2022年安徽省定遠縣七里塘中學中考數(shù)學模擬預(yù)測題含解析_第1頁
2022年安徽省定遠縣七里塘中學中考數(shù)學模擬預(yù)測題含解析_第2頁
2022年安徽省定遠縣七里塘中學中考數(shù)學模擬預(yù)測題含解析_第3頁
2022年安徽省定遠縣七里塘中學中考數(shù)學模擬預(yù)測題含解析_第4頁
2022年安徽省定遠縣七里塘中學中考數(shù)學模擬預(yù)測題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022年安徽省定遠縣七里塘中學中考數(shù)學模擬預(yù)測題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,已知點A,B分別是反比例函數(shù)y=(x<0),y=(x>0)的圖象上的點,且∠AOB=90°,tan∠BAO=,則k的值為()A.2 B.﹣2 C.4 D.﹣42.如圖,正方形ABCD和正方形CEFG中,點D在CG上,BC=1,CE=3,CH┴AF與點H,那么CH的長是()A. B. C. D.3.下列運算結(jié)果正確的是()A.3a2-a2=2 B.a(chǎn)2·a3=a6 C.(-a2)3=-a6 D.a(chǎn)2÷a2=a4.足球運動員將足球沿與地面成一定角度的方向踢出,足球飛行的路線是一條拋物線.不考慮空氣阻力,足球距離地面的高度h(單位:m)與足球被踢出后經(jīng)過的時間t(單位:s)之間的關(guān)系如下表:t01234567…h(huán)08141820201814…下列結(jié)論:①足球距離地面的最大高度為20m;②足球飛行路線的對稱軸是直線;③足球被踢出9s時落地;④足球被踢出1.5s時,距離地面的高度是11m.其中正確結(jié)論的個數(shù)是()A.1 B.2 C.3 D.45.二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,a,b,c的取值范圍()A.a(chǎn)<0,b<0,c<0B.a(chǎn)<0,b>0,c<0C.a(chǎn)>0,b>0,c<0D.a(chǎn)>0,b<0,c<06.長江經(jīng)濟帶覆蓋上海、江蘇、浙江、安徽、江西、湖北、湖南、重慶、四川、云南、貴州等11省市,面積約2050000平方公里,約占全國面積的21%.將2050000用科學記數(shù)法表示應(yīng)為()A.205萬 B. C. D.7.下面四個幾何體:其中,俯視圖是四邊形的幾何體個數(shù)是()A.1 B.2 C.3 D.48.下列因式分解正確的是()A.x2+9=(x+3)2 B.a(chǎn)2+2a+4=(a+2)2C.a(chǎn)3-4a2=a2(a-4) D.1-4x2=(1+4x)(1-4x)9.如圖,在平面直角坐標系中,矩形ABOC的兩邊在坐標軸上,OB=1,點A在函數(shù)y=﹣(x<0)的圖象上,將此矩形向右平移3個單位長度到A1B1O1C1的位置,此時點A1在函數(shù)y=(x>0)的圖象上,C1O1與此圖象交于點P,則點P的縱坐標是()A. B. C. D.10.某射擊選手10次射擊成績統(tǒng)計結(jié)果如下表,這10次成績的眾數(shù)、中位數(shù)分別是()成績(環(huán))78910次數(shù)1432A.8、8 B.8、8.5 C.8、9 D.8、1011.如圖,已知在△ABC,AB=AC.若以點B為圓心,BC長為半徑畫弧,交腰AC于點E,則下列結(jié)論一定正確的是()A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE12.若正六邊形的邊長為6,則其外接圓半徑為()A.3 B.3 C.3 D.6二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,點A為函數(shù)y=(x>0)圖象上一點,連接OA,交函數(shù)y=(x>0)的圖象于點B,點C是x軸上一點,且AO=AC,則△ABC的面積為______.14.為選拔一名選手參加全國中學生游泳錦標賽自由泳比賽,我市四名中學生參加了男子100米自由泳訓練,他們成績的平均數(shù)及其方差s2如下表所示:甲乙丙丁1′05″331′04″261′04″261′07″29s21.11.11.31.6如果選拔一名學生去參賽,應(yīng)派_________去.15.如圖,直徑為1000mm的圓柱形水管有積水(陰影部分),水面的寬度AB為800mm,則水的最大深度CD是______mm.16.已知y與x的函數(shù)滿足下列條件:①它的圖象經(jīng)過(1,1)點;②當時,y隨x的增大而減?。畬懗鲆粋€符合條件的函數(shù):__________.17.已知關(guān)于x的方程x2﹣2x+n=1沒有實數(shù)根,那么|2﹣n|﹣|1﹣n|的化簡結(jié)果是_____.18.已知,那么__.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)已知:二次函數(shù)圖象的頂點坐標是(3,5),且拋物線經(jīng)過點A(1,3).(1)求此拋物線的表達式;(2)如果點A關(guān)于該拋物線對稱軸的對稱點是B點,且拋物線與y軸的交點是C點,求△ABC的面積.20.(6分)解方程式:-3=21.(6分)如圖,大樓底右側(cè)有一障礙物,在障礙物的旁邊有一幢小樓DE,在小樓的頂端D處測得障礙物邊緣點C的俯角為30°,測得大樓頂端A的仰角為45°(點B,C,E在同一水平直線上).已知AB=80m,DE=10m,求障礙物B,C兩點間的距離.(結(jié)果保留根號)22.(8分)一個不透明的口袋里裝有分別標有漢字“美”、“麗”、“光”、“明”的四個小球,除漢字不同之外,小球沒有任何區(qū)別,每次摸球前先攪拌均勻再摸球.若從中任取一個球,求摸出球上的漢字剛好是“美”的概率;甲從中任取一球,不放回,再從中任取一球,請用樹狀圖或列表法,求甲取出的兩個球上的漢字恰能組成“美麗”或“光明”的概率.23.(8分)已知A=ab(a-b)-ba(a-b).化簡A;如果a、b24.(10分)如圖,在一個平臺遠處有一座古塔,小明在平臺底部的點C處測得古塔頂部B的仰角為60°,在平臺上的點E處測得古塔頂部的仰角為30°.已知平臺的縱截面為矩形DCFE,DE=2米,DC=20米,求古塔AB的高(結(jié)果保留根號)25.(10分)某工廠生產(chǎn)部門為了解本部門工人的生產(chǎn)能力情況,進行了抽樣調(diào)查.該部門隨機抽取了30名工人某天每人加工零件的個數(shù),數(shù)據(jù)如下:202119162718312921222520192235331917182918352215181831311922整理上面數(shù)據(jù),得到條形統(tǒng)計圖:樣本數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù)如下表所示:統(tǒng)計量平均數(shù)眾數(shù)中位數(shù)數(shù)值23m21根據(jù)以上信息,解答下列問題:上表中眾數(shù)m的值為;為調(diào)動工人的積極性,該部門根據(jù)工人每天加工零件的個數(shù)制定了獎勵標準,凡達到或超過這個標準的工人將獲得獎勵.如果想讓一半左右的工人能獲獎,應(yīng)根據(jù)來確定獎勵標準比較合適.(填“平均數(shù)”、“眾數(shù)”或“中位數(shù)”)該部門規(guī)定:每天加工零件的個數(shù)達到或超過25個的工人為生產(chǎn)能手.若該部門有300名工人,試估計該部門生產(chǎn)能手的人數(shù).26.(12分)“校園詩歌大賽”結(jié)束后,張老師和李老師將所有參賽選手的比賽成績(得分均為整數(shù))進行整理,并分別繪制成扇形統(tǒng)計圖和頻數(shù)直方圖部分信息如下:本次比賽參賽選手共有人,扇形統(tǒng)計圖中“69.5~79.5”這一組人數(shù)占總參賽人數(shù)的百分比為;賽前規(guī)定,成績由高到低前60%的參賽選手獲獎.某參賽選手的比賽成績?yōu)?8分,試判斷他能否獲獎,并說明理由;成績前四名是2名男生和2名女生,若從他們中任選2人作為獲獎代表發(fā)言,試求恰好選中1男1女的概率.27.(12分)綜合與實踐﹣﹣旋轉(zhuǎn)中的數(shù)學問題背景:在一次綜合實踐活動課上,同學們以兩個矩形為對象,研究相似矩形旋轉(zhuǎn)中的問題:已知矩形ABCD∽矩形A′B′C′D′,它們各自對角線的交點重合于點O,連接AA′,CC′.請你幫他們解決下列問題:觀察發(fā)現(xiàn):(1)如圖1,若A′B′∥AB,則AA′與CC′的數(shù)量關(guān)系是______;操作探究:(2)將圖1中的矩形ABCD保持不動,矩形A′B′C′D′繞點O逆時針旋轉(zhuǎn)角度α(0°<α≤90°),如圖2,在矩形A′B′C′D′旋轉(zhuǎn)的過程中,(1)中的結(jié)論還成立嗎?若成立,請證明;若不成立,請說明理由;操作計算:(3)如圖3,在(2)的條件下,當矩形A′B′C′D′繞點O旋轉(zhuǎn)至AA′⊥A′D′時,若AB=6,BC=8,A′B′=3,求AA′的長.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】

首先過點A作AC⊥x軸于C,過點B作BD⊥x軸于D,易得△OBD∽△AOC,又由點A,B分別在反比例函數(shù)y=(x<0),y=(x>0)的圖象上,即可得S△OBD=,S△AOC=|k|,然后根據(jù)相似三角形面積的比等于相似比的平方,即可求出k的值【詳解】解:過點A作AC⊥x軸于C,過點B作BD⊥x軸于D,

∴∠ACO=∠ODB=90°,

∴∠OBD+∠BOD=90°,

∵∠AOB=90°,

∴∠BOD+∠AOC=90°,

∴∠OBD=∠AOC,

∴△OBD∽△AOC,

又∵∠AOB=90°,tan∠BAO=,

∴=,

∴=,即,

解得k=±4,

又∵k<0,

∴k=-4,

故選:D.【點睛】此題考查了相似三角形的判定與性質(zhì)、反比例函數(shù)的性質(zhì)以及直角三角形的性質(zhì).解題時注意掌握數(shù)形結(jié)合思想的應(yīng)用,注意掌握輔助線的作法。2、D【解析】

連接AC、CF,根據(jù)正方形性質(zhì)求出AC、CF,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF,最后由直角三角形面積的兩種表示法即可求得CH的長.【詳解】如圖,連接AC、CF,∵正方形ABCD和正方形CEFG中,BC=1,CE=3,∴AC=,CF=3,∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,AF=,∵CH⊥AF,∴,即,∴CH=.故選D.【點睛】本題考查了正方形的性質(zhì)、勾股定理及直角三角形的面積,熟記各性質(zhì)并作輔助線構(gòu)造出直角三角形是解題的關(guān)鍵.3、C【解析】選項A,3a2-a2=2a2;選項B,a2·a3=a5;選項C,(-a2)3=-a6;選項D,a2÷a2=1.正確的只有選項C,故選C.4、B【解析】試題解析:由題意,拋物線的解析式為y=ax(x﹣9),把(1,8)代入可得a=﹣1,∴y=﹣t2+9t=﹣(t﹣4.5)2+20.25,∴足球距離地面的最大高度為20.25m,故①錯誤,∴拋物線的對稱軸t=4.5,故②正確,∵t=9時,y=0,∴足球被踢出9s時落地,故③正確,∵t=1.5時,y=11.25,故④錯誤,∴正確的有②③,故選B.5、D【解析】試題分析:根據(jù)二次函數(shù)的圖象依次分析各項即可。由拋物線開口向上,可得,再由對稱軸是,可得,由圖象與y軸的交點再x軸下方,可得,故選D.考點:本題考查的是二次函數(shù)的性質(zhì)點評:解答本題的關(guān)鍵是熟練掌握二次函數(shù)的性質(zhì):的正負決定拋物線開口方向,對稱軸是,C的正負決定與Y軸的交點位置。6、C【解析】【分析】科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】2050000將小數(shù)點向左移6位得到2.05,所以2050000用科學記數(shù)法表示為:20.5×106,故選C.【點睛】本題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.7、B【解析】試題分析:根據(jù)俯視圖是分別從物體上面看,所得到的俯視圖是四邊形的幾何體有正方體和三棱柱,故選B.考點:簡單幾何體的三視圖8、C【解析】

試題分析:A、B無法進行因式分解;C正確;D、原式=(1+2x)(1-2x)故選C,考點:因式分解【詳解】請在此輸入詳解!9、C【解析】分析:先求出A點坐標,再根據(jù)圖形平移的性質(zhì)得出A1點的坐標,故可得出反比例函數(shù)的解析式,把O1點的橫坐標代入即可得出結(jié)論.詳解:∵OB=1,AB⊥OB,點A在函數(shù)(x<0)的圖象上,∴當x=?1時,y=2,∴A(?1,2).∵此矩形向右平移3個單位長度到的位置,∴B1(2,0),∴A1(2,2).∵點A1在函數(shù)(x>0)的圖象上,∴k=4,∴反比例函數(shù)的解析式為,O1(3,0),∵C1O1⊥x軸,∴當x=3時,∴P故選C.點睛:考查反比例函數(shù)圖象上點的坐標特征,坐標與圖形變化-平移,解題的關(guān)鍵是運用雙曲線方程求出點A的坐標,利用平移的性質(zhì)求出點A1的坐標.10、B【解析】

根據(jù)眾數(shù)和中位數(shù)的概念求解.【詳解】由表可知,8環(huán)出現(xiàn)次數(shù)最多,有4次,所以眾數(shù)為8環(huán);這10個數(shù)據(jù)的中位數(shù)為第5、6個數(shù)據(jù)的平均數(shù),即中位數(shù)為=8.5(環(huán)),故選:B.【點睛】本題考查了眾數(shù)和中位數(shù)的知識,一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù);將一組數(shù)據(jù)按照從小到大(或從大到?。┑捻樞蚺帕?,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù);如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).11、C【解析】解:∵AB=AC,∴∠ABC=∠ACB.∵以點B為圓心,BC長為半徑畫弧,交腰AC于點E,∴BE=BC,∴∠ACB=∠BEC,∴∠BEC=∠ABC=∠ACB,∴∠BAC=∠EBC.故選C.點睛:本題考查了等腰三角形的性質(zhì),當?shù)妊切蔚牡捉菍?yīng)相等時其頂角也相等,難度不大.12、D【解析】

連接正六邊形的中心和各頂點,得到六個全等的正三角形,于是可知正六邊形的邊長等于正三角形的邊長,為正六邊形的外接圓半徑.【詳解】如圖為正六邊形的外接圓,ABCDEF是正六邊形,∴∠AOF=10°,∵OA=OF,∴△AOF是等邊三角形,∴OA=AF=1.所以正六邊形的外接圓半徑等于邊長,即其外接圓半徑為1.故選D.【點睛】本題考查了正六邊形的外接圓的知識,解題的關(guān)鍵是畫出圖形,找出線段之間的關(guān)系.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、6.【解析】

作輔助線,根據(jù)反比例函數(shù)關(guān)系式得:S△AOD=,S△BOE=,再證明△BOE∽△AOD,由性質(zhì)得OB與OA的比,由同高兩三角形面積的比等于對應(yīng)底邊的比可以得出結(jié)論.【詳解】如圖,分別作BE⊥x軸,AD⊥x軸,垂足分別為點E、D,∴BE∥AD,

∴△BOE∽△AOD,

∴,

∵OA=AC,

∴OD=DC,

∴S△AOD=S△ADC=S△AOC,

∵點A為函數(shù)y=(x>0)的圖象上一點,

∴S△AOD=,

同理得:S△BOE=,

∴,

∴,

∴,

∴,

∴,

故答案為6.14、乙【解析】

∵丁〉甲乙=丙,∴從乙和丙中選擇一人參加比賽,

∵S

乙2<S

丙2,

∴選擇乙參賽,

故答案是:乙.15、200【解析】

先求出OA的長,再由垂徑定理求出AC的長,根據(jù)勾股定理求出OC的長,進而可得出結(jié)論.【詳解】解:∵⊙O的直徑為1000mm,

∴OA=OA=500mm.

∵OD⊥AB,AB=800mm,

∴AC=400mm,

∴OC===300mm,∴CD=OD-OC=500-300=200(mm).

答:水的最大深度為200mm.故答案為:200【點睛】本題考查的是垂徑定理的應(yīng)用,根據(jù)勾股定理求出OC的長是解答此題的關(guān)鍵.16、y=-x+2(答案不唯一)【解析】①圖象經(jīng)過(1,1)點;②當x>1時.y隨x的增大而減小,這個函數(shù)解析式為y=-x+2,故答案為y=-x+2(答案不唯一).17、﹣1【解析】

根據(jù)根與系數(shù)的關(guān)系得出b2-4ac=(-2)2-4×1×(n-1)=-4n+8<0,求出n>2,再去絕對值符號,即可得出答案.【詳解】解:∵關(guān)于x的方程x2?2x+n=1沒有實數(shù)根,∴b2-4ac=(-2)2-4×1×(n-1)=-4n+8<0,∴n>2,∴|2?n|-│1-n│=n-2-n+1=-1.故答案為-1.【點睛】本題考查了根的判別式,解題的關(guān)鍵是根據(jù)根與系數(shù)的關(guān)系求出n的取值范圍再去絕對值求解即可.18、【解析】

根據(jù)比例的性質(zhì),設(shè)x=5a,則y=2a,代入原式即可求解.【詳解】解:∵,∴設(shè)x=5a,則y=2a,那么.故答案為:.【點睛】本題主要考查了比例的性質(zhì),根據(jù)比例式用同一個未知數(shù)得出的值進而求解是解題關(guān)鍵.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)y=-(x-3)2+5(2)5【解析】

(1)設(shè)頂點式y(tǒng)=a(x-3)2+5,然后把A點坐標代入求出a即可得到拋物線的解析式;

(2)利用拋物線的對稱性得到B(5,3),再確定出C點坐標,然后根據(jù)三角形面積公式求解.【詳解】(1)設(shè)此拋物線的表達式為y=a(x-3)2+5,將點A(1,3)的坐標代入上式,得3=a(1-3)2+5,解得∴此拋物線的表達式為(2)∵A(1,3),拋物線的對稱軸為直線x=3,∴B(5,3).令x=0,則∴△ABC的面積【點睛】考查待定系數(shù)法求二次函數(shù)解析式,二次函數(shù)的性質(zhì),二次函數(shù)圖象上點的坐標特征,掌握待定系數(shù)法求二次函數(shù)的解析式是解題的關(guān)鍵.20、x=3【解析】

先去分母,再解方程,然后驗根.【詳解】解:去分母,得1-3(x-2)=1-x,1-3x+6=1-x,x=3,經(jīng)檢驗,x=3是原方程的根.【點睛】此題重點考察學生對分式方程解的應(yīng)用,掌握分式方程的解法是解題的關(guān)鍵.21、(70﹣10)m.【解析】

過點D作DF⊥AB于點F,過點C作CH⊥DF于點H.通過解得到DF的長度;通過解得到CE的長度,則【詳解】如圖,過點D作DF⊥AB于點F,過點C作CH⊥DF于點H.則DE=BF=CH=10m,在中,∵AF=80m?10m=70m,∴DF=AF=70m.在中,∵DE=10m,∴∴答:障礙物B,C兩點間的距離為22、(1);(2).【解析】

(1)一共4個小球,則任取一個球,共有4種不同結(jié)果,摸出球上的漢字剛好是“美”的概率為;(2)列表或畫出樹狀圖,根據(jù)一共出現(xiàn)的等可能的情況及恰能組成“美麗”或“光明”的情況進行解答即可.【詳解】(1)∵“美”、“麗”、“光”、“明”的四個小球,任取一球,共有4種不同結(jié)果,∴任取一個球,摸出球上的漢字剛好是“美”的概率P=(2)列表如下:美麗光明美----(美,麗)(光,美)(美,明)麗(美,麗)----(光,麗)(明,麗)光(美,光)(光,麗)----(光,明)明(美,明)(明,麗)(光,明)-------根據(jù)表格可得:共有12中等可能的結(jié)果,其中恰能組成“美麗”或“光明”共有4種,故取出的兩個球上的漢字恰能組成“美麗”或“光明”的概率.【點睛】此題考查的是用列表法或樹狀圖法求概率與不等式的性質(zhì).注意樹狀圖法與列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;注意概率=所求情況數(shù)與總情況數(shù)之比.23、(1)a+bab【解析】

(1)先通分,再進行同分母的減法運算,然后約分得到原式=a+b(2)利用根與系數(shù)的關(guān)系得到a+b=【詳解】解:(1)A==(a+b)(a-b)(2)∵a、b是方程x2∴a+b=4,ab=-1∴A=【點睛】本題考查了根與系數(shù)的關(guān)系:若x1,x2是一元二次方程ax2+bx+c=024、古塔AB的高為(10+2)米.【解析】試題分析:延長EF交AB于點G.利用AB表示出EG,AC.讓EG-AC=1即可求得AB長.試題解析:如圖,延長EF交AB于點G.設(shè)AB=x米,則BG=AB﹣2=(x﹣2)米.則EG=(AB﹣2)÷tan∠BEG=(x﹣2),CA=AB÷tan∠ACB=x.則CD=EG﹣AC=(x﹣2)﹣x=1.解可得:x=10+2.答:古塔AB的高為(10+2)米.25、(1)18;(2)中位數(shù);(3)100名.【解析】【分析】(1)根據(jù)條形統(tǒng)計圖中的數(shù)據(jù)可以得到m的值;(2)根據(jù)題意可知應(yīng)選擇中位數(shù)比較合適;(3)根據(jù)統(tǒng)計圖中的數(shù)據(jù)可以計該部門生產(chǎn)能手的人數(shù).【詳解】(1)由圖可得,眾數(shù)m的值為18,故答案為:18;(2)由題意可得,如果想讓一半左右的工人能獲獎,應(yīng)根據(jù)中位數(shù)來確定獎勵標準比較合適,故答案為:中位數(shù);(3)300×=100(名),答:該部門生產(chǎn)能手有100名工人.【點睛】本題考查了條形統(tǒng)計圖、用樣本估計總體、加權(quán)平均數(shù)、中位數(shù)和眾數(shù),解答本題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想解答.26、(1)50,30%;(2)不能,理由見解析;(3)P=【解析】【分析】(1)由直方圖可知59.5~69.5分數(shù)段有5人,由扇形統(tǒng)計圖可知這一分數(shù)段人占10%,據(jù)此可得選手總數(shù),然后求出89.5~99.5這一分數(shù)段所占的百分比,用1減去其他分數(shù)段的百分比即可得到分數(shù)段69.5~79.5所占的百分比;(2)觀察可知79.5~99.5這一分數(shù)段的人數(shù)占了60%,據(jù)此即可判斷出該選手是否獲獎;(3)畫樹狀圖得到所有可能的情況,再找出符合條件的情況后,用概率公式進行求解即可.【詳解】(1)本次比賽選手共有(2+3

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論