版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年內(nèi)蒙古根河市重點中學(xué)高一下數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若,,與的夾角為,則的值是()A. B. C. D.2.已知,,O是坐標(biāo)原點,則()A. B. C. D.3.三棱錐中,互相垂直,,是線段上一動點,若直線與平面所成角的正切的最大值是,則三棱錐的外接球的表面積是()A. B. C. D.4.已知集合,,,則()A. B. C. D.5.某幾何體的三視圖如圖所示,其外接球體積為()A. B. C. D.6.如圖所示,已知正三棱柱的所有棱長均為1,則三棱錐的體積為()A. B. C. D.7.等差數(shù)列中,,,下列結(jié)論錯誤的是()A.,,成等比數(shù)列 B.C. D.8.在中,已知角的對邊分別為,若,,,,且,則的最小角的正切值為()A. B. C. D.9.在各項均為正數(shù)的數(shù)列中,對任意都有.若,則等于()A.256 B.510 C.512 D.102410.為奇函數(shù),當(dāng)時,則時,A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.當(dāng)時,的最大值為__________.12.在中,,是線段上的點,,若的面積為,當(dāng)取到最大值時,___________.13.在平面直角坐標(biāo)系中,點到直線的距離為______.14.將十進制數(shù)30化為二進制數(shù)為________.15.在中,角的對邊分別為,若,則_______.(僅用邊表示)16.不等式的解集是_______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.設(shè),求函數(shù)的最小值為__________.18.已知向量,,且函數(shù).若函數(shù)的圖象上兩個相鄰的對稱軸距離為.(Ⅰ)求函數(shù)的解析式;(Ⅱ)若方程在時,有兩個不同實數(shù)根,,求實數(shù)的取值范圍,并求出的值;(Ⅲ)若函數(shù)在的最大值為2,求實數(shù)的值.19.如圖,中,,角的平分線長為1.(1)求;(2)求邊的長.20.如圖,在邊長為2菱形ABCD中,,且對角線AC與BD交點為O.沿BD將折起,使點A到達點的位置.(1)若,求證:平面ABCD;(2)若,求三棱錐體積.21.化簡:(1);(2).
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
由題意可得||?||?cos,,再利用二倍角公式求得結(jié)果.【詳解】由題意可得||?||?cos,2sin15°4cos15°cos30°=2sin60°,故選:C.【點睛】本題主要考查兩個向量的數(shù)量積的定義,二倍角公式的應(yīng)用屬于基礎(chǔ)題.2、D【解析】
根據(jù)向量線性運算可得,由坐標(biāo)可得結(jié)果.【詳解】故選:【點睛】本題考查平面向量的線性運算,屬于基礎(chǔ)題.3、B【解析】是線段上一動點,連接,∵互相垂直,∴就是直線與平面所成角,當(dāng)最短時,即時直線與平面所成角的正切的最大.此時,,在直角△中,.三棱錐擴充為長方體,則長方體的對角線長為,∴三棱錐的外接球的半徑為,∴三棱錐的外接球的表面積為.選B.點睛:空間幾何體與球接、切問題的求解方法(1)求解球與棱柱、棱錐的接、切問題時,一般過球心及接、切點作截面,把空間問題轉(zhuǎn)化為平面圖形與圓的接、切問題,再利用平面幾何知識尋找?guī)缀沃性亻g的關(guān)系求解.(2)若球面上四點構(gòu)成的三條線段兩兩互相垂直,且,一般把有關(guān)元素“補形”成為一個球內(nèi)接長方體,利用求解.4、C【解析】由題意得,因為,所以,所以,故,故選C.5、D【解析】
易得該幾何體為三棱錐,再根據(jù)三視圖在長方體中畫出該三棱錐,再根據(jù)此三棱錐與長方體的外接球相同求解即可.【詳解】在長方體中畫出該幾何體,易得為三棱錐,且三棱錐與該長方體外接球相同.又長方體體對角線等于外接球直徑,故.故外接球體積故選:D【點睛】本題主要考查了三視圖還原幾何體以及求外接球體積的問題,屬于基礎(chǔ)題.6、A【解析】
利用等體法即可求解.【詳解】三棱錐的體積等于三棱錐的體積,因此,三棱錐的體積為,故選:A.【點睛】本題考查了等體法求三棱錐的體積、三棱錐的體積公式,考查了轉(zhuǎn)化與化歸思想的應(yīng)用,屬于基礎(chǔ)題.7、C【解析】
根據(jù)條件得到公差,然后得到等差數(shù)列的通項,從而對四個選項進行判斷,得到答案.【詳解】等差數(shù)列中,,所以,所以,所以,,,,,,,,,所以,所以,,成等比數(shù)列,故A選項正確,,故B選項正確,,故C選項錯誤,,故D選項正確.故選:C.【點睛】本題考查求等差數(shù)列的項,等差數(shù)列求前項的和,屬于簡單題.8、D【解析】
根據(jù)大角對大邊判斷最小角為,利用正弦定理得到,代入余弦定理計算得到,最后得到.【詳解】根據(jù)大角對大邊判斷最小角為根據(jù)正弦定理知:根據(jù)余弦定理:化簡得:故答案選D【點睛】本題考查了正弦定理,余弦定理,意在考查學(xué)生的計算能力.9、C【解析】
因為,所以,則因為數(shù)列的各項均為正數(shù),所以所以,故選C10、C【解析】
利用奇函數(shù)的定義,結(jié)合反三角函數(shù),即可得出結(jié)論.【詳解】又,時,,故選:C.【點睛】本題考查奇函數(shù)的定義、反三角函數(shù),考查學(xué)生的計算能力,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、-3.【解析】
將函數(shù)的表達式改寫為:利用均值不等式得到答案.【詳解】當(dāng)時,故答案為-3【點睛】本題考查了均值不等式,利用一正二定三相等將函數(shù)變形是解題的關(guān)鍵.12、【解析】
由三角形的面積公式得出,設(shè),由可得出,利用基本不等式可求出的值,利用等號成立可得出、的值,再利用余弦利用可得出的值.【詳解】由題意可得,解得,設(shè),則,可得,由基本不等式可得,當(dāng)且僅當(dāng)時,取得最大值,,,由余弦定理得,解得.故答案為.【點睛】本題考查余弦定理解三角形,同時也考查了三角形的面積公式以及利用基本不等式求最值,在利用基本不等式求最值時,需要結(jié)合已知條件得出定值條件,同時要注意等號成立的條件,考查分析問題和解決問題的能力,屬于中等題.13、2【解析】
利用點到直線的距離公式即可得到答案?!驹斀狻坑牲c到直線的距離公式可知點到直線的距離故答案為2【點睛】本題主要考查點到直線的距離,熟練掌握公式是解題的關(guān)鍵,屬于基礎(chǔ)題。14、【解析】
利用除取余法可將十進制數(shù)化為二進制數(shù).【詳解】利用除取余法得因此,,故答案為.【點睛】本題考查將十進制數(shù)轉(zhuǎn)化為二進制數(shù),將十進制數(shù)轉(zhuǎn)化為進制數(shù),常用除取余法來求解,考查計算能力,屬于基礎(chǔ)題.15、【解析】
直接利用正弦定理和三角函數(shù)關(guān)系式的變換的應(yīng)用求出結(jié)果.【詳解】由正弦定理,結(jié)合可得,即,即,從而.【點睛】本題考查的知識要點:三角函數(shù)關(guān)系式的恒等變換,正弦定理余弦定理和三角形面積的應(yīng)用,主要考察學(xué)生的運算能力和轉(zhuǎn)換能力,屬于基礎(chǔ)題型.16、【解析】
且,然后解一元二次不等式可得解集.【詳解】解:,∴且,或,不等式的解集為,故答案為:.【點睛】本題主要考查分式不等式的解法,關(guān)鍵是將分式不等式轉(zhuǎn)化為其等價形式,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、9【解析】試題分析:本題解題的關(guān)鍵在于關(guān)注分母,充分運用發(fā)散性思維,經(jīng)過同解變形構(gòu)造基本不等式,從而求出最小值.試題解析:由得,則當(dāng)且僅當(dāng)時,上式取“=”,所以.考點:基本不等式;構(gòu)造思想和發(fā)散性思維.18、(Ⅰ);(Ⅱ),;(Ⅲ)或【解析】
(Ⅰ)根據(jù)三角恒等變換公式化簡,根據(jù)周期計算,從而得出的解析式;(Ⅱ)求出在,上的單調(diào)性,計算最值和區(qū)間端點函數(shù)值,從而得出的范圍,根據(jù)對稱性得出的值;(Ⅲ)令,求出的范圍和關(guān)于的二次函數(shù),討論二次函數(shù)單調(diào)性,根據(jù)最大值列方程求出的值.【詳解】(Ⅰ)∵,,∴若函數(shù)的圖象上兩個相鄰的對稱軸距離為,則函數(shù)的周期,∴,即,∴(Ⅱ)由(Ⅰ)知,,當(dāng)時,∴若方程在有兩個不同實數(shù)根,則.∴令,,則,,∴函數(shù)在內(nèi)的對稱軸為,∵,是方程,的兩個不同根,∴(Ⅲ)因為,所以,令,則.∴又∵,由得,∴.(1)當(dāng),即時,可知在上為減函數(shù),則當(dāng)時,由,解得:,不合題意,舍去.(2)當(dāng),即時,結(jié)合圖象可知,當(dāng)時,,由,解得,滿足題意.(3)當(dāng),即時,知在上為增函數(shù),則時,,由得,舍去綜上,或為所求.【點睛】本題考查了平面向量的數(shù)量積的運算,三角函數(shù)的恒等變換,三角函數(shù)最值的計算,考查換元法解題思想,屬于中檔題.19、(1)(2)【解析】
(1)由題意知為銳角,利用二倍角余弦公式結(jié)合條件可計算出的值;(2)利用內(nèi)角和定理以及誘導(dǎo)公式計算出,在中利用正弦定理可計算出.【詳解】(1),則B為銳角,;(2),在中,由,得.【點睛】本題考查二倍角余弦公式、以及利用正弦定理解三角形,解三角形有關(guān)問題時,要根據(jù)已知元素類型合理選擇正弦定理與余弦定理,考查計算能力,屬于中等題.20、(1)見解析(2)【解析】
(1)證明與即可.(2)法一:證明平面,再過點做垂足為,證明為三棱錐的高再求解即可.法二:通過進行轉(zhuǎn)化求解即可.法三:通過進行轉(zhuǎn)化求解即可.【詳解】證明:(1)∵在菱形ABCD中,,,AC與BD交于點O.以BD為折痕,將折起,使點A到達點的位置,∴,又,,∴,∴,∵,∴平面ABCD(2)(法一):∵,,取的中點,則且,因為且,,所以平面,過點做垂足為,則平面BCD,又∴,解得,∴三棱錐體積.(法二)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年第三方擔(dān)保合同補充協(xié)議正規(guī)范本
- 就業(yè)協(xié)議書簽訂后的法律維權(quán)途徑及方法
- 2024年原油委托采購合同
- 室內(nèi)設(shè)計裝修合同模板-家裝工程合同樣式
- 居民小區(qū)清潔服務(wù)合同樣本
- 風(fēng)險投資協(xié)議書模板示例
- 2024年技術(shù)共享合作協(xié)議示例
- 鋼筋工程承包合同格式
- 餐廳轉(zhuǎn)讓店面協(xié)議
- 房產(chǎn)抵押擔(dān)保合同
- 第六單元 (單元測試)-2024-2025學(xué)年語文四年級上冊單元速記·巧練系列(統(tǒng)編版)
- 美麗農(nóng)村路建設(shè)指南DB41-T 1935-2020
- 2024年大學(xué)試題(計算機科學(xué))-網(wǎng)絡(luò)工程設(shè)計與系統(tǒng)集成考試近5年真題集錦(頻考類試題)帶答案
- 第四單元測試卷(五)(單元測試)-2024-2025學(xué)四年級語文上冊統(tǒng)編版
- 期中測試卷(試題)-2024-2025學(xué)年三年級上冊語文統(tǒng)編版
- 河南省2024年中考地理試卷【附參考答案】
- 1.1 公有制為主體 多種所有制經(jīng)濟共同發(fā)展 課件高中政治統(tǒng)編版必修二經(jīng)濟與社會
- 浙教版九年級上冊數(shù)學(xué)期中考試試卷含答案
- 期中檢測試卷(1-4單元)(試題)-2024-2025學(xué)年三年級上冊數(shù)學(xué)人教版
- 第一次月考 (1-2單元)(月考)- 2024-2025學(xué)年六年級上冊數(shù)學(xué)人教版
- 2024-2030年中國微生物菌劑行業(yè)發(fā)展?fàn)顩r及投資前景預(yù)測報告
評論
0/150
提交評論