版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022學年湖南省張家界市永定區(qū)民族中學中考數學五模試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,已知四邊形ABCD,R,P分別是DC,BC上的點,E,F分別是AP,RP的中點,當點P在BC上從點B向點C移動而點R不動時,那么下列結論成立的是().A.線段EF的長逐漸增大 B.線段EF的長逐漸減少C.線段EF的長不變 D.線段EF的長不能確定2.如圖,AD∥BC,AC平分∠BAD,若∠B=40°,則∠C的度數是()A.40° B.65° C.70° D.80°3.如圖,下列各三角形中的三個數之間均具有相同的規(guī)律,根據此規(guī)律,最后一個三角形中y與n之間的關系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+14.下面計算中,正確的是()A.(a+b)2=a2+b2B.3a+4a=7a2C.(ab)3=ab3D.a2?a5=a75.在平面直角坐標系中,點(2,3)所在的象限是(
)A.第一象限
B.第二象限
C.第三象限
D.第四象限6.如圖,四邊形ABCE內接于⊙O,∠DCE=50°,則∠BOE=()A.100° B.50° C.70° D.130°7.如圖,在中,點D、E、F分別在邊、、上,且,.下列四種說法:①四邊形是平行四邊形;②如果,那么四邊形是矩形;③如果平分,那么四邊形是菱形;④如果且,那么四邊形是菱形.其中,正確的有()個A.1 B.2 C.3 D.48.已知關于x的一元二次方程3x2+4x﹣5=0,下列說法正確的是()A.方程有兩個相等的實數根B.方程有兩個不相等的實數根C.沒有實數根D.無法確定9.估計的值在()A.4和5之間 B.5和6之間C.6和7之間 D.7和8之間10.小明家1至6月份的用水量統(tǒng)計如圖所示,關于這組數據,下列說法錯誤的是().A.眾數是6噸 B.平均數是5噸 C.中位數是5噸 D.方差是二、填空題(共7小題,每小題3分,滿分21分)11.如圖,⊙O中,弦AB、CD相交于點P,若∠A=30°,∠APD=70°,則∠B等于_____.12.某商品每件標價為150元,若按標價打8折后,再降價10元銷售,仍獲利10%,則該商品每件的進價為_________元.13.若圓錐的地面半徑為,側面積為,則圓錐的母線是__________.14.數學家吳文俊院士非常重視古代數學家賈憲提出的“從長方形對角線上任一點作兩條分別平行于兩鄰邊的直線,則所容兩長方形面積相等(如圖所示)”這一推論,他從這一推論出發(fā),利用“出入相補”原理復原了《海島算經》九題古證.(以上材料來源于《古證復原的原則》《吳文俊與中國數學》和《古代世界數學泰斗劉徽》)請根據上圖完成這個推論的證明過程.證明:S矩形NFGD=S△ADC-(S△ANF+S△FGC),S矩形EBMF=S△ABC-(______________+______________).易知,S△ADC=S△ABC,______________=______________,______________=______________.可得S矩形NFGD=S矩形EBMF.15.如圖,在平面直角坐標系中,點O為坐標原點,點P在第一象限,⊙P與x軸交于O,A兩點,點A的坐標為(6,0),⊙P的半徑為,則點P的坐標為_______.16.如圖,等邊三角形ABC內接于⊙O,若⊙O的半徑為2,則圖中陰影部分的面積等于_______.17.對于實數a,b,我們定義符號max{a,b}的意義為:當a≥b時,max{a,b}=a;當a<b時,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若關于x的函數為y=max{x+3,﹣x+1},則該函數的最小值是_____.三、解答題(共7小題,滿分69分)18.(10分)計算:﹣16+(﹣)﹣2﹣|﹣2|+2tan60°19.(5分)如圖,在△ABC中,∠ACB=90°,點O是BC上一點.尺規(guī)作圖:作⊙O,使⊙O與AC、AB都相切.(不寫作法與證明,保留作圖痕跡)若⊙O與AB相切于點D,與BC的另一個交點為點E,連接CD、DE,求證:DB20.(8分)某初中學校組織400位同學參加義務植樹活動,每人植樹的棵數在5至10之間,甲、乙兩位同學分別調查了30位同學的植樹情況,并將收集的數據進行了整理,繪制成統(tǒng)計表分別為表1和表2:表1:甲調查九年級30位同學植樹情況統(tǒng)計表(單位:棵)每人植樹情況78910人數36156頻率0.10.20.50.2表2:乙調查三個年級各10位同學植樹情況統(tǒng)計表(單位:棵)每人植樹情況678910人數363116頻率0.10.20.10.40.2根據以上材料回答下列問題:(1)表1中30位同學植樹情況的中位數是棵;(2)已知表2的最后兩列中有一個錯誤的數據,這個錯誤的數據是,正確的數據應該是;(3)指出哪位同學所抽取的樣本能更好反映此次植樹活動情況,并用該樣本估計本次活動400位同學一共植樹多少棵?21.(10分)計算:(﹣2)2+20180﹣22.(10分)如圖,可以自由轉動的轉盤被它的兩條直徑分成了四個分別標有數字的扇形區(qū)域,其中標有數字“1”的扇形圓心角為120°.轉動轉盤,待轉盤自動停止后,指針指向一個扇形的內部,則該扇形內的數字即為轉出的數字,此時,稱為轉動轉盤一次(若指針指向兩個扇形的交線,則不計轉動的次數,重新轉動轉盤,直到指針指向一個扇形的內部為止)(1)轉動轉盤一次,求轉出的數字是-2的概率;(2)轉動轉盤兩次,用樹狀圖或列表法求這兩次分別轉出的數字之積為正數的概率.23.(12分)頂點為D的拋物線y=﹣x2+bx+c交x軸于A、B(3,0),交y軸于點C,直線y=﹣x+m經過點C,交x軸于E(4,0).求出拋物線的解析式;如圖1,點M為線段BD上不與B、D重合的一個動點,過點M作x軸的垂線,垂足為N,設點M的橫坐標為x,四邊形OCMN的面積為S,求S與x之間的函數關系式,并求S的最大值;點P為x軸的正半軸上一個動點,過P作x軸的垂線,交直線y=﹣x+m于G,交拋物線于H,連接CH,將△CGH沿CH翻折,若點G的對應點F恰好落在y軸上時,請直接寫出點P的坐標.24.(14分)如圖,AE∥FD,AE=FD,B、C在直線EF上,且BE=CF,(1)求證:△ABE≌△DCF;(2)試證明:以A、B、D、C為頂點的四邊形是平行四邊形.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】
因為R不動,所以AR不變.根據三角形中位線定理可得EF=AR,因此線段EF的長不變.【詳解】如圖,連接AR,∵E、F分別是AP、RP的中點,∴EF為△APR的中位線,∴EF=AR,為定值.∴線段EF的長不改變.故選:C.【點睛】本題考查了三角形的中位線定理,只要三角形的邊AR不變,則對應的中位線的長度就不變.2、C【解析】
根據平行線性質得出∠B+∠BAD=180°,∠C=∠DAC,求出∠BAD,求出∠DAC,即可得出∠C的度數.【詳解】解:∵AD∥BC,∴∠B+∠BAD=180°,∵∠B=40°,∴∠BAD=140°,∵AC平分∠DAB,∴∠DAC=∠BAD=70°,∵A∥BC,∴∠C=∠DAC=70°,故選C.【點睛】本題考查了平行線性質和角平分線定義,關鍵是求出∠DAC或∠BAC的度數.3、B【解析】
∵觀察可知:左邊三角形的數字規(guī)律為:1,2,…,n,右邊三角形的數字規(guī)律為:2,22,…,2下邊三角形的數字規(guī)律為:1+2,2+22,…,∴最后一個三角形中y與n之間的關系式是y=2n+n.故選B.【點睛】考點:規(guī)律型:數字的變化類.4、D【解析】
直接利用完全平方公式以及合并同類項法則、積的乘方運算法則分別化簡得出答案.【詳解】A.
(a+b)2=a2+b2+2ab,故此選項錯誤;B.
3a+4a=7a,故此選項錯誤;C.
(ab)3=a3b3,故此選項錯誤;D.
a2a5=a7,正確。故選:D.【點睛】本題考查了冪的乘方與積的乘方,合并同類項,同底數冪的乘法,完全平方公式,解題的關鍵是掌握它們的概念進行求解.5、A【解析】
根據點所在象限的點的橫縱坐標的符號特點,就可得出已知點所在的象限.【詳解】解:點(2,3)所在的象限是第一象限.故答案為:A【點睛】考核知識點:點的坐標與象限的關系.6、A【解析】
根據圓內接四邊形的任意一個外角等于它的內對角求出∠A,根據圓周角定理計算即可.【詳解】四邊形ABCE內接于⊙O,,由圓周角定理可得,,故選:A.【點睛】本題考查的知識點是圓的內接四邊形性質,解題關鍵是熟記圓內接四邊形的任意一個外角等于它的內對角(就是和它相鄰的內角的對角).7、D【解析】
先由兩組對邊分別平行的四邊形為平行四邊形,根據DE∥CA,DF∥BA,得出AEDF為平行四邊形,得出①正確;當∠BAC=90°,根據推出的平行四邊形AEDF,利用有一個角為直角的平行四邊形為矩形可得出②正確;若AD平分∠BAC,得到一對角相等,再根據兩直線平行內錯角相等又得到一對角相等,等量代換可得∠EAD=∠EDA,利用等角對等邊可得一組鄰邊相等,根據鄰邊相等的平行四邊形為菱形可得出③正確;由AB=AC,AD⊥BC,根據等腰三角形的三線合一可得AD平分∠BAC,同理可得四邊形AEDF是菱形,④正確,進而得到正確說法的個數.【詳解】解:∵DE∥CA,DF∥BA,∴四邊形AEDF是平行四邊形,選項①正確;若∠BAC=90°,∴平行四邊形AEDF為矩形,選項②正確;若AD平分∠BAC,∴∠EAD=∠FAD,又DE∥CA,∴∠EDA=∠FAD,∴∠EAD=∠EDA,∴AE=DE,∴平行四邊形AEDF為菱形,選項③正確;若AB=AC,AD⊥BC,∴AD平分∠BAC,同理可得平行四邊形AEDF為菱形,選項④正確,則其中正確的個數有4個.故選D.【點睛】此題考查了平行四邊形的定義,菱形、矩形的判定,涉及的知識有:平行線的性質,角平分線的定義,以及等腰三角形的判定與性質,熟練掌握平行四邊形、矩形及菱形的判定與性質是解本題的關鍵.8、B【解析】試題分析:先求出△=42﹣4×3×(﹣5)=76>0,即可判定方程有兩個不相等的實數根.故答案選B.考點:一元二次方程根的判別式.9、C【解析】
根據,可以估算出位于哪兩個整數之間,從而可以解答本題.【詳解】解:∵即
故選:C.【點睛】本題考查估算無理數的大小,解題的關鍵是明確估算無理數大小的方法.10、C【解析】試題分析:根據眾數、平均數、中位數、方差:一組數據中出現次數最多的數據叫做這組數據的眾數.將一組數據按照從小到大(或從大到?。┑捻樞蚺帕?,如果數據的個數是奇數,則處于中間位置的數就是這組數據的中位數;如果這組數據的個數是偶數,則中間兩個數據的平均數就是這組數據的中位數.平均數是指在一組數據中所有數據之和再除以數據的個數.一般地設n個數據,x1,x2,…xn的平均數為,則方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2].數據:3,4,5,6,6,6,中位數是5.5,故選C考點:1、方差;2、平均數;3、中位數;4、眾數二、填空題(共7小題,每小題3分,滿分21分)11、40°【解析】
由∠A=30°,∠APD=70°,利用三角形外角的性質,即可求得∠C的度數,又由在同圓或等圓中,同弧或等弧所對的圓周角相等,即可求得∠B的度數.【詳解】解:∵∠A=30°,∠APD=70°,∴∠C=∠APD﹣∠A=40°,∵∠B與∠C是對的圓周角,∴∠B=∠C=40°.故答案為40°.【點睛】此題考查了圓周角定理與三角形外角的性質.此題難度不大,解題的關鍵是掌握在同圓或等圓中,同弧或等弧所對的圓周角相等定理的應用.12、1【解析】試題分析:設該商品每件的進價為x元,則150×80%-10-x=x×10%,解得x=1.即該商品每件的進價為1元.故答案為1.點睛:此題主要考查了一元一次方程的應用,解決本題的關鍵是得到商品售價的等量關系.13、13【解析】試題解析:圓錐的側面積=×底面半徑×母線長,把相應數值代入即可求解.設母線長為R,則:解得:故答案為13.14、S△AEFS△FMCS△ANFS△AEFS△FGCS△FMC【解析】
根據矩形的性質:矩形的對角線把矩形分成面積相等的兩部分,由此即可證明結論.【詳解】S矩形NFGD=S△ADC-(S△ANF+S△FGC),S矩形EBMF=S△ABC-(S△ANF+S△FCM).易知,S△ADC=S△ABC,S△ANF=S△AEF,S△FGC=S△FMC,可得S矩形NFGD=S矩形EBMF.故答案分別為S△AEF,S△FCM,S△ANF,S△AEF,S△FGC,S△FMC.【點睛】本題考查矩形的性質,解題的關鍵是靈活運用矩形的對角線把矩形分成面積相等的兩部分這個性質,屬于中考??碱}型.15、(3,2).【解析】
過點P作PD⊥x軸于點D,連接OP,先由垂徑定理求出OD的長,再根據勾股定理求出PD的長,故可得出答案.【詳解】過點P作PD⊥x軸于點D,連接OP,∵A(6,0),PD⊥OA,∴OD=OA=3,在Rt△OPD中∵OP=OD=3,∴PD=2∴P(3,2).故答案為(3,2).【點睛】本題考查的是垂徑定理,根據題意作出輔助線,構造出直角三角形是解答此題的關鍵.16、【解析】
分析:題圖中陰影部分為弓形與三角形的和,因此求出扇形AOC的面積即可,所以關鍵是求圓心角的度數.本題考查組合圖形的求法.扇形面積公式等.詳解:連結OC,∵△ABC為正三角形,∴∠AOC==120°,∵,∴圖中陰影部分的面積等于∴S扇形AOC=即S陰影=cm2.故答案為.點睛:本題考查了等邊三角形性質,扇形的面積,三角形的面積等知識點的應用,關鍵是求出∠AOC的度數,主要考查學生綜合運用定理進行推理和計算的能力.17、2【解析】試題分析:當x+3≥﹣x+1,即:x≥﹣1時,y=x+3,∴當x=﹣1時,ymin=2,當x+3<﹣x+1,即:x<﹣1時,y=﹣x+1,∵x<﹣1,∴﹣x>1,∴﹣x+1>2,∴y>2,∴ymin=2,三、解答題(共7小題,滿分69分)18、1+3.【解析】
先根據乘方、負指數冪、絕對值、特殊角的三角函數值分別進行計算,然后根據實數的運算法則求得計算結果.【詳解】﹣16+(﹣)﹣2﹣|﹣2|+2tan60°=﹣1+4﹣(2﹣)+2,=﹣1+4﹣2++2,=1+3.【點睛】本題主要考查了實數的綜合運算能力,解決此類題目的關鍵是熟記特殊角的三角函數值,熟練掌握負整數指數冪、二次根式、絕對值等考點的運算法則.19、(1)詳見解析;(2)詳見解析.【解析】
(1)利用角平分線的性質作出∠BAC的角平分線,利用角平分線上的點到角的兩邊距離相等得出O點位置,進而得出答案.(2)根據切線的性質,圓周角的性質,由相似判定可證△CDB∽△DEB,再根據相似三角形的性質即可求解.【詳解】解:(1)如圖,⊙O及為所求.(2)連接OD.∵AB是⊙O的切線,∴OD⊥AB,∴∠ODB=90°,即∠1+∠2=90°,∵CE是直徑,∴∠3+∠2=90°,∴∠1=∠3,∵OC=OD,∴∠4=∠3,∴∠1=∠4,又∠B=∠B∴△CDB∽△DEB∴DB∴DB【點睛】本題考查了作圖﹣復雜作圖:復雜作圖是在五種基本作圖的基礎上進行作圖,一般是結合了幾何圖形的性質和基本作圖方法.熟悉基本幾何圖形的性質,結合幾何圖形的基本性質把復雜作圖拆解成基本作圖,逐步操作是解決此類題目的關鍵.20、(1)9;(2)11,12;(3)3360棵【解析】
(1)30位同學的植樹量中第15個、16個數都是9,即可得到植樹的中位數;(2)根據頻率相加得1確定頻率正確,計算頻數即可確定錯誤的數據是11,正確的硬是12;(3)樣本數據應體現機會均等由此得到乙同學所抽取的樣本更好,再根據部分計算總體的公式即可得到答案.【詳解】(1)表1中30位同學植樹情況的中位數是9棵,故答案為:9;(2)表2的最后兩列中,錯誤的數據是11,正確的數據應該是30×0.4=12;故答案為:11,12;(3)乙同學所抽取的樣本能更好反映此次植樹活動情況,(3×6+6×7+3×8+12×9+6×10)÷30×400=3360(棵),答:本次活動400位同學一共植樹3360棵.【點睛】此題考查統(tǒng)計的計算,掌握中位數的計算方法,部分的頻數的計算方法,依據樣本計算總體的方法是解題的關鍵.21、﹣1【解析】分析:首先計算乘方、零次冪和開平方,然后再計算加減即可.詳解:原式=4+1-6=-1.點睛:此題主要考查了實數的運算,關鍵是掌握乘方的意義、零次冪計算公式和二次根式的性質.22、(1);(2).【解析】【分析】(1)根據題意可求得2個“-2”所占的扇形圓心角的度數,再利用概率公式進行計算即可得;(2)由題意可得轉出“1”、“3”、“-2”的概率相同,然后列表得到所有可能的情況,再找出符合條件的可能性,根據概率公式進行計算即可得.【詳解】(1)由題意可知:“1”和“3”所占的扇形圓心角為120°,所以2個“-2”所占的扇形圓心角為360°-2×120°=120°,∴轉動轉盤一次,求轉出的數字是-2的概率為=;(2)由(1)可知,該轉盤轉出“1”、“3”、“-2”的概率相同,均為,所有可能性如下表所示:第一次第二次1-231(1,1)(1,-2)(1,3)-2(-2,1)(-2,-2)(-2,3)3(3,1)(3,-2)(3,3)由上表可知:所有可能的結果共9種,其中數字之積為正數的的有5種,其概率為.【點睛】本題考查了列表法或樹狀圖法求概率,用到的知識點為:概率=所求情況數與總情況數之比.23、(1)y=﹣x2+2x+3;(2)S=﹣(x﹣)2+;當x=時,S有最大值,最大值為;(3)存在,點P的坐標為(4,0)或(,0).【解析】
(1)將點E代入直線解析式中,可求出點C的坐標,將點C、B代入拋物線解析式中,可求出拋物線解析式.(2)將拋物線解析式配成頂點式,可求出點D的坐標,設直線BD的解析式,代入點B、D,可求出直線BD的解析式,則MN可表示,則S可表示.(3)設點P的坐標,則點G的坐標可表示,點H的坐
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 國慶升旗講話稿范文(5篇)
- 信息素在性別識別中的作用-洞察分析
- 藥物支架在肝癌治療中的作用-洞察分析
- 疫苗接種倫理與法規(guī)探討-洞察分析
- 油氣行業(yè)智能化升級-洞察分析
- 云平臺互操作性研究-洞察分析
- 污染土壤生物修復技術-洞察分析
- 鄉(xiāng)村文化景觀旅游開發(fā)-洞察分析
- 宇宙射線多信使天文學-洞察分析
- 網絡謠言傳播機制研究-洞察分析
- 廣東省佛山市南海區(qū)·三水區(qū)2023-2024學年七年級上學期期末數學試題
- 減肥及代謝手術課件
- 2025年中國社區(qū)團購行業(yè)發(fā)展環(huán)境、運行態(tài)勢及投資前景分析報告(智研咨詢發(fā)布)
- 24秋二年級上冊語文期末復習21天沖刺計劃(每日5道題)
- 2024年度健康醫(yī)療服務合同平安好醫(yī)生(2024版)3篇
- 《中國傳統(tǒng)民居建筑》課件
- JJF 2163-2024漆膜劃格器校準規(guī)范
- 肺炎支原體肺炎-4
- 【教案】Unit4+Section+B+(1a-2b)+教學設計人教版(2024)七年級英語上冊++
- 好作文的開頭和結尾公開課獲獎課件省賽課一等獎課件
- 替莫唑胺在小細胞肺癌中的應用
評論
0/150
提交評論