重慶市開縣三校2024年中考考前最后一卷數(shù)學試卷含解析_第1頁
重慶市開縣三校2024年中考考前最后一卷數(shù)學試卷含解析_第2頁
重慶市開縣三校2024年中考考前最后一卷數(shù)學試卷含解析_第3頁
重慶市開縣三校2024年中考考前最后一卷數(shù)學試卷含解析_第4頁
重慶市開縣三校2024年中考考前最后一卷數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

重慶市開縣三校2024年中考考前最后一卷數(shù)學試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.計算(2017﹣π)0﹣(﹣)﹣1+tan30°的結(jié)果是()A.5 B.﹣2 C.2 D.﹣12.如果,那么代數(shù)式的值為()A.1 B.2 C.3 D.43.如圖,點A是反比例函數(shù)y=的圖象上的一點,過點A作AB⊥x軸,垂足為B.點C為y軸上的一點,連接AC,BC.若△ABC的面積為3,則k的值是()A.3 B.﹣3 C.6 D.﹣64.規(guī)定:如果關于x的一元二次方程ax2+bx+c=0(a≠0)有兩個實數(shù)根,且其中一個根是另一個根的2倍,則稱這樣的方程為“倍根方程”.現(xiàn)有下列結(jié)論:①方程x2+2x﹣8=0是倍根方程;②若關于x的方程x2+ax+2=0是倍根方程,則a=±3;③若關于x的方程ax2﹣6ax+c=0(a≠0)是倍根方程,則拋物線y=ax2﹣6ax+c與x軸的公共點的坐標是(2,0)和(4,0);④若點(m,n)在反比例函數(shù)y=的圖象上,則關于x的方程mx2+5x+n=0是倍根方程.上述結(jié)論中正確的有(

)A.①② B.③④ C.②③ D.②④5.關于x的不等式的解集為x>3,那么a的取值范圍為()A.a(chǎn)>3 B.a(chǎn)<3 C.a(chǎn)≥3 D.a(chǎn)≤36.若是關于x的方程的一個根,則方程的另一個根是()A.9 B.4 C.4 D.37.自2013年10月總書記提出“精準扶貧”的重要思想以來.各地積極推進精準扶貧,加大幫扶力度.全國脫貧人口數(shù)不斷增加.僅2017年我國減少的貧困人口就接近1100萬人.將1100萬人用科學記數(shù)法表示為()A.1.1×103人 B.1.1×107人 C.1.1×108人 D.11×106人8.下列二次根式中,最簡二次根式的是()A. B. C. D.9.已知反比例函數(shù)y=﹣,當﹣3<x<﹣2時,y的取值范圍是()A.0<y<1 B.1<y<2 C.2<y<3 D.﹣3<y<﹣210.某小組在“用頻率估計概率”的試驗中,統(tǒng)計了某種結(jié)果出現(xiàn)的頻率,繪制了如圖所示的折線圖,那么符合這一結(jié)果的試驗最有可能的是()A.在裝有1個紅球和2個白球(除顏色外完全相同)的不透明袋子里隨機摸出一個球是“白球”B.從一副撲克牌中任意抽取一張,這張牌是“紅色的”C.擲一枚質(zhì)地均勻的硬幣,落地時結(jié)果是“正面朝上”D.擲一個質(zhì)地均勻的正六面體骰子,落地時面朝上的點數(shù)是6二、填空題(共7小題,每小題3分,滿分21分)11.已知數(shù)據(jù)x1,x2,…,xn的平均數(shù)是,則一組新數(shù)據(jù)x1+8,x2+8,…,xn+8的平均數(shù)是____.12.如圖,甲、乙兩船同時從港口出發(fā),甲船以60海里/時的速度沿北偏東60°方向航行,乙船沿北偏西30°方向航行,半小時后甲船到達點C,乙船正好到達甲船正西方向的點B,則乙船的航程為______海里(結(jié)果保留根號).13.如圖,已知直線m∥n,∠1=100°,則∠2的度數(shù)為_____.14.若方程x2﹣4x+1=0的兩根是x1,x2,則x1(1+x2)+x2的值為_____.15.一組數(shù)據(jù):1,2,a,4,5的平均數(shù)為3,則a=_____.16.方程的解是.17.一個圓錐的母線長為5cm,底面半徑為1cm,那么這個圓錐的側(cè)面積為_____cm1.三、解答題(共7小題,滿分69分)18.(10分)如圖,已知在⊙O中,AB是⊙O的直徑,AC=8,BC=1.求⊙O的面積;若D為⊙O上一點,且△ABD為等腰三角形,求CD的長.19.(5分)如圖,在平行四邊形ABCD中,E為BC邊上一點,連結(jié)AE、BD且AE=AB.求證:∠ABE=∠EAD;若∠AEB=2∠ADB,求證:四邊形ABCD是菱形.20.(8分)定義:和三角形一邊和另兩邊的延長線同時相切的圓叫做三角形這邊上的旁切圓.如圖所示,已知:⊙I是△ABC的BC邊上的旁切圓,E、F分別是切點,AD⊥IC于點D.(1)試探究:D、E、F三點是否同在一條直線上?證明你的結(jié)論.(2)設AB=AC=5,BC=6,如果△DIE和△AEF的面積之比等于m,,試作出分別以,為兩根且二次項系數(shù)為6的一個一元二次方程.21.(10分)為節(jié)約用水,某市居民生活用水按階梯式水價計量,水價分為三個階梯,價格表如下表所示:某市自來水銷售價格表類別月用水量(立方米)供水價格(元/立方米)污水處理費(元/立方米)居民生活用水階梯一0~18(含18)1.901.00階梯二18~25(含25)2.85階梯三25以上5.70(注:居民生活用水水價=供水價格+污水處理費)(1)當居民月用水量在18立方米及以下時,水價是_____元/立方米.(2)4月份小明家用水量為20立方米,應付水費為:18×(1.90+1.00)+2×(2.85+1.00)=59.90(元)預計6月份小明家的用水量將達到30立方米,請計算小明家6月份的水費.(3)為了節(jié)省開支,小明家決定每月用水的費用不超過家庭收入的1%,已知小明家的平均月收入為7530元,請你為小明家每月用水量提出建議22.(10分)已知:如圖,AB為⊙O的直徑,AB=AC,BC交⊙O于點D,DE⊥AC于E.(1)求證:DE為⊙O的切線;(2)G是ED上一點,連接BE交圓于F,連接AF并延長交ED于G.若GE=2,AF=3,求EF的長.23.(12分)某商城銷售A,B兩種自行車型自行車售價為2

100元輛,B型自行車售價為1

750元輛,每輛A型自行車的進價比每輛B型自行車的進價多400元,商城用80

000元購進A型自行車的數(shù)量與用64

000元購進B型自行車的數(shù)量相等.求每輛A,B兩種自行車的進價分別是多少?現(xiàn)在商城準備一次購進這兩種自行車共100輛,設購進A型自行車m輛,這100輛自行車的銷售總利潤為y元,要求購進B型自行車數(shù)量不超過A型自行車數(shù)量的2倍,總利潤不低于13

000元,求獲利最大的方案以及最大利潤.24.(14分)計算:(﹣2018)0﹣4sin45°+﹣2﹣1.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】試題分析:原式=1-(-3)+=1+3+1=5,故選A.2、A【解析】

先計算括號內(nèi)分式的減法,再將除法轉(zhuǎn)化為乘法,最后約分即可化簡原式,繼而將3x=4y代入即可得.【詳解】解:∵原式===∵3x-4y=0,∴3x=4y原式==1故選:A.【點睛】本題主要考查分式的化簡求值,解題的關鍵是熟練掌握分式的混合運算順序和運算法則.3、D【解析】試題分析:連結(jié)OA,如圖,∵AB⊥x軸,∴OC∥AB,∴S△OAB=S△CAB=3,而S△OAB=|k|,∴|k|=3,∵k<0,∴k=﹣1.故選D.考點:反比例函數(shù)系數(shù)k的幾何意義.4、C【解析】分析:①通過解方程得到該方程的根,結(jié)合“倍根方程”的定義進行判斷;②設=2,得到?=2=2,得到當=1時,=2,當=-1時,=-2,于是得到結(jié)論;③根據(jù)“倍根方程”的定義即可得到結(jié)論;④若點(m,n)在反比例函數(shù)y=的圖象上,得到mn=4,然后解方程m+5x+n=0即可得到正確的結(jié)論;詳解:①由-2x-8=0,得:(x-4)(x+2)=0,解得=4,=-2,∵≠2,或≠2,∴方程-2x-8=0不是倍根方程;故①錯誤;②關于x的方程+ax+2=0是倍根方程,∴設=2,∴?=2=2,∴=±1,當=1時,=2,當=-1時,=-2,∴+=-a=±3,∴a=±3,故②正確;③關于x的方程a-6ax+c=0(a≠0)是倍根方程,∴=2,∵拋物線y=a-6ax+c的對稱軸是直線x=3,∴拋物線y=a-6ax+c與x軸的交點的坐標是(2,0)和(4,0),故③正確;④∵點(m,n)在反比例函數(shù)y=的圖象上,∴mn=4,解m+5x+n=0得=,=,∴=4,∴關于x的方程m+5x+n=0不是倍根方程;故選C.點睛:本題考查了反比例函數(shù)圖象上點的坐標特征,根與系數(shù)的關系,正確的理解倍根方程的定義是解題的關鍵.5、D【解析】分析:先解第一個不等式得到x>3,由于不等式組的解集為x>3,則利用同大取大可得到a的范圍.詳解:解不等式2(x-1)>4,得:x>3,解不等式a-x<0,得:x>a,∵不等式組的解集為x>3,∴a≤3,故選D.點睛:本題考查了解一元一次不等式組:解一元一次不等式組時,一般先求出其中各不等式的解集,再求出這些解集的公共部分,利用數(shù)軸可以直觀地表示不等式組的解集.解集的規(guī)律:同大取大;同小取?。淮笮⌒〈笾虚g找;大大小小找不到.6、D【解析】

解:設方程的另一個根為a,由一元二次方程根與系數(shù)的故選可得,解得a=,故選D.7、B【解析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】解:1100萬=11000000=1.1×107.故選B.【點睛】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.8、C【解析】

判定一個二次根式是不是最簡二次根式的方法,就是逐個檢查最簡二次根式的兩個條件是否同時滿足,同時滿足的就是最簡二次根式,否則就不是.【詳解】A、=,被開方數(shù)含分母,不是最簡二次根式;故A選項錯誤;B、=,被開方數(shù)為小數(shù),不是最簡二次根式;故B選項錯誤;C、,是最簡二次根式;故C選項正確;D.=,被開方數(shù),含能開得盡方的因數(shù)或因式,故D選項錯誤;故選C.考點:最簡二次根式.9、C【解析】分析:由題意易得當﹣3<x<﹣2時,函數(shù)的圖象位于第二象限,且y隨x的增大而增大,再計算出當x=-3和x=-2時對應的函數(shù)值,即可作出判斷了.詳解:∵在中,﹣6<0,∴當﹣3<x<﹣2時函數(shù)的圖象位于第二象限內(nèi),且y隨x的增大而增大,∵當x=﹣3時,y=2,當x=﹣2時,y=3,∴當﹣3<x<﹣2時,2<y<3,故選C.點睛:熟悉“反比例函數(shù)的圖象和性質(zhì)”是正確解答本題的關鍵.10、D【解析】

根據(jù)統(tǒng)計圖可知,試驗結(jié)果在0.16附近波動,即其概率P≈0.16,計算四個選項的概率,約為0.16者即為正確答案.【詳解】根據(jù)圖中信息,某種結(jié)果出現(xiàn)的頻率約為0.16,在裝有1個紅球和2個白球(除顏色外完全相同)的不透明袋子里隨機摸出一個球是“白球”的概率為≈0.67>0.16,故A選項不符合題意,從一副撲克牌中任意抽取一張,這張牌是“紅色的”概率為≈0.48>0.16,故B選項不符合題意,擲一枚質(zhì)地均勻的硬幣,落地時結(jié)果是“正面朝上”的概率是=0.5>0.16,故C選項不符合題意,擲一個質(zhì)地均勻的正六面體骰子,落地時面朝上的點數(shù)是6的概率是≈0.16,故D選項符合題意,故選D.【點睛】本題考查了利用頻率估計概率,大量反復試驗下頻率穩(wěn)定值即概率.用到的知識點為:頻率=所求情況數(shù)與總情況數(shù)之比.熟練掌握概率公式是解題關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】

根據(jù)數(shù)據(jù)x1,x2,…,xn的平均數(shù)為=(x1+x2+…+xn),即可求出數(shù)據(jù)x1+1,x2+1,…,xn+1的平均數(shù).【詳解】數(shù)據(jù)x1+1,x2+1,…,xn+1的平均數(shù)=(x1+1+x2+1+…+xn+1)=(x1+x2+…+xn)+1=+1.故答案為+1.【點睛】本題考查了平均數(shù)的概念,平均數(shù)是指在一組數(shù)據(jù)中所有數(shù)據(jù)之和再除以數(shù)據(jù)的個數(shù).平均數(shù)是表示一組數(shù)據(jù)集中趨勢的量數(shù),它是反映數(shù)據(jù)集中趨勢的一項指標.12、10海里.【解析】

本題可以求出甲船行進的距離AC,根據(jù)三角函數(shù)就可以求出AB,即可求出乙船的路程.【詳解】由已知可得:AC=60×0.5=30海里,又∵甲船以60海里/時的速度沿北偏東60°方向航行,乙船沿北偏西30°,∴∠BAC=90°,又∵乙船正好到達甲船正西方向的B點,∴∠C=30°,∴AB=AC?tan30°=30×=10海里.答:乙船的路程為10海里.故答案為10海里.【點睛】本題主要考查的是解直角三角形的應用-方向角問題及三角函數(shù)的定義,理解方向角的定義是解決本題的關鍵.13、80°.【解析】

如圖,已知m∥n,根據(jù)平行線的性質(zhì)可得∠1=∠3,再由平角的定義即可求得∠2的度數(shù).【詳解】如圖,∵m∥n,∴∠1=∠3,∵∠1=100°,∴∠3=100°,∴∠2=180°﹣100°=80°,故答案為80°.【點睛】本題考查了平行線的性質(zhì),熟練運用平行線的性質(zhì)是解決問題的關鍵.14、5【解析】由題意得,,.∴原式15、1【解析】依題意有:(1+2+a+4+5)÷5=1,解得a=1.故答案為1.16、x=1.【解析】

根據(jù)解分式方程的步驟解答即可.【詳解】去分母得:2x=3x﹣1,解得:x=1,經(jīng)檢驗x=1是分式方程的解,故答案為x=1.【點睛】本題主要考查了解分式方程的步驟,牢牢掌握其步驟就解答此類問題的關鍵.17、【解析】分析:根據(jù)圓錐的側(cè)面展開圖為扇形,先計算出圓錐的底面圓的周長,然后利用扇形的面積公式求解.詳解:∵圓錐的底面半徑為5cm,∴圓錐的底面圓的周長=1π?5=10π,∴圓錐的側(cè)面積=?10π?1=10π(cm1).故答案為10π.點睛:本題考查了圓錐的側(cè)面積的計算:圓錐的側(cè)面展開圖為扇形,扇形的弧長為圓錐的底面周長,扇形的半徑為圓錐的母線長.也考查了扇形的面積公式:S=?l?R,(l為弧長).三、解答題(共7小題,滿分69分)18、(1)25π;(2)CD1=,CD2=7【解析】分析:(1)利用圓周角定理的推論得到∠C是直角,利用勾股定理求出直徑AB,再利用圓的面積公式即可得到答案;(2)分點D在上半圓中點與點D在下半圓中點這兩種情況進行計算即可.詳解:(1)∵AB是⊙O的直徑,∴∠ACB=90°,∵AB是⊙O的直徑,∴AC=8,BC=1,∴AB=10,∴⊙O的面積=π×52=25π.(2)有兩種情況:①如圖所示,當點D位于上半圓中點D1時,可知△ABD1是等腰直角三角形,且OD1⊥AB,作CE⊥AB垂足為E,CF⊥OD1垂足為F,可得矩形CEOF,∵CE=,∴OF=CE=,∴,∵=,∴,∴,∴;②如圖所示,當點D位于下半圓中點D2時,同理可求.∴CD1=,CD2=7點睛:本題考查了圓周角定理的推論、勾股定理、矩形的性質(zhì)等知識.利用分類討論思想并合理構(gòu)造輔助線是解題的關鍵.19、(1)證明見解析;(2)證明見解析.【解析】

(1)根據(jù)平行四邊形的對邊互相平行可得AD∥BC,再根據(jù)兩直線平行,內(nèi)錯角相等可得∠AEB=∠EAD,根據(jù)等邊對等角可得∠ABE=∠AEB,即可得證.(2)根據(jù)兩直線平行,內(nèi)錯角相等可得∠ADB=∠DBE,然后求出∠ABD=∠ADB,再根據(jù)等角對等邊求出AB=AD,然后利用鄰邊相等的平行四邊形是菱形證明即可.【詳解】證明:(1)∵在平行四邊形ABCD中,AD∥BC,∴∠AEB=∠EAD.∵AE=AB,∴∠ABE=∠AEB.∴∠ABE=∠EAD.(2)∵AD∥BC,∴∠ADB=∠DBE.∵∠ABE=∠AEB,∠AEB=2∠ADB,∴∠ABE=2∠ADB.∴∠ABD=∠ABE-∠DBE=2∠ADB-∠ADB=∠ADB.∴AB=AD.又∵四邊形ABCD是平行四邊形,∴四邊形ABCD是菱形.20、(1)D、E、F三點是同在一條直線上.(2)6x2﹣13x+6=1.【解析】(1)利用切線長定理及梅氏定理即可求證;(2)利用相似和韋達定理即可求解.解:(1)結(jié)論:D、E、F三點是同在一條直線上.證明:分別延長AD、BC交于點K,由旁切圓的定義及題中已知條件得:AD=DK,AC=CK,再由切線長定理得:AC+CE=AF,BE=BF,∴KE=AF.∴,由梅涅勞斯定理的逆定理可證,D、E、F三點共線,即D、E、F三點共線.(2)∵AB=AC=5,BC=6,∴A、E、I三點共線,CE=BE=3,AE=4,連接IF,則△ABE∽△AIF,△ADI∽△CEI,A、F、I、D四點共圓.設⊙I的半徑為r,則:,∴,即,,∴由△AEF∽△DEI得:,∴.∴,因此,由韋達定理可知:分別以、為兩根且二次項系數(shù)為6的一個一元二次方程是6x2﹣13x+6=1.點睛:本是一道關于圓的綜合題.正確分析圖形并應用圖形的性質(zhì)是解題的關鍵.21、(1)1.90;(2)112.65元;(3)當小明家每月的用水量不要超過24立方米時,水費就不會超過他們家庭總收入的1%.【解析】試題分析:(1)由表中數(shù)據(jù)可知,當用水量在18立方米及以下時,水價為1.9元/立方米;(2)由題意可知小明家6月份的水費是:(1.9+1)×18+(2.85+1)×7+(5.70+1)×5=112.65(元);(3)由已知條件可知,用水量為18立方米時,應交水費52.2元,當用水量為25立方米時,應交水費79.15元,而小明家計劃的水費不超過75.3元,由此可知他們家的用水量不會超過25立方米,設他們家的用水量為x立方米,則由題意可得:18×(1.9+1)+(x-18)×(2.85+1)75.3,解得:x24,即小明家每月的用水量不要超過24立方米.試題解析:(1)由表中數(shù)據(jù)可知,當用水量在18立方米及以下時,水價為1.9元/立方米;(2)由題意可得:小明家6月份的水費是:(1.9+1)×18+(2.85+1)×7+(5.70+1)×5=112.65(元);(3)由題意可知,當用水量為18立方米時,應交水費52.2元,當用水量為25立方米時,應交水費79.15元,而小明家計劃的水費不超過75.3元,由此可知他們家的用水量不超過18立方米,而不足25立方米,設他們家的用水量為x立方米,則由題意可得:18×(1.9+1)+(x-18)×(2.85+1)75.3,解得:x24,∴當小明家每月的用水量不要超過24立方米時,水費就不會超過他們家庭總收入的1%.22、(1)見解析;(2)∠EAF的度數(shù)為30°【解析】

(1)連接OD,如圖,先證明OD∥AC,再利用DE⊥AC得到OD⊥DE,然后根據(jù)切線的判定定理得到結(jié)論;(2)利用圓周角定理得到∠AFB=90°,再證明Rt△GEF∽△Rt△GAE,利用相似比得到于是可求出GF=1,然后在Rt△AEG中利用正弦定義求出∠EAF的度數(shù)即可.【詳解】(1)證明:連接OD,如圖,∵OB=OD,∴∠OBD=∠ODB,∵AB=AC,∴∠ABC=∠C,∴∠ODB=∠C,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∴DE為⊙O的切線;(2)解:∵AB為直徑,∴∠AFB=90°,∵∠EGF=∠AGF,∴Rt△GEF∽△Rt△GAE,∴,即整理得GF2+3GF﹣4=0,解得GF=1或GF=﹣4(舍

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論