版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆四川省成都市雙流中學(xué)數(shù)學(xué)高一下期末質(zhì)量檢測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在中,,是的內(nèi)心,若,其中,動點的軌跡所覆蓋的面積為(
)A. B. C. D.2.已知點,則P在平面直角坐標系中位于A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知數(shù)列的前項和為,若,則()A. B. C. D.4.一個幾何體的三視圖如圖所示,則這個幾何體的體積等于()A. B.或 C.或 D.5.設(shè),,,則,,的大小關(guān)系是()A. B. C. D.6.已知等比數(shù)列的公比,該數(shù)列前9項的乘積為1,則()A.8 B.16 C.32 D.647.函數(shù),是A.最小正周期為的奇函數(shù) B.最小正周期為的偶函數(shù)C.最小正周期為的奇函數(shù) D.最小正周期為的偶函數(shù)8.設(shè)是△所在平面上的一點,若,則的最小值為A. B. C. D.9.已知直線,,若,則()A.2 B. C. D.110.已知圓內(nèi)接四邊形ABCD各邊的長度分別為AB=5,BC=8,CD=3,DA=5,則AC的長為()A.6 B.7 C.8 D.9二、填空題:本大題共6小題,每小題5分,共30分。11.把函數(shù)的圖象向左平移個單位長度,所得圖象正好關(guān)于原點對稱,則的最小值為________.12.在數(shù)列中,,當時,.則數(shù)列的前項和是_____.13.如圖,在正方體中,點是線段上的動點,則直線與平面所成的最大角的余弦值為________.14.已知單位向量與的夾角為,且,向量與的夾角為,則=.15.已知等差數(shù)列,,,,則______.16.已知數(shù)列中,,當時,,數(shù)列的前項和為_____.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在中,角所對的邊為.已知面積(1)若求的值;(2)若,求的值.18.在中,,且.(1)求邊長;(2)求邊上中線的長.19.已知都是第二象限的角,求的值。20.求下列各式的值:(1)求的值;(2)已知,,且,,求的值.21.已知數(shù)列的前項和,且;(1)求它的通項.(2)若,求數(shù)列的前項和.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
畫出圖形,由已知條件便知P點在以BD,BP為鄰邊的平行四邊形內(nèi),從而所求面積為2倍的△AOB的面積,從而需求S△AOB:由余弦定理可以求出AB的長為5,根據(jù)O為△ABC的內(nèi)心,從而O到△ABC三邊的距離相等,從而,由面積公式可以求出△ABC的面積,從而求出△AOB的面積,這樣2S△AOB便是所求的面積.【詳解】如圖,根據(jù)題意知,P點在以BP,BD為鄰邊的平行四邊形內(nèi)部,∴動點P的軌跡所覆蓋圖形的面積為2S△AOB;在△ABC中,cos,AC=6,BC=7;∴由余弦定理得,;解得:AB=5,或AB=(舍去);又O為△ABC的內(nèi)心;所以內(nèi)切圓半徑r=,所以∴==;∴動點P的軌跡所覆蓋圖形的面積為.故答案為:A.【點睛】本題主要考查考查向量加法的平行四邊形法則,向量數(shù)乘的幾何意義,余弦定理,以及三角形內(nèi)心的定義,三角形的面積公式.意在考查學(xué)生對這些知識的掌握水平和分析推理能力.(2)本題的解題關(guān)鍵是找到P點所覆蓋的區(qū)域.2、B【解析】
利用特殊角的三角函數(shù)值的符號得到點的坐標,直接判斷點所在象限即可.【詳解】,.在平面直角坐標系中位于第二象限.故選B.【點睛】本題考查了三角函數(shù)值的符號,考查了三角函數(shù)的誘導(dǎo)公式的應(yīng)用,是基礎(chǔ)題.3、A【解析】
再遞推一步,兩個等式相減,得到一個等式,進行合理變形,可以得到一個等比數(shù)列,求出通項公式,最后求出數(shù)列的通項公式,最后求出,選出答案即可.【詳解】因為,所以當時,,兩式相減化簡得:,而,所以數(shù)列是以為首項,為公比的等比數(shù)列,因此有,所以,故本題選A.【點睛】本題考查了已知數(shù)列遞推公式求數(shù)列通項公式的問題,考查了等比數(shù)列的判斷以及通項公式,正確的遞推和等式的合理變形是解題的關(guān)鍵.4、D【解析】
作出幾何體的直觀圖,可知幾何體為正方體切一角所得的組合體,計算出正方體的體積和所切去三棱錐的體積,相減可得答案.【詳解】幾何體的直觀圖如下圖所示:可知幾何體為正方體切一角所得的組合體,因此,該幾何體的體積為.故選:D.【點睛】本題考查的知識點是由三視圖求體積,其中根據(jù)三視圖作出幾何體的直觀圖是解答的關(guān)鍵,考查空間想象能力與計算能力,屬于中等題.5、D【解析】
首先確定題中,,的取值范圍,再根據(jù)大小排序即可.【詳解】由題知,,,,所以排序得到.故選:D.【點睛】本題主要考查了比較指數(shù)對數(shù)的大小問題,屬于基礎(chǔ)題.6、B【解析】
先由數(shù)列前9項的乘積為1,結(jié)合等比數(shù)列的性質(zhì)得到,從而可求出結(jié)果.【詳解】由已知,又,所以,即,所以,,故選B.【點睛】本題主要考查等比數(shù)列的性質(zhì)以及等比數(shù)列的基本量計算,熟記等比數(shù)列的性質(zhì)與通項公式即可,屬于??碱}型.7、A【解析】
判斷函數(shù)函數(shù),的奇偶性,求出其周期即可得到結(jié)論.【詳解】設(shè)則故函數(shù)函數(shù),是奇函數(shù),由故函數(shù),是最小正周期為的奇函數(shù).故選A.【點睛】本題考查正弦函數(shù)的奇偶性和周期性,屬基礎(chǔ)題.8、C【解析】分析:利用向量的加法運算,設(shè)的中點為D,可得,利用數(shù)量積的運算性質(zhì)可將原式化簡為,為AD中點,從而得解.詳解:由,可得.設(shè)的中點為D,即.點P是△ABC所在平面上的任意一點,為AD中點.∴.當且僅當,即點與點重合時,有最小值.故選C.點睛:(1)應(yīng)用平面向量基本定理表示向量的實質(zhì)是利用平行四邊形法則或三角形法則進行向量的加、減或數(shù)乘運算.(2)用向量基本定理解決問題的一般思路是:先選擇一組基底,并運用該基底將條件和結(jié)論表示成向量的形式,再通過向量的運算來解決.9、D【解析】
當為,為,若,則,由此求解即可【詳解】由題,因為,所以,即,故選:D【點睛】本題考查已知直線垂直求參數(shù)問題,屬于基礎(chǔ)題10、B【解析】
分別在△ABC和△ACD中用余弦定理解出AC,列方程解出cosD,得出AC.【詳解】在△ABC中,由余弦定理得AC2=AB2+BC2﹣2AB×BCcosB=89﹣80cosB,在△ACD中,由余弦定理得AC2=CD2+AD2﹣2AD×CDcosD=34﹣30cosD,∴89﹣80cosB=34﹣30cosD,∵A+C=180°,∴cosB=﹣cosD,∴cosD,∴AC2=34﹣30×()=1.∴AC=2.故選B.【點睛】本題考查了余弦定理的應(yīng)用,三角形的解法,考查了圓內(nèi)接四邊形的性質(zhì)的應(yīng)用,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據(jù)條件先求出平移后的函數(shù)表達式為,令即可得解.【詳解】由題意可得平移后的函數(shù)表達式為,圖象正好關(guān)于原點對稱,即,又,的最小值為.故答案為:.【點睛】本題考查了函數(shù)圖像的平移以及三角函數(shù)的圖像與性質(zhì),屬于基礎(chǔ)題.12、【解析】
先利用累加法求出數(shù)列的通項公式,然后將數(shù)列的通項裂開,利用裂項求和法求出數(shù)列的前項和.【詳解】當時,.所以,,,,,.上述等式全部相加得,.,因此,數(shù)列的前項和為,故答案為:.【點睛】本題考查累加法求數(shù)列通項和裂項法求和,解題時要注意累加法求通項和裂項法求和對數(shù)列遞推公式和通項公式的要求,考查運算求解能力,屬于中等題.13、【解析】
作的中心,可知平面,所以直線與平面所成角為,當在中點時,最大,求出即可?!驹斀狻吭O(shè)正方體的邊長為1,連接,由于為正方體,所以為正四面體,棱長為,為等邊三角形,作的中心,連接,,由于為正四面體,為的中心,所以平面,所以為直線與平面所成角,則當在中點時,最大,當在中點時,由于為正四面體,棱長為,等邊三角形,為的中心,所以,,所以直線與平面所成的最大角的余弦值為故直線與平面所成的最大角的余弦值為故答案為【點睛】本題考查線面所成角,解題的關(guān)鍵是確定當在中點時,最大,考查學(xué)生的空間想象能力以及計算能力。14、【解析】試題分析:因為所以考點:向量數(shù)量積及夾角15、【解析】
利用等差中項的基本性質(zhì)求得,,并利用等差中項的性質(zhì)求出的值,由此可得出的值.【詳解】由等差中項的性質(zhì)可得,同理,由于、、成等差數(shù)列,所以,則,因此,.故答案為:.【點睛】本題考查利用等差中項的性質(zhì)求值,考查計算能力,屬于基礎(chǔ)題.16、.【解析】
首先利用數(shù)列的關(guān)系式的變換求出數(shù)列為等差數(shù)列,進一步求出數(shù)列的通項公式,最后求出數(shù)列的和.【詳解】解:數(shù)列中,,當時,,整理得,即,∴數(shù)列是以為首項,6為公差的等差數(shù)列,故,所以,故答案為:.【點睛】本題主要考查定義法判斷等差數(shù)列,考查等差數(shù)列的前項和,考查運算能力和推理能力,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)利用三角形面積公式可構(gòu)造關(guān)于的方程,解方程求得結(jié)果;(2)利用三角形面積公式求得;利用余弦定理可求解出結(jié)果.【詳解】(1)由三角形面積公式可知:(2)由余弦定理得:【點睛】本題考查余弦定理解三角形、三角形面積公式的應(yīng)用問題,考查學(xué)生對于公式的掌握情況,屬于基礎(chǔ)題.18、(1);(2).【解析】
(1)利用同角的三角函數(shù)關(guān)系,可以求出的值,利用三角形內(nèi)角和定理,二角和的正弦公式可以求出,最后利用正弦定理求出長;(2)利用余弦定理可以求出的長,進而可以求出的長,然后在中,再利用余弦定理求出邊上中線的長.【詳解】(1),,由正弦定理可知中:(2)由余弦定理可知:,是的中點,故,在中,由余弦定理可知:【點睛】本題考查了正弦定理、余弦定理、同角的三角函數(shù)關(guān)系、以及三角形內(nèi)角和定理,考查了數(shù)學(xué)運算能力.19、;【解析】
根據(jù)所處象限可確定的符號,利用同角三角函數(shù)關(guān)系可求得的值;代入兩角和差正弦和余弦公式可求得結(jié)果.【詳解】都是第二象限的角,,【點睛】本題考查利用兩角和差正弦和余弦公式求值的問題;關(guān)鍵是能夠根據(jù)角所處的范圍和同角三角函數(shù)關(guān)系求得三角函數(shù)值.20、(1)(2)【解析】
(1)利用二倍角公式以及輔助角公式化簡即可.(2)利用配湊把打開即可.【詳解】解:(1)原式(2),,又,,,,【點睛】本題主要考查了二倍角公式,兩角和與差的正切的應(yīng)用.輔助角公式.21、(1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度網(wǎng)絡(luò)安全風(fēng)險評估與解決方案合同范本3篇
- 二零二五版股權(quán)激勵合同:某上市公司對高級管理人員股權(quán)激勵計劃3篇
- 2025年度時尚服飾店開業(yè)活動承包合同3篇
- 2025年度高端不銹鋼醫(yī)療器械制造委托合同3篇
- 二零二五版智能穿戴設(shè)備代加工合同范本2篇
- 二零二五年度環(huán)保型車間生產(chǎn)承包服務(wù)合同范本3篇
- 二零二五年高管子女教育援助與扶持合同3篇
- 2025年草場租賃與牧區(qū)基礎(chǔ)設(shè)施建設(shè)合同3篇
- 二零二五版涵洞工程勞務(wù)分包單價及工期延誤賠償合同3篇
- 二零二五版財務(wù)報表編制會計勞動合同范本3篇
- GB/T 34241-2017卷式聚酰胺復(fù)合反滲透膜元件
- GB/T 12494-1990食品機械專用白油
- 運輸供應(yīng)商年度評價表
- 成熙高級英語聽力腳本
- 北京語言大學(xué)保衛(wèi)處管理崗位工作人員招考聘用【共500題附答案解析】模擬試卷
- 肺癌的診治指南課件
- 人教版七年級下冊數(shù)學(xué)全冊完整版課件
- 商場裝修改造施工組織設(shè)計
- 統(tǒng)編版一年級語文上冊 第5單元教材解讀 PPT
- 加減乘除混合運算600題直接打印
- ASCO7000系列GROUP5控制盤使用手冊
評論
0/150
提交評論