指出點M、N各位于哪個象限.21.(6分)如圖,是的外接圓,是的直徑,過圓心的直線于,交于,是的切線,為切點,連接,.(1)求證:直線為的切線;(2)求證:;(3)若,,求的長.22.(8分)某農場要建一個長方形ABCD的養(yǎng)雞場,雞場的一邊靠墻,(墻長25m)另外三邊用木欄圍成,木欄長40m.(1)若養(yǎng)雞場面積為168m2,求雞場垂直于墻的一邊AB的長.(2)請問應怎樣圍才能使養(yǎng)雞場面積最大?最大的面積是多少?23.(8分)矩形AOBC中,OB=4,OA=1.分別以OB,OA所在直線為x軸,y軸,建立如圖1所示的平面直角坐標系.F是BC邊上一個動點(不與B,C重合),過點F的反比例函數(shù)y=(k>0)的圖象與邊AC交于點E。當點F運動到邊BC的中點時,求點E的坐標;連接EF,求∠EFC的正切值;如圖2,將△CEF沿EF折疊,點C恰好落在邊OB上的點G處,求此時反比例函數(shù)的解析式.24.(10分)為了支持大學生創(chuàng)業(yè),某市政府出臺了一項優(yōu)惠政策:提供10萬元的無息創(chuàng)業(yè)貸款.小王利用這筆貸款,注冊了一家淘寶網店,招收5名員工,銷售一種火爆的電子產品,并約定用該網店經營的利潤,逐月償還這筆無息貸款.已知該產品的成本為每件4元,員工每人每月的工資為4千元,該網店還需每月支付其它費用1萬元.該產品每月銷售量y(萬件)與銷售單價x(元)萬件之間的函數(shù)關系如圖所示.求該網店每月利潤w(萬元)與銷售單價x(元)之間的函數(shù)表達式;小王自網店開業(yè)起,最快在第幾個月可還清10萬元的無息貸款?25.(10分)(y﹣z)1+(x﹣y)1+(z﹣x)1=(y+z﹣1x)1+(z+x﹣1y)1+(x+y﹣1z)1.求的值.26.(12分)計算:1227.(12分)學校實施新課程改革以來,學生的學習能力有了很大提高.王老師為進一步了解本班學生自主學習、合作交流的現(xiàn)狀,對該班部分學生進行調查,把調查結果分成四類(A:特別好,B:好,C:一般,D:較差)后,再將調查結果繪制成兩幅不完整的統(tǒng)計圖(如圖1,2).請根據統(tǒng)計圖解答下列問題:本次調查中,王老師一共調查了名學生;將條形統(tǒng)計圖補充完整;為了共同進步,王老師從被調查的A類和D類學生中分別選取一名學生進行“兵教兵”互助學習,請用列表或畫樹狀圖的方法求出恰好選中一名男生和一名女生的概率.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】
根據合并同類項法則、積的乘方及同底數(shù)冪的乘法的運算法則依次計算后即可解答.【詳解】∵3a﹣2a=a,∴選項A不正確;∵a2+a5≠a7,∴選項B不正確;∵(ab)3=a3b3,∴選項C不正確;∵a2?a4=a6,∴選項D正確.故選D.【點睛】本題考查了合并同類項法則、積的乘方及同底數(shù)冪的乘法的運算法則,熟練運用法則是解決問題的關鍵.2、D【解析】
根據函數(shù)圖象可知根據函數(shù)圖象小亮去姥姥家所用時間為10﹣8=2小時,進而得到小亮騎自行車的平均速度,對應函數(shù)圖象,得到媽媽到姥姥家所用的時間,根據交點坐標確定媽媽追上小亮所用時間,即可解答.【詳解】解:A、根據函數(shù)圖象小亮去姥姥家所用時間為10﹣8=2小時,∴小亮騎自行車的平均速度為:24÷2=12(km/h),故正確;B、由圖象可得,媽媽到姥姥家對應的時間t=9.5,小亮到姥姥家對應的時間t=10,10﹣9.5=0.5(小時),∴媽媽比小亮提前0.5小時到達姥姥家,故正確;C、由圖象可知,當t=9時,媽媽追上小亮,此時小亮離家的時間為9﹣8=1小時,∴小亮走的路程為:1×12=12km,∴媽媽在距家12km出追上小亮,故正確;D、由圖象可知,當t=9時,媽媽追上小亮,故錯誤;故選D.【點睛】本題考查函數(shù)圖像的應用,從圖像中讀取關鍵信息是解題的關鍵.3、D【解析】
根據三角形的中位線平行于第三邊并且等于第三邊的一半求出,再根據菱形的周長公式列式計算即可得解.【詳解】、分別是、的中點,是的中位線,,菱形的周長.故選:.【點睛】本題主要考查了菱形的四邊形都相等,三角形的中位線平行于第三邊并且等于第三邊的一半,求出菱形的邊長是解題的關鍵.4、C【解析】分析:由題意易得當﹣3<x<﹣2時,函數(shù)的圖象位于第二象限,且y隨x的增大而增大,再計算出當x=-3和x=-2時對應的函數(shù)值,即可作出判斷了.詳解:∵在中,﹣6<0,∴當﹣3<x<﹣2時函數(shù)的圖象位于第二象限內,且y隨x的增大而增大,∵當x=﹣3時,y=2,當x=﹣2時,y=3,∴當﹣3<x<﹣2時,2<y<3,故選C.點睛:熟悉“反比例函數(shù)的圖象和性質”是正確解答本題的關鍵.5、C【解析】
根據從左邊看得到的圖形是左視圖,可得答案.【詳解】從左邊看是三個矩形,中間矩形的左右兩邊是虛線,故選C.【點睛】本題考查了簡單幾何體的三視圖,從左邊看得到的圖形是左視圖.6、B【解析】
連接AD,BD,由圓周角定理可得∠ABD=20°,∠ADB=90°,從而可求得∠BAD=70°,再由圓的內接四邊形對角互補得到∠BCD=110°.【詳解】如下圖,連接AD,BD,∵同弧所對的圓周角相等,∴∠ABD=∠AED=20°,∵AB為直徑,∴∠ADB=90°,∴∠BAD=90°-20°=70°,∴∠BCD=180°-70°=110°.故選B【點睛】本題考查圓中的角度計算,熟練運用圓周角定理和內接四邊形的性質是關鍵.7、B【解析】
設應選取的木棒長為x,再根據三角形的三邊關系求出x的取值范圍.進而可得出結論.【詳解】設應選取的木棒長為x,則30cm-20cm<x<30cm+20cm,即10cm<x<50cm.故選B.【點睛】本題考查的是三角形的三邊關系,熟知三角形任意兩邊之和大于第三邊,任意兩邊差小于第三邊是解答此題的關鍵.8、B【解析】當k>0時,一次函數(shù)y=kx﹣k的圖象過一、三、四象限,反比例函數(shù)y=的圖象在一、三象限,∴A、C不符合題意,B符合題意;當k<0時,一次函數(shù)y=kx﹣k的圖象過一、二、四象限,反比例函數(shù)y=的圖象在二、四象限,∴D不符合題意.故選B.9、D【解析】
由于圓周率π是一個無限不循環(huán)的小數(shù),由此即可求解.【詳解】解:實數(shù)π是一個無限不循環(huán)的小數(shù).所以是無理數(shù).
故選D.【點睛】本題主要考查無理數(shù)的概念,π是常見的一種無理數(shù)的形式,比較簡單.10、D【解析】
本題主要考察二次函數(shù)與反比例函數(shù)的圖像和性質.【詳解】令二次函數(shù)中y=m.即x2=m,解得x=m或x=-m.令反比例函數(shù)中y=m,即1x=m,解得x=1m,將x的三個值相加得到ω=m+(-m)+【點睛】巧妙借助三點縱坐標相同的條件建立起兩個函數(shù)之間的聯(lián)系,從而解答.11、D【解析】
根據邊長確定三角形為直角三角形,斜邊即為外切圓直徑,內切圓半徑為,【詳解】解:如下圖,∵△ABC的三條邊長分別是5,13,12,且52+122=132,∴△ABC是直角三角形,其斜邊為外切圓直徑,∴外切圓半徑==6.5,內切圓半徑==2,故選D.【點睛】本題考查了直角三角形內切圓和外切圓的半徑,屬于簡單題,熟悉概念是解題關鍵.12、D【解析】試題分析:A、原式=a6,錯誤;B、原式=a2﹣2ab+b2,錯誤;C、原式不能合并,錯誤;D、原式=﹣3,正確,故選D考點:完全平方公式;合并同類項;同底數(shù)冪的乘法;平方差公式.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、﹣1【解析】【分析】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,再解關于k的方程,然后根據一元二次方程的定義確定k的值即可.【詳解】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,整理得k2+1k=0,解得k1=0,k2=﹣1,因為k≠0,所以k的值為﹣1.故答案為:﹣1.【點睛】本題考查了一元二次方程的定義以及一元二次方程的解,能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.14、3【解析】
把x與y的值代入方程組求出m與n的值,即可確定出所求.【詳解】解:把代入方程組得:相加得:m+3n=27,則27的立方根為3,故答案為3【點睛】此題考查了二元一次方程組的解,方程組的解即為能使方程組中兩方程左右兩邊相等的未知數(shù)的值.15、1【解析】
解:由于點C為反比例函數(shù)上的一點,則四邊形AOBC的面積S=|k|=1.故答案為:1.16、2+2【解析】
根據平面向量的加法法則計算即可.【詳解】3﹣(﹣2)=3﹣+2=2+2,故答案為:2+2,【點睛】本題考查平面向量,熟練掌握平面向量的加法法則是解題的關鍵.17、2或2.【解析】
本題有兩種情況,一種是點在線段的延長線上,一種是點在線段上,解題過程一樣,利用正方形和三角形的有關性質,求出、的值,再由勾股定理求出的值,根據證明,可得,即可得到的長.【詳解】解:當點在線段的延長線上時,如圖3所示.過點作于,是正方形的對角線,,,在中,由勾股定理,得:,在和中,,,,當點在線段上時,如圖4所示.過作于.是正方形的對角線,,在中,由勾股定理,得:在和中,,,,故答案為或.【點睛】本題主要考查了勾股定理和三角形全等的證明.18、y2<y3<y1【解析】
把點的坐標分別代入拋物線解析式可分別求得y1、y2、y3的值,比較可求得答案.【詳解】∵y=2x2-4x+c,∴當x=-3時,y1=2×(-3)2-4×(-3)+c=30+c,當x=2時,y2=2×22-4×2+c=c,當x=3時,y3=2×32-4×3+c=6+c,∵c<6+c<30+c,∴y2<y3<y1,故答案為y2<y3<y1.【點睛】本題主要考查二次函數(shù)圖象上點的坐標特征,掌握函數(shù)圖象上點的坐標滿足函數(shù)解析式是解題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)y=﹣x2+2x+3,D點坐標為();(2)當m=時,△CDP的面積存在最大值,最大值為;(3)m的值為或或.【解析】
(1)利用待定系數(shù)法求拋物線解析式和直線CD的解析式,然后解方程組得D點坐標;
(2)設P(m,-m2+2m+3),則E(m,-m+3),則PE=-m2+m,利用三角形面積公式得到S△PCD=××(-m2+m)=-m2+m,然后利用二次函數(shù)的性質解決問題;
(3)討論:當PC=PE時,m2+(-m2+2m+3-3)2=(-m2+m)2;當CP=CE時,m2+(-m2+2m+3-3)2=m2+(-m+3-3)2;當EC=EP時,m2+(-m+3-3)2=(-m2+m)2,然后分別解方程即可得到滿足條件的m的值.【詳解】(1)把A(﹣1,0),C(0,3)分別代入y=﹣x2+bx+c得,解得,∴拋物線的解析式為y=﹣x2+2x+3;把C(0,3)代入y=﹣x+n,解得n=3,∴直線CD的解析式為y=﹣x+3,解方程組,解得或,∴D點坐標為(,);(2)存在.設P(m,﹣m2+2m+3),則E(m,﹣m+3),∴PE=﹣m2+2m+3﹣(﹣m+3)=﹣m2+m,∴S△PCD=??(﹣m2+m)=﹣m2+m=﹣(m﹣)2+,當m=時,△CDP的面積存在最大值,最大值為;(3)當PC=PE時,m2+(﹣m2+2m+3﹣3)2=(﹣m2+m)2,解得m=0(舍去)或m=;當CP=CE時,m2+(﹣m2+2m+3﹣3)2=m2+(﹣m+3﹣3)2,解得m=0(舍去)或m=(舍去)或m=;當EC=EP時,m2+(﹣m+3﹣3)2=(﹣m2+m)2,解得m=(舍去)或m=,綜上所述,m的值為或或.【點睛】本題考核知識點:二次函數(shù)的綜合應用.解題關鍵點:靈活運用二次函數(shù)性質,運用數(shù)形結合思想.20、(1)反比例函數(shù)的解析式為y=﹣;一次函數(shù)的解析式為y=﹣x+2;(2)8;(3)點M、N在第二象限,或點M、N在第四象限.【解析】
(1)把A(﹣2,3)代入y=,可得m=﹣2×3=﹣6,∴反比例函數(shù)的解析式為y=﹣;把點B(6,n)代入,可得n=﹣1,∴B(6,﹣1).把A(﹣2,3),B(6,﹣1)代入y=kx+b,可得,解得,∴一次函數(shù)的解析式為y=﹣x+2;(2)∵y=﹣x+2,令y=0,則x=4,∴C(4,0),即OC=4,∴△AOB的面積=×4×(3+1)=8;(3)∵反比例函數(shù)y=﹣的圖象位于二、四象限,∴在每個象限內,y隨x的增大而增大,∵x1<x2,y1<y2,∴M,N在相同的象限,∴點M、N在第二象限,或點M、N在第四象限.【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點問題,求三角形的面積,求函數(shù)的解析式,正確掌握反比例函數(shù)的性質是解題的關鍵.21、(1)證明見解析;(2)證明見解析;(3)1.【解析】
(1)連接OA,由OP垂直于AB,利用垂徑定理得到D為AB的中點,即OP垂直平分AB,可得出AP=BP,再由OA=OB,OP=OP,利用SSS得出三角形AOP與三角形BOP全等,由PA為圓的切線,得到OA垂直于AP,利用全等三角形的對應角相等及垂直的定義得到OB垂直于BP,即PB為圓O的切線;
(2)由一對直角相等,一對公共角,得出三角形AOD與三角形OAP相似,由相似得比例,列出關系式,由OA為EF的一半,等量代換即可得證.【詳解】(1)連接OB,
∵PB是⊙O的切線,
∴∠PBO=90°.
∵OA=OB,BA⊥PO于D,
∴AD=BD,∠POA=∠POB.
又∵PO=PO,
∴△PAO≌△PBO.
∴∠PAO=∠PBO=90°,
∴直線PA為⊙O的切線.(2)由(1)可知,,,,=90,,,,即,是直徑,是半徑,,,整理得;(3)是中點,是中點,是的中位線,,,,是直角三角形,在中,,,,,,則,、是半徑,,在中,,,由勾股定理得:,即,解得:或(舍去),,.【點睛】本題考查了切線的判定與性質,相似及全等三角形的判定與性質以及銳角三角函數(shù)關系等知識,熟練掌握切線的判定與性質是解本題的關鍵.22、(1)雞場垂直于墻的一邊AB的長為2米;(1)雞場垂直于墻的一邊AB的長為10米時,圍成養(yǎng)雞場面積最大,最大值100米1.【解析】試題分析:(1)首先設雞場垂直于墻的一邊AB的長為x米,然后根據題意可得方程x(40-1x)=168,即可求得x的值,又由墻長15m,可得x=2,則問題得解;
(1)設圍成養(yǎng)雞場面積為S,由題意可得S與x的函數(shù)關系式,由二次函數(shù)最大值的求解方法即可求得答案;解:(1)設雞場垂直于墻的一邊AB的長為x米,則x(40﹣1x)=168,整理得:x1﹣10x+84=0,解得:x1=2,x1=6,∵墻長15m,∴0≤BC≤15,即0≤40﹣1x≤15,解得:7.5≤x≤10,∴x=2.答:雞場垂直于墻的一邊AB的長為2米.(1)圍成養(yǎng)雞場面積為S米1,則S=x(40﹣1x)=﹣1x1+40x=﹣1(x1﹣10x)=﹣1(x1﹣10x+101)+1×101=﹣1(x﹣10)1+100,∵﹣1(x﹣10)1≤0,∴當x=10時,S有最大值100.即雞場垂直于墻的一邊AB的長為10米時,圍成養(yǎng)雞場面積最大,最大值100米1.點睛:此題考查了一元二次方程與二次函數(shù)的實際應用.解題的關鍵是理解題意,并根據題意列出一元二次方程與二次函數(shù)解析式.23、(1)E(2,1);(2);(1).【解析】
(1)先確定出點C坐標,進而得出點F坐標,即可得出結論;(2)先確定出點F的橫坐標,進而表示出點F的坐標,得出CF,同理表示出CE,即可得出結論;(1)先判斷出△EHG∽△GBF,即可求出BG,最后用勾股定理求出k,即可得出結論.【詳解】(1)∵OA=1,OB=4,∴B(4,0),C(4,1),∵F是BC的中點,∴F(4,),∵F在反比例y=函數(shù)圖象上,∴k=4×=6,∴反比例函數(shù)的解析式為y=,∵E點的坐標為1,∴E(2,1);(2)∵F點的橫坐標為4,∴F(4,),∴CF=BC﹣BF=1﹣=∵E的縱坐標為1,∴E(,1),∴CE=AC﹣AE=4﹣=,在Rt△CEF中,tan∠EFC=,(1)如圖,由(2)知,CF=,CE=,,過點E作EH⊥OB于H,∴EH=OA=1,∠EHG=∠GBF=90°,∴∠EGH+∠HEG=90°,由折疊知,EG=CE,F(xiàn)G=CF,∠EGF=∠C=90°,∴∠EGH+∠BGF=90°,∴∠HEG=∠BGF,∵∠EHG=∠GBF=90°,∴△EHG∽△GBF,∴,∴,∴BG=,在Rt△FBG中,F(xiàn)G2﹣BF2=BG2,∴()2﹣()2=,∴k=,∴反比例函數(shù)解析式為y=.點睛:此題是反比例函數(shù)綜合題,主要考查了待定系數(shù)法,中點坐標公式,相似三角形的判定和性質,銳角三角函數(shù),求出CE:CF是解本題的關鍵.24、(1)當4≤x≤6時,w1=﹣x2+12x﹣35,當6≤x≤8時,w2=﹣x2+7x﹣23;(2)最快在第7個月可還清10萬元的無息貸款.【解析】分析:(1)y(萬件)與銷售單價x是分段函數(shù),根據待定系數(shù)法分別求直線AB和BC的解析式,又分兩種情況,根據利潤=(售價﹣成本)×銷售量﹣費用,得結論;(2)分別計算兩個利潤的最大值,比較可得出利潤的最大值,最后計算時間即可求解.詳解:(1)設直線AB的解析式為:y=kx+b,代入A(4,4),B(6,2)得:,解得:,∴直線AB的解析式為:y=﹣x+8,同理代入B(6,2),C(8,1)可得直線BC的解析式為:y=﹣x+5,∵工資及其他費作為:0.4×5+1=3萬元,∴當4≤x≤6時,w1=(x﹣4)(﹣x+8)﹣3=﹣x2+12x﹣
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 單間住宅出售合同范例
- 民房涂料裝修合同范例
- 叉車貨架租賃合同范例
- 個人獨資加油站合同范例
- 小學購買籃球服合同范例
- 徐州房屋出售合同范例
- 拍攝地合同范例
- 農村山泉水出租合同范例
- 攤鋪路面合同范例
- 合同范例有水泥黃沙
- 營銷渠道和營銷渠道管理概述
- 夕會教案:養(yǎng)成課間文明的好習慣
- 精品在線開放課程建設與評價標準
- 自主研究開發(fā)項目計劃書
- 第二十章曲線積分-ppt課件
- 3Q模板IQOQPQ驗證方案模版
- T∕CCOA 24-2020 棕櫚仁餅(粕)
- 聚酰亞胺基礎知識-1(橫田力男)
- 聚乙烯天然氣管道施工技術交底(完整版)
- 小學四年級奧數(shù)-變化規(guī)律(一)
- 萬達集團薪酬管理制度
評論
0/150
提交評論