版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
江西省于都實(shí)驗(yàn)中學(xué)2024屆高一下數(shù)學(xué)期末質(zhì)量檢測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè)是周期為4的奇函數(shù),當(dāng)時,,則()A. B. C. D.2.若直線始終平分圓的周長,則的最小值為()A. B.5 C.2 D.103.已知數(shù)列,滿足,若,則()A. B. C. D.4.已知數(shù)列是公比不為1的等比數(shù)列,為其前n項和,滿足,且成等差數(shù)列,則()A. B.6 C.7 D.95.已知中,,,,則B等于()A. B.或 C. D.或6.若角α的終邊過點(diǎn)P(-3,-4),則cos(π-2α)的值為()A. B. C. D.7.下列函數(shù)中,既是偶函數(shù)又在(0,+∞)上是單調(diào)遞減的是()A.y=-cosx B.y=lgx8.已知向量滿足:,,,則()A. B. C. D.9.已知直線過點(diǎn)且與直線垂直,則該直線方程為()A. B.C. D.10.將函數(shù)的圖像向右平衡個單位長度,再把圖象上所有點(diǎn)的橫坐標(biāo)伸長到原來的倍(縱坐標(biāo)不變)得到函數(shù)的圖象,則下列說法正確的是()A.函數(shù)的最大值為 B.函數(shù)的最小正周期為C.函數(shù)的圖象關(guān)于直線對稱 D.函數(shù)在區(qū)間上單調(diào)遞增二、填空題:本大題共6小題,每小題5分,共30分。11.從某小學(xué)隨機(jī)抽取100名同學(xué),將他們的身高(單位:厘米)數(shù)據(jù)繪制成頻率分布直方圖(如圖).若要從身高,,三組內(nèi)的學(xué)生中,用分層抽樣的方法抽取18人參加一項活動,則從身高在內(nèi)的學(xué)生中抽取的人數(shù)應(yīng)為________.12._____13.函數(shù)的反函數(shù)為____________.14.在邊長為2的正三角形ABC內(nèi)任取一點(diǎn)P,則使點(diǎn)P到三個頂點(diǎn)的距離至少有一個小于1的概率是________.15.已知數(shù)列的通項公式為,的前項和為,則___________.16.函數(shù)的遞增區(qū)間是__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知數(shù)列的前n項和為,且,.(1)求數(shù)列的通項公式;(2)若等差數(shù)列滿足,且,,成等比數(shù)列,求c.18.已知數(shù)列的前項和為(1)證明:數(shù)列是等差數(shù)列;(2)設(shè),求數(shù)列的前2020項和.19.已知等比數(shù)列的前項和為,公比,,.(1)求等比數(shù)列的通項公式;(2)設(shè),求的前項和.20.已知直線:及圓心為的圓:.(1)當(dāng)時,求直線與圓相交所得弦長;(2)若直線與圓相切,求實(shí)數(shù)的值.21.如圖,在正方體中,是的中點(diǎn),在上,且.(1)求證:平面;(2)在線段上存在一點(diǎn),,若平面,求實(shí)數(shù)的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
.故選A.2、B【解析】試題分析:把圓的方程化為標(biāo)準(zhǔn)方程得,所以圓心坐標(biāo)為半徑,因?yàn)橹本€始終平分圓的周長,所以直線過圓的圓心,把代入直線得;即,在直線上,是點(diǎn)與點(diǎn)的距離的平方,因?yàn)榈街本€的距離,所以的最小值為,故選B.考點(diǎn):1、圓的方程及幾何性質(zhì);2、點(diǎn)到直線的距離公式及最值問題的應(yīng)用.【方法點(diǎn)晴】本題主要考查圓的方程及幾何性質(zhì)、點(diǎn)到直線的距離公式及最值問題的應(yīng)用,屬于難題.解決解析幾何的最值問題一般有兩種方法:一是幾何意義,特別是用圓錐曲線的定義和平面幾何的有關(guān)結(jié)論來解決,非常巧妙;二是將解析幾何中最值問題轉(zhuǎn)化為函數(shù)問題,然后根據(jù)函數(shù)的特征選用參數(shù)法、配方法、判別式法、三角函數(shù)有界法、函數(shù)單調(diào)性法以及均值不等式法,本題就是利用幾何意義,將的最小值轉(zhuǎn)化為點(diǎn)到直線的距離解答的.3、C【解析】
利用遞推公式計算出數(shù)列的前幾項,找出數(shù)列的周期,然后利用周期性求出的值.【詳解】,且,,,,所以,,則數(shù)列是以為周期的周期數(shù)列,.故選:C.【點(diǎn)睛】本題考查利用數(shù)列遞推公式求數(shù)列中的項,推導(dǎo)出數(shù)列的周期是解本題的關(guān)鍵,考查分析問題和解決問題的能力,屬于中等題.4、C【解析】
設(shè)等比數(shù)列的公比為,且不為1,由等差數(shù)列中項性質(zhì)和等比數(shù)列的通項公式,解方程可得首項和公比,再由等比數(shù)列的求和公式,可得答案.【詳解】數(shù)列是公比不為l的等比數(shù)列,滿足,即且成等差數(shù)列,得,即,解得,則.故選:C.【點(diǎn)睛】本題考查等差數(shù)列中項性質(zhì)和等比數(shù)列的通項公式和求和公式的運(yùn)用,考查方程思想和運(yùn)算能力,屬于基礎(chǔ)題.5、D【解析】
根據(jù)題意和正弦定理求出sinB的值,由邊角關(guān)系、內(nèi)角的范圍、特殊角的三角函數(shù)值求出B.【詳解】由題意得,△ABC中,a=1,,A=30°,由得,sinB,又b>a,0°<B<180°,則B=60°或B=120°,故選:D.【點(diǎn)睛】本題考查正弦定理,以及邊角關(guān)系的應(yīng)用,注意內(nèi)角的范圍,屬于基礎(chǔ)題.6、C【解析】
由三角函數(shù)的定義得,再利用誘導(dǎo)公式以及二倍角余弦公式求解.【詳解】由三角函數(shù)的定義,可得,則,故選C.【點(diǎn)睛】本題主要考查了三角函數(shù)的定義,以及二倍角的余弦公式的應(yīng)用,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.7、C【解析】
先判斷各函數(shù)奇偶性,再找單調(diào)性符合題意的即可?!驹斀狻渴紫瓤梢耘袛噙x項D,y=e然后,由圖像可知,y=-cosx在(0,+∞)上不單調(diào),y=lg只有選項C:y=1-x【點(diǎn)睛】本題主要考查函數(shù)的性質(zhì),奇偶性和單調(diào)性。8、D【解析】
首先根據(jù)題中條件求出與的數(shù)量積,然后求解即可.【詳解】由題有,即,,所以.故選:D.【點(diǎn)睛】本題主要考查了向量的模,屬于基礎(chǔ)題.9、A【解析】
根據(jù)垂直關(guān)系求出直線斜率為,再由點(diǎn)斜式寫出直線。【詳解】由直線與直線垂直,可知直線斜率為,再由點(diǎn)斜式可知直線為:即.故選A.【點(diǎn)睛】本題考查兩直線垂直,屬于基礎(chǔ)題。10、C【解析】
根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,得到g(x)的解析式,再利用正弦函數(shù)的圖象性質(zhì),得出結(jié)論.【詳解】將函數(shù)的圖象向右平移個單位長度,可得y=2sin(2x)的圖象,再把圖象上所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),得到函數(shù)g(x)=2sin(x)的圖象,故g(x)的最大值為2,故A錯誤;顯然,g(x)的最小正周期為2π,故B錯誤;當(dāng)時,g(x)=,是最小值,故函數(shù)g(x)的圖象關(guān)于直線對稱,故C正確;在區(qū)間上,x∈[,],函數(shù)g(x)=2sin(x)單調(diào)遞減,故D錯誤,故選:C.【點(diǎn)睛】本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的圖象性質(zhì)應(yīng)用,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、3【解析】
先由頻率之和等于1得出的值,計算身高在,,的頻率之比,根據(jù)比例得出身高在內(nèi)的學(xué)生中抽取的人數(shù).【詳解】身高在,,的頻率之比為所以從身高在內(nèi)的學(xué)生中抽取的人數(shù)應(yīng)為故答案為:【點(diǎn)睛】本題主要考查了根據(jù)頻率分布直方圖求參數(shù)的值以及分層抽樣計算各層總數(shù),屬于中檔題.12、【解析】
將寫成,切化弦后,利用兩角和差余弦公式可將原式化為,利用二倍角公式可變?yōu)?,由可化簡求得結(jié)果.【詳解】本題正確結(jié)果:【點(diǎn)睛】本題考查利用三角恒等變換公式進(jìn)行化簡求值的問題,涉及到兩角和差余弦公式、二倍角公式的應(yīng)用.13、【解析】
首先求出在區(qū)間的值域,再由表示的含義,得到所求函數(shù)的反函數(shù).【詳解】因?yàn)椋裕?所以的反函數(shù)是.故答案為:【點(diǎn)睛】本題主要考查反函數(shù)定義,同時考查了三角函數(shù)的值域問題,屬于簡單題.14、【解析】以A,B,C為圓心,以1為半徑作圓,與△ABC交出三個扇形,當(dāng)P落在其內(nèi)時符合要求,∴P==.15、【解析】
計算出,再由可得出的值.【詳解】當(dāng)時,則,當(dāng)時,則,當(dāng)時,.,,因此,.故答案為:.【點(diǎn)睛】本題考查數(shù)列求和,解題的關(guān)鍵就是找出數(shù)列的規(guī)律,考查分析問題和解決問題的能力,屬于中等題.16、;【解析】
先利用輔助角公式對函數(shù)化簡,由可求解.【詳解】函數(shù),由,可得,所以函數(shù)的單調(diào)增區(qū)間為.故答案為:【點(diǎn)睛】本題考查了輔助角公式、正弦函數(shù)的圖像與性質(zhì),需熟記公式與性質(zhì),屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)根據(jù)題意,數(shù)列為1為首項,4為公差的等差數(shù)列,根據(jù)等差數(shù)列通項公式計算即可;(2)由(1)可求數(shù)列的前n項和為,根據(jù),,成等差數(shù)列及,,成等比數(shù)列,利用等差、等比數(shù)列性質(zhì)可求出c.【詳解】(1),,,故數(shù)列是以1為首項,4為公差的等差數(shù)列..(2)由(1)知,,,,,,法1:,,成等比數(shù)列,,即,整理得:,或.①當(dāng)時,,所以(定值),滿足為等差數(shù)列,②當(dāng)時,,,,,不滿足,故此時數(shù)列不為等差數(shù)列(舍去).法2:因?yàn)闉榈炔顢?shù)列,所以,即,解得或.①當(dāng)時,滿足,,成等比數(shù)列,②當(dāng)時,,,,不滿足,,成等比數(shù)列(舍去),綜上可得.【點(diǎn)睛】本題考查等差數(shù)列的通項及求和,等差數(shù)列、等比數(shù)列性質(zhì)的應(yīng)用,解決此類問題通常借助方程思想列方程(組)求解,屬于中等題.18、(1)見解析;(2)3030【解析】
(1)當(dāng)時,可求出首項,當(dāng)時,利用即可求出通項公式,進(jìn)而證明是等差數(shù)列;(2)可將奇數(shù)項和偶數(shù)項合并求和即可得到答案.【詳解】(1)當(dāng)時,當(dāng)時,綜上,.因?yàn)?,所以是等差?shù)列.(2)法一:,的前2020項和為:法二:,的前2020項和為:.【點(diǎn)睛】本題主要考查等差數(shù)列的證明,分組求和的相關(guān)計算,意在考查學(xué)生的分析能力和計算能力,難度中等.19、(1)(2)【解析】
(1)將已知兩式作差,利用等比數(shù)列的通項公式,可得公比,由等比數(shù)列的求和可得首項,進(jìn)而得到所求通項公式;(2)求得bn=n,,由裂項相消求和可得答案.【詳解】(1)等比數(shù)列的前項和為,公比,①,②.②﹣①,得,則,又,所以,因?yàn)?,所以,所以,所以;?),所以前項和.【點(diǎn)睛】裂項相消法適用于形如(其中是各項均不為零的等差數(shù)列,c為常數(shù))的數(shù)列.裂項相消法求和,常見的有相鄰兩項的裂項求和,還有一類隔一項的裂項求和,如或.20、(1)弦長為4;(1)0【解析】
(1)由得到直線過圓的圓心,可求得弦長即為圓的直徑4;(1)由點(diǎn)到直線的距離等于半徑1,得到關(guān)于的方程,并求出.【詳解】(1)當(dāng)時,直線:,圓:.圓心坐標(biāo)為,半徑為1.圓心在直線上,則直線與圓相交所得弦長為4.(1)由直線與圓相切,則圓心到直線的距離等于半徑,所以,解得:.【點(diǎn)睛】本題考查直線與圓相交、相切兩種位置關(guān)系,求解時注意點(diǎn)到直線距離公式的應(yīng)用,考查基本運(yùn)算求解能力.21、(1)證明見解析;(2)【解析】
(1)分別證明與即可.(2)設(shè)平面與的交點(diǎn)為,利用線面與面面平行的判定與性質(zhì)可知
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2030年中國型煤煤炭洗選商業(yè)計劃書
- 梅河口康美職業(yè)技術(shù)學(xué)院《用戶界面設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷
- 眉山藥科職業(yè)學(xué)院《搜索引擎營銷SEM》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025土方工程承包合同
- 2025工程合同終止條款協(xié)議
- 2025二手房中介買賣合同二手房中介買賣合同范本
- 住宅新風(fēng)系統(tǒng)安裝合同
- 教育培訓(xùn)師續(xù)簽合同確認(rèn)函
- 機(jī)場高鐵廣告字施工合同
- 武術(shù)館硅PU施工合同
- 物聯(lián)網(wǎng)控制技術(shù)2版-物聯(lián)網(wǎng)控制系統(tǒng)設(shè)計
- 江蘇省南京市秦淮區(qū)2023-2024學(xué)年上學(xué)期期末檢測九年級數(shù)學(xué)試卷
- 2024北京海淀區(qū)初三(上)期末英語試卷和答案
- 播音社社團(tuán)管理制度
- 測繪工程中的常見問題及應(yīng)對解決措施
- 25道中國建筑商務(wù)合約經(jīng)理崗位常見面試問題含HR常問問題考察點(diǎn)及參考回答
- 婦產(chǎn)科學(xué)課件:盆腔炎性疾病
- 溫室效應(yīng)完整
- 精益生產(chǎn)診斷雷達(dá)圖
- 毫米波芯片設(shè)計技術(shù)
- 重癥血液凈化血管通路的建立與應(yīng)用中國專家共識(2023版)
評論
0/150
提交評論