衡陽市重點中學2024年高一下數(shù)學期末學業(yè)水平測試試題含解析_第1頁
衡陽市重點中學2024年高一下數(shù)學期末學業(yè)水平測試試題含解析_第2頁
衡陽市重點中學2024年高一下數(shù)學期末學業(yè)水平測試試題含解析_第3頁
衡陽市重點中學2024年高一下數(shù)學期末學業(yè)水平測試試題含解析_第4頁
衡陽市重點中學2024年高一下數(shù)學期末學業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

衡陽市重點中學2024年高一下數(shù)學期末學業(yè)水平測試試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知樣本數(shù)據(jù)為3,1,3,2,3,2,則這個樣本的中位數(shù)與眾數(shù)分別為()A.2,3 B.3,3 C.2.5,3 D.2.5,22.在區(qū)間內(nèi)隨機取一個實數(shù)a,使得關于x的方程有實數(shù)根的概率為()A. B. C. D.3.在△ABC中,A=60°,AB=2,且△ABC的面積為,則BC的長為().A. B.2 C. D.4.給出下列命題:(1)存在實數(shù)使.(2)直線是函數(shù)圖象的一條對稱軸.(3)的值域是.(4)若都是第一象限角,且,則.其中正確命題的題號為()A.(1)(2) B.(2)(3) C.(3)(4) D.(1)(4)5.如果將直角三角形的三邊都增加1個單位長度,那么新三角形()A.一定是銳角三角形 B.一定是鈍角三角形C.一定是直角三角形 D.形狀無法確定6.函數(shù)f(x)=4A.2kπ+π6C.2kπ+π127.棱長為2的正四面體的表面積是()A. B.4 C. D.168.不論為何值,直線恒過定點A. B. C. D.9.若某幾何體的三視圖如圖所示,則該幾何體的體積是()A. B. C. D.310.已知的定義域為,若對于,,,,,分別為某個三角形的三邊長,則稱為“三角形函數(shù)”,下例四個函數(shù)為“三角形函數(shù)”的是()A.; B.;C.; D.二、填空題:本大題共6小題,每小題5分,共30分。11.無窮等比數(shù)列的首項是某個正整數(shù),公比為單位分數(shù)(即形如:的分數(shù),為正整數(shù)),若該數(shù)列的各項和為3,則________.12.在一個不透明的布袋中,紅色,黑色,白色的玻璃球共有40個,除顏色外其他完全相同,小明通過多次摸球試驗后發(fā)現(xiàn)其中摸到紅色球,黑色球的頻率穩(wěn)定在15%和45%,則口袋中白色球的個數(shù)可能是_________個.13.若直線l1:ax+3y+1=0與l2:2x+(a+1)y+1=0互相平行,則a的值為________.14.已知數(shù)列的通項公式為,數(shù)列的通項公式為,設,若在數(shù)列中,對任意恒成立,則實數(shù)的取值范圍是_________.15.已知正實數(shù)滿足,則的最小值為__________.16.在平面直角坐標系xOy中,角與角均以Ox為始邊,它們的終邊關于y軸對稱.若,則________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知圓,為坐標原點,動點在圓外,過點作圓的切線,設切點為.(1)若點運動到處,求此時切線的方程;(2)求滿足的點的軌跡方程.18.在中,內(nèi)角的對邊分別為,已知.(1)證明:;(2)若,求邊上的高.19.已知函數(shù).(1)求函數(shù)的最小正周期和值域;(2)設為的三個內(nèi)角,若,,求的值.20.土筍凍是閩南種廣受歡迎的特色傳統(tǒng)風味小吃某小區(qū)超市銷售一款土筍凍,進價為每個15元,售價為每個20元.銷售的方案是當天進貨,當天銷售,未售出的全部由廠家以每個10元的價格回購處理.根據(jù)該小區(qū)以往的銷售情況,得到如圖所示的頻率分布直方圖:(1)估算該小區(qū)土筍凍日需求量的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表);(2)已知該超市某天購進了150個土筍凍,假設當天的需求量為個銷售利潤為元.(i)求關于的函數(shù)關系式;(ii)結(jié)合上述頻率分布直方圖,以額率估計概率的思想,估計當天利潤不小于650元的概率.21.如圖,在多面體中,為等邊三角形,,點為邊的中點.(Ⅰ)求證:平面;(Ⅱ)求證:平面平面;(Ⅲ)求直線與平面所成角的正弦值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

將樣本數(shù)據(jù)從小到大排列即可求得中位數(shù),再找出出現(xiàn)次數(shù)最多的數(shù)即為眾數(shù).【詳解】將樣本數(shù)據(jù)從小到大排列:1,2,2,3,3,3,中位數(shù)為,眾數(shù)為3.故選:C.【點睛】本題考查了中位數(shù)和眾數(shù)的概念,屬于基礎題.2、C【解析】

由關于x的方程有實數(shù)根,求得,再結(jié)合長度比的幾何概型,即可求解,得到答案.【詳解】由題意,關于x的方程有實數(shù)根,則滿足,解得,所以在區(qū)間內(nèi)隨機取一個實數(shù)a,使得關于x的方程有實數(shù)根的概率為.故選:C.【點睛】本題主要考查了幾何概型的概率的計算問題,解決此類問題的步驟:求出滿足條件A的基本事件對應的“幾何度量”,再求出總的基本事件對應的“幾何度量”,然后根據(jù)求解,著重考查了分析問題和解答問題的能力,屬于基礎題.3、D【解析】

利用三角形面積公式列出關系式,把,已知面積代入求出的長,再利用余弦定理即可求出的長.【詳解】∵在中,,且的面積為,

∴,

解得:,

由余弦定理得:,

則.

故選D.【點睛】此題考查了余弦定理,三角形面積公式,以及特殊角的三角函數(shù)值,熟練掌握余弦定理是解本題的關鍵.4、C【解析】

(1)化簡求值域進行判斷;(2)根據(jù)函數(shù)的對稱性可判斷;(3)根據(jù)余弦函數(shù)的圖像性質(zhì)可判斷;(4)利用三角函數(shù)線可進行判斷.【詳解】解:(1),(1)錯誤;(2)是函數(shù)圖象的一個對稱中心,(2)錯誤;(3)根據(jù)余弦函數(shù)的性質(zhì)可得的最大值為,,其值域是,(3)正確;(4)若都是第一象限角,且,利用三角函數(shù)線有,(4)正確.故選.【點睛】本題考查正弦函數(shù)與余弦函數(shù)、正切函數(shù)的性質(zhì),以及三角函數(shù)線定義,著重考查學生綜合運用三角函數(shù)的性質(zhì)分析問題、解決問題的能力,屬于中檔題.5、A【解析】

直角三角形滿足勾股定理,,再比較,,大小關系即可.【詳解】設直角三角形滿足,則,又為新三角形最長邊,所以所以最大角為銳角,所以三角形為銳角三角形.故選A【點睛】判斷三角形形狀一般可通過余弦定理判斷,若有一角的余弦值小于零則為鈍角三角形,等于零則為直角三角形,最大角的余弦值大于零則為銳角三角形,屬于較易題目.6、D【解析】

解不等式4sin【詳解】因為f(x)=4所以4sinxcos解得kπ+π故選:D【點睛】本題主要考查三角函數(shù)定義域的求法,考查解三角不等式,意在考查學生對這些知識的理解掌握水平,屬于基礎題.7、C【解析】

根據(jù)題意求出一個面的面積,然后乘以4即可得到正四面體的表面積.【詳解】每個面的面積為,∴正四面體的表面積為.【點睛】本題考查正四面體的表面積,正四面體四個面均為正三角形.8、B【解析】

根據(jù)直線方程分離參數(shù),再由直線過定點的條件可得方程組,解方程組進而可得m的值.【詳解】恒過定點,恒過定點,由解得即直線恒過定點.【點睛】本題考查含有參數(shù)的直線過定點問題,過定點是解題關鍵.9、B【解析】

先由三視圖判斷該幾何體為底面是直角三角形的直三棱柱,由棱柱的體積公式即可求出結(jié)果.【詳解】據(jù)三視圖分析知,該幾何體是底面為直角三角形的直三棱柱,且三棱柱的底面直角三角形的直角邊長分別為1和,三棱柱的高為,所以該幾何體的體積.【點睛】本題主要考查幾何體的三視圖,由三視圖求幾何體的體積,屬于基礎題型.10、B【解析】由三角形的三邊關系,可得“三角形函數(shù)”的最大值小于最小值的二倍,因為單調(diào)遞增,無最大值和最小值,故排除A,,符合“三角形函數(shù)”的條件,即B正確,單調(diào)遞增,最大值為4,最小值為1,故排除C,單調(diào)遞增,最小值為1,最大值為,故排除D.故選B.點睛:本題以新定義為載體考查函數(shù)的單調(diào)性和最值;解決本題的關鍵在于正確理解“三角形函數(shù)”的含義,正確將問題轉(zhuǎn)化為“判定函數(shù)的最大值和最小值間的關系”進行處理,充分體現(xiàn)轉(zhuǎn)化思想的應用.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

利用無窮等比數(shù)列的各項和,可求得,從而,利用首項是某個自然數(shù),可求,進而可求出.【詳解】無窮等比數(shù)列各項和為3,,是個自然數(shù),則,.故答案為:【點睛】本題主要考查了等比數(shù)列的前項和公式,需熟記公式,屬于基礎題.12、16【解析】

根據(jù)紅色球和黑色球的頻率穩(wěn)定值,計算紅色球和黑色球的個數(shù),從而得到白色球的個數(shù).【詳解】根據(jù)概率是頻率的穩(wěn)定值的意義,紅色球的個數(shù)為個;黑色球的個數(shù)為個;故白色球的個數(shù)為4個.故答案為:16.【點睛】本題考查概率和頻率之間的關系:概率是頻率的穩(wěn)定值.13、-3【解析】試題分析:由兩直線平行可得:,經(jīng)檢驗可知時兩直線重合,所以.考點:直線平行的判定.14、【解析】

首先分析題意,可知是取和中的最大值,且是該數(shù)列中的最小項,結(jié)合數(shù)列的單調(diào)性和數(shù)列的單調(diào)性可得出或,代入數(shù)列的通項公式即可求出實數(shù)的取值范圍.【詳解】由題意可知,是取和中的最大值,且是數(shù)列中的最小項.若,則,則前面不會有數(shù)列的項,由于數(shù)列是單調(diào)遞減數(shù)列,數(shù)列是單調(diào)遞增數(shù)列.,數(shù)列單調(diào)遞減,當時,必有,即.此時,應有,,即,解得.,即,得,此時;若,則,同理,前面不能有數(shù)列的項,即,當時,數(shù)列單調(diào)遞增,數(shù)列單調(diào)遞減,.當時,,由,即,解得.由,得,解得,此時.綜上所述,實數(shù)的取值范圍是.故答案為:.【點睛】本題考查利用數(shù)列的最小項求參數(shù)的取值范圍,同時也考查了數(shù)列中的新定義,解題的關鍵就是要分析出數(shù)列的單調(diào)性,利用一些特殊項的大小關系得出不等式組進行求解,考查分析問題和解決問題的能力,屬于難題.15、6【解析】

由題得,解不等式即得x+y的最小值.【詳解】由題得,所以,所以,所以x+y≥6或x+y≤-2(舍去),所以x+y的最小值為6.當且僅當x=y=3時取等.故答案為:6【點睛】本題主要考查基本不等式求最值,意在考查學生對該知識的理解掌握水平和分析推理能力.16、【解析】

由題意得出,結(jié)合誘導公式,二倍角公式求解即可.【詳解】,則角的終邊可能在第一、二象限由圖可知,無論角的終邊在第一象限還是第二象限,都有故答案為:【點睛】本題主要考查了利用二倍角的余弦公式以及誘導公式化簡求值,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)或;(2).【解析】

解:把圓C的方程化為標準方程為(x+1)2+(y-2)2=4,∴圓心為C(-1,2),半徑r=2.(1)當l的斜率不存在時,此時l的方程為x=1,C到l的距離d=2=r,滿足條件.當l的斜率存在時,設斜率為k,得l的方程為y-3=k(x-1),即kx-y+3-k=0,則=2,解得k=.∴l(xiāng)的方程為y-3=(x-1),即3x+4y-15=0.綜上,滿足條件的切線l的方程為或.(2)設P(x,y),則|PM|2=|PC|2-|MC|2=(x+1)2+(y-2)2-4,|PO|2=x2+y2,∵|PM|=|PO|.∴(x+1)2+(y-2)2-4=x2+y2,整理,得2x-4y+1=0,∴點P的軌跡方程為.考點:直線與圓的位置關系;圓的切線方程;點的軌跡方程.18、(1)見解析(2)【解析】分析:(1)由,結(jié)合正弦定理可得,即;(2)由,結(jié)合余弦定理可得,從而可求得邊上的高.詳解:(1)證明:因為,所以,所以,故.(2)解:因為,所以.又,所以,解得,所以,所以邊上的高為.點睛:解三角形問題,多為邊和角的求值問題,這就需要根據(jù)正、余弦定理結(jié)合已知條件靈活轉(zhuǎn)化邊和角之間的關系,從而達到解決問題的目的.其基本步驟是:第一步:定條件,即確定三角形中的已知和所求,在圖形中標出來,然后確定轉(zhuǎn)化的方向.第二步:定工具,即根據(jù)條件和所求合理選擇轉(zhuǎn)化的工具,實施邊角之間的互化.第三步:求結(jié)果.19、(1)周期,值域為;(2).【解析】

(1)利用二倍角降冪公式與輔助角公式將函數(shù)的解析式進行化簡,利用周期公式求出函數(shù)的最小正周期,并求出函數(shù)的值域;(2)先由的值,求出角的值,然后由結(jié)合同角三角函數(shù)的基本關系以及兩角和的余弦公式求出的值.【詳解】(1)∵且,∴所求周期,值域為;(2)∵是的三個內(nèi)角,,∴∴又,即,又∵,故,故.【點睛】本題考查三角函數(shù)與解三角形的綜合問題,考查三角函數(shù)的基本性質(zhì)以及三角形中的求值問題,求解三角函數(shù)的問題時,要將三角函數(shù)解析式進行化簡,結(jié)合正余弦函數(shù)的基本性質(zhì)求解,考查分析問題的能力和計算能力,屬于中等題.20、(1)(2)(i)();(ii)【解析】

(1)設日需求量為,直接利用頻率分布圖中的平均數(shù)公式估算該小區(qū)土筍凍日需求量的平均數(shù);(2)(i)分類討論得();(ii)由(i)可知,利潤,當且僅當日需求量,再利用互斥事件的概率和公式求解.【詳解】解:(1)設日需求量為,依題意的頻率為;的頻率為;的頻率為;的頻率為.則與的頻率為.故該小區(qū)土筍凍日需求量的平均數(shù),.(2)(i)當時,;當時,.故()(ii)由(i)可知,利潤,當且僅當日需求量.由頻率分布直方圖可知,日需求量的頻率約為,以頻率估計概率的思想,估計當天利潤不小于元的概率為.【點睛】本

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論