版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆四川省會理縣第一中學(xué)數(shù)學(xué)高一下期末經(jīng)典試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.直線y=﹣x+1的傾斜角是()A.30° B.45° C.1352.若平面和直線,滿足,,則與的位置關(guān)系一定是()A.相交 B.平行 C.異面 D.相交或異面3.矩形中,,若在該矩形內(nèi)隨機(jī)投一點,那么使得的面積不大于3的概率是()A. B. C. D.4.直線在軸上的截距為()A. B. C. D.5.已知為的一個內(nèi)角,向量.若,則角()A. B. C. D.6.下列各命題中,假命題的是()A.“度”與“弧度”是度量角的兩種不同的度量單位B.一度的角是周角的,一弧度的角是周角的C.根據(jù)弧度的定義,一定等于弧度D.不論是用角度制還是用弧度制度量角,它們都與圓的半徑長短有關(guān)7.已知數(shù)列的前項和,那么()A.此數(shù)列一定是等差數(shù)列 B.此數(shù)列一定是等比數(shù)列C.此數(shù)列不是等差數(shù)列,就是等比數(shù)列 D.以上說法都不正確8.過點作圓的切線,且直線與平行,則與間的距離是()A. B. C. D.9.某路口人行橫道的信號燈為紅燈和綠燈交替出現(xiàn),紅燈持續(xù)時間為40秒,若一名行人來到該路口遇到紅燈,則至少需要等待15秒才出現(xiàn)綠燈的概率為()A. B. C. D.10.如果直線a平行于平面,則()A.平面內(nèi)有且只有一直線與a平行B.平面內(nèi)有無數(shù)條直線與a平行C.平面內(nèi)不存在與a平行的直線D.平面內(nèi)的任意直線與直線a都平行二、填空題:本大題共6小題,每小題5分,共30分。11.已知點及其關(guān)于原點的對稱點均在不等式表示的平面區(qū)域內(nèi),則實數(shù)的取值范圍是____.12.某小區(qū)擬對如圖一直角△ABC區(qū)域進(jìn)行改造,在三角形各邊上選一點連成等邊三角形,在其內(nèi)建造文化景觀.已知,則面積最小值為____13.已知二面角為60°,動點P、Q分別在面、內(nèi),P到的距離為,Q到的距離為,則P、Q兩點之間距離的最小值為.14.將邊長為2的正沿邊上的高折成直二面角,則三棱錐的外接球的表面積為.15.圓臺兩底面半徑分別為2cm和5cm,母線長為cm,則它的軸截面的面積是________cm2.16.已知直線與直線互相平行,則______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)的最小正周期是.(1)求的值及函數(shù)的單調(diào)遞減區(qū)間;(2)當(dāng)時,求函數(shù)的取值范圍.18.在中,內(nèi)角所對的邊分別為.已知,.(I)求的值;(II)求的值.19.如圖,在三棱錐中,平面平面為等邊三角形,,且,分別為的中點.(1)求證:平面平面;(2)求三棱錐的體積.20.已知函數(shù)(1)求函數(shù)的定義域:(2)求函數(shù)的單調(diào)遞減區(qū)間:(3)求函數(shù)了在區(qū)間上的最大值和最小值.21.已知數(shù)列{}的首項.(1)求證:數(shù)列為等比數(shù)列;(2)記,若,求最大正整數(shù).
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
由直線方程可得直線的斜率,進(jìn)而可得傾斜角.【詳解】直線y=﹣x+1的斜率為﹣1,設(shè)傾斜角為α,則tanα=﹣1,∴α=135°故選:C.【點睛】本題考查直線的傾斜角和斜率的關(guān)系,屬基礎(chǔ)題.2、D【解析】
當(dāng)時與相交,當(dāng)時與異面.【詳解】當(dāng)時與相交,當(dāng)時與異面.故答案為D【點睛】本題考查了直線的位置關(guān)系,屬于基礎(chǔ)題型.3、C【解析】
先求出的點的軌跡(一條直線),然后由面積公式可知時點所在區(qū)域,計算其面積,利用幾何概型概率公式計算概率.【詳解】設(shè)到的距離為,,則,如圖,設(shè),則點在矩形內(nèi),,,∴所求概率為.故選C.【點睛】本題考查幾何概型概率.解題關(guān)鍵是確定符合條件點所在區(qū)域及其面積.4、A【解析】
取計算得到答案.【詳解】直線在軸上的截距:取故答案選A【點睛】本題考查了直線的截距,屬于簡單題.5、C【解析】
帶入計算即可.【詳解】即,選C.【點睛】本題考查向量向量垂直的坐標(biāo)運算,屬于基礎(chǔ)題.6、D【解析】
根據(jù)弧度制的概念,逐項判斷,即可得出結(jié)果.【詳解】A選項,“度”與“弧度”是度量角的兩種不同的度量單位,正確;B選項,一度的角是周角的,一弧度的角是周角的,正確;C選項,根據(jù)弧度的定義,一定等于弧度,正確;D選項,用角度制度量角,與圓的半徑長短無關(guān),故D錯.故選:D.【點睛】本題主要考查弧度制的相關(guān)判定,熟記概念即可,屬于基礎(chǔ)題型.7、D【解析】
利用即可求得:,當(dāng)時,或,對賦值2,3,選擇不同的遞推關(guān)系可得數(shù)列:1,3,-3,…,問題得解.【詳解】因為,當(dāng)時,,解得,當(dāng)時,,整理有,,所以或若時,滿足,時,滿足,可得數(shù)列:1,3,-3,…此數(shù)列既不是等差數(shù)列,也不是等比數(shù)列故選D【點睛】本題主要考查利用與的關(guān)系求,以及等差等比數(shù)列的判定.8、D【解析】由題意知點在圓C上,圓心坐標(biāo)為,所以,故切線的斜率為,所以切線方程為,即.因為直線l與直線平行,所以,解得,所以直線的方程是-4x+3y-8=0,即4x-3y+8=0.所以直線與直線l間的距離為.選D.9、B【解析】試題分析:因為紅燈持續(xù)時間為40秒,所以這名行人至少需要等待15秒才出現(xiàn)綠燈的概率為,故選B.【考點】幾何概型【名師點睛】對于幾何概型的概率公式中的“測度”要有正確的認(rèn)識,它只與大小有關(guān),而與形狀和位置無關(guān),在解題時,要掌握“測度”為長度、面積、體積、角度等常見的幾何概型的求解方法.10、B【解析】
根據(jù)線面平行的性質(zhì)解答本題.【詳解】根據(jù)線面平行的性質(zhì)定理,已知直線平面.
對于A,根據(jù)線面平行的性質(zhì)定理,只要過直線a的平面與平面相交得到的交線,都與直線a平行;所以平面內(nèi)有無數(shù)條直線與a平行;故A錯誤;
對于B,只要過直線a的平面與平面相交得到的交線,都與直線a平行;所以平面內(nèi)有無數(shù)條直線與a平行;故B正確;
對于C,根據(jù)線面平行的性質(zhì),過直線a的平面與平面相交得到的交線,則直線,所以C錯誤;
對于D,根據(jù)線面平行的性質(zhì),過直線a的平面與平面相交得到的交線,則直線,則在平面內(nèi)與直線相交的直線與a不平行,所以D錯誤;
故選:B.【點睛】本題考查了線面平行的性質(zhì)定理;如果直線與平面平行,那么過直線的平面與已知平面相交,直線與交線平行.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據(jù)題意,設(shè)與關(guān)于原點的對稱,分析可得的坐標(biāo),由二元一次不等式的幾何意義可得,解可得的取值范圍,即可得答案.【詳解】根據(jù)題意,設(shè)與關(guān)于原點的對稱,則的坐標(biāo)為,若、均在不等式表示的平面區(qū)域內(nèi),則有,解可得:,即的取值范圍為,;故答案為,.【點睛】本題考查二元一次不等式表示平面區(qū)域的問題,涉及不等式的解法,屬于基礎(chǔ)題.12、【解析】
設(shè),然后分別表示,利用正弦定理建立等式用表示,從而利用三角函數(shù)的性質(zhì)得到的最小值,從而得到面積的最小值.【詳解】因為,所以,顯然,,設(shè),則,且,則,所以,在中,由正弦定理可得:,求得,其中,則,因為,所以當(dāng)時,取得最大值1,則的最小值為,所以面積最小值為,【點睛】本題主要考查了利用三角函數(shù)求解實際問題的最值,涉及到正弦定理的應(yīng)用,屬于難題.對于這類型題,關(guān)鍵是能夠選取恰當(dāng)?shù)膮?shù)表示需求的量,從而建立相關(guān)的函數(shù),利用函數(shù)的性質(zhì)求解最值.13、【解析】
如圖
分別作于A,于C,于B,于D,
連CQ,BD則,,
又
當(dāng)且僅當(dāng),即點A與點P重合時取最小值.
故答案選C.【點睛】14、【解析】
解:根據(jù)題意可知三棱錐B﹣ACD的三條側(cè)棱BD、DC、DA兩兩互相垂直,所以它的外接球就是它擴(kuò)展為長方體的外接球,∵長方體的對角線的長為:,∴球的直徑是,半徑為,∴三棱錐B﹣ACD的外接球的表面積為:4π5π.故答案為5π考點:外接球.15、63【解析】
首先畫出軸截面,然后結(jié)合圓臺的性質(zhì)和軸截面整理計算即可求得最終結(jié)果.【詳解】畫出軸截面,如圖,過A作AM⊥BC于M,則BM=5-2=3(cm),AM==9(cm),所以S四邊形ABCD==63(cm2).【點睛】本題主要考查圓臺的空間結(jié)構(gòu)特征及相關(guān)元素的計算等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.16、【解析】
由兩直線平行得,,解出值.【詳解】由直線與直線互相平行,得,解得.故答案為:.【點睛】本題考查兩直線平行的性質(zhì),兩直線平行,一次項系數(shù)之比相等,但不等于常數(shù)項之比,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),減區(qū)間為;(2)【解析】
(1)利用倍角公式將函數(shù)化成的形式,再利用周期公式求出的值,并將代入?yún)^(qū)間,求出即可;(2)由求得,利用單位圓中的三角函數(shù)線,即可得答案.【詳解】(1),,;,,的單調(diào)遞減區(qū)間為.(2)由得,利用單位圓中的三角函數(shù)線可得:,∴.【點睛】本題考查三角恒等變換中倍角公式的應(yīng)用、周期公式、值域求解,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意角度范圍的限制.18、(Ⅰ)(Ⅱ)【解析】試題分析:利用正弦定理“角轉(zhuǎn)邊”得出邊的關(guān)系,再根據(jù)余弦定理求出,進(jìn)而得到,由轉(zhuǎn)化為,求出,進(jìn)而求出,從而求出的三角函數(shù)值,利用兩角差的正弦公式求出結(jié)果.試題解析:(Ⅰ)解:由,及,得.由,及余弦定理,得.(Ⅱ)解:由(Ⅰ),可得,代入,得.由(Ⅰ)知,A為鈍角,所以.于是,,故.考點:正弦定理、余弦定理、解三角形【名師點睛】利用正弦定理進(jìn)行“邊轉(zhuǎn)角”尋求角的關(guān)系,利用“角轉(zhuǎn)邊”尋求邊的關(guān)系,利用余弦定理借助三邊關(guān)系求角,利用兩角和差公式及二倍角公式求三角函數(shù)值.利用正、余弦定理解三角形問題是高考高頻考點,經(jīng)常利用三角形內(nèi)角和定理,三角形面積公式,結(jié)合正、余弦定理解題.19、(1)證明見詳解;(2).【解析】
(1)由面面垂直可得線面垂直,再推證面面垂直即可;(2)根據(jù)垂直于平面AMO,即可由棱錐的體積公式直接求得體積.【詳解】(1)在中,因為,且O為AB中點,故AB,因為平面VAB平面ABC,且平面VAB平面ABC,因為CO平面ABC,又AB,故CO平面VAB;又CO平面MOC,故平面MOC平面VAB.即證.(2)由(1)可知CO平面VAB,故三棱錐底面MAO上的高為,又因為分別為的中點,故故.故三棱錐的體積為.【點睛】本題考查由線面垂直推證面面垂直,以及三棱錐體積的求解,屬基礎(chǔ)題.20、(1).(2),.(3),.【解析】
(1)根據(jù)分母不等于求出函數(shù)的定義域.(2)化簡函數(shù)的表達(dá)式,利用正弦函數(shù)的單調(diào)減區(qū)間求解函數(shù)的單調(diào)減區(qū)間即可.(3)通過滿足求出相位的范圍,利用正弦函數(shù)的值域,求解函數(shù)的最大值和最小值.【詳解】解:(1)函數(shù)的定義域為:,即,(2),令且,解得:,即所以的單調(diào)遞減區(qū)間:,.(3)由,可得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 承包運輸協(xié)議書2024年
- 2024年第三方擔(dān)保合同補(bǔ)充協(xié)議正規(guī)范本
- 就業(yè)協(xié)議書簽訂后的法律維權(quán)途徑及方法
- 2024年原油委托采購合同
- 室內(nèi)設(shè)計裝修合同模板-家裝工程合同樣式
- 居民小區(qū)清潔服務(wù)合同樣本
- 風(fēng)險投資協(xié)議書模板示例
- 2024年技術(shù)共享合作協(xié)議示例
- 鋼筋工程承包合同格式
- 餐廳轉(zhuǎn)讓店面協(xié)議
- JTG-T 3652-2022 跨海鋼箱梁橋大節(jié)段施工技術(shù)規(guī)程
- 骨科健康科普知識
- 重癥醫(yī)學(xué)科主任述職報告
- 高中數(shù)學(xué)奧賽輔導(dǎo)教材(共十講)
- 警航無人機(jī)培訓(xùn)考試題庫大全-下(判斷題)
- 新型冠狀病毒肺炎診療方案第八版
- 教學(xué)整本書閱讀課《安徒生童話》(教案)部編版語文三年級上冊
- 2024年河南資本集團(tuán)招聘筆試參考題庫附帶答案詳解
- 公立幼兒園食堂財務(wù)的管理制度4篇
- 學(xué)生心理健康一生一策檔案模板
- 燃?xì)庑袠I(yè)應(yīng)合力加強(qiáng)反恐防范
評論
0/150
提交評論