吉林省蛟河市第一中學(xué)新高考數(shù)學(xué)押題試卷及答案解析_第1頁(yè)
吉林省蛟河市第一中學(xué)新高考數(shù)學(xué)押題試卷及答案解析_第2頁(yè)
吉林省蛟河市第一中學(xué)新高考數(shù)學(xué)押題試卷及答案解析_第3頁(yè)
吉林省蛟河市第一中學(xué)新高考數(shù)學(xué)押題試卷及答案解析_第4頁(yè)
吉林省蛟河市第一中學(xué)新高考數(shù)學(xué)押題試卷及答案解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

吉林省蛟河市第一中學(xué)新高考數(shù)學(xué)押題試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若雙曲線:的一條漸近線方程為,則()A. B. C. D.2.函數(shù)的最大值為,最小正周期為,則有序數(shù)對(duì)為()A. B. C. D.3.若復(fù)數(shù)滿足,則的虛部為()A.5 B. C. D.-54.已知,則()A. B. C. D.5.正的邊長(zhǎng)為2,將它沿邊上的高翻折,使點(diǎn)與點(diǎn)間的距離為,此時(shí)四面體的外接球表面積為()A. B. C. D.6.如圖網(wǎng)格紙上小正方形的邊長(zhǎng)為,粗線畫出的是某幾何體的三視圖,則該幾何體的所有棱中最長(zhǎng)棱的長(zhǎng)度為()A. B. C. D.7.函數(shù)的圖象大致是()A. B.C. D.8.若不等式在區(qū)間內(nèi)的解集中有且僅有三個(gè)整數(shù),則實(shí)數(shù)的取值范圍是()A. B.C. D.9.若非零實(shí)數(shù)、滿足,則下列式子一定正確的是()A. B.C. D.10.高三珠海一模中,經(jīng)抽樣分析,全市理科數(shù)學(xué)成績(jī)X近似服從正態(tài)分布,且.從中隨機(jī)抽取參加此次考試的學(xué)生500名,估計(jì)理科數(shù)學(xué)成績(jī)不低于110分的學(xué)生人數(shù)約為()A.40 B.60 C.80 D.10011.已知冪函數(shù)的圖象過(guò)點(diǎn),且,,,則,,的大小關(guān)系為()A. B. C. D.12.設(shè)命題函數(shù)在上遞增,命題在中,,下列為真命題的是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè),若關(guān)于的方程有實(shí)數(shù)解,則實(shí)數(shù)的取值范圍_____.14.設(shè),則除以的余數(shù)是______.15.函數(shù)的定義域?yàn)開(kāi)_____.16.已知向量,滿足,,且已知向量,的夾角為,,則的最小值是__.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知圓的極坐標(biāo)方程是,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程是是參數(shù)),若直線與圓相切,求實(shí)數(shù)的值.18.(12分)函數(shù)(1)證明:;(2)若存在,且,使得成立,求取值范圍.19.(12分)已知.(1)求不等式的解集;(2)若存在,使得成立,求實(shí)數(shù)的取值范圍20.(12分)如圖,在四棱錐中,底面是直角梯形,,,,是正三角形,,是的中點(diǎn).(1)證明:;(2)求直線與平面所成角的正弦值.21.(12分)如圖,已知四邊形的直角梯形,∥BC,,,,為線段的中點(diǎn),平面,,為線段上一點(diǎn)(不與端點(diǎn)重合).(1)若,(?。┣笞C:PC∥平面;(ⅱ)求平面與平面所成的銳二面角的余弦值;(2)否存在實(shí)數(shù)滿足,使得直線與平面所成的角的正弦值為,若存在,確定的值,若不存在,請(qǐng)說(shuō)明理由.22.(10分)等差數(shù)列的公差為2,分別等于等比數(shù)列的第2項(xiàng),第3項(xiàng),第4項(xiàng).(1)求數(shù)列和的通項(xiàng)公式;(2)若數(shù)列滿足,求數(shù)列的前2020項(xiàng)的和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

根據(jù)雙曲線的漸近線列方程,解方程求得的值.【詳解】由題意知雙曲線的漸近線方程為,可化為,則,解得.故選:A【點(diǎn)睛】本小題主要考查雙曲線的漸近線,屬于基礎(chǔ)題.2、B【解析】函數(shù)(為輔助角)∴函數(shù)的最大值為,最小正周期為故選B3、C【解析】

把已知等式變形,再由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)得答案.【詳解】由(1+i)z=|3+4i|,得z,∴z的虛部為.故選C.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的基本概念,是基礎(chǔ)題.4、B【解析】

利用誘導(dǎo)公式以及同角三角函數(shù)基本關(guān)系式化簡(jiǎn)求解即可.【詳解】,本題正確選項(xiàng):【點(diǎn)睛】本題考查誘導(dǎo)公式的應(yīng)用,同角三角函數(shù)基本關(guān)系式的應(yīng)用,考查計(jì)算能力.5、D【解析】

如圖所示,設(shè)的中點(diǎn)為,的外接圓的圓心為,四面體的外接球的球心為,連接,利用正弦定理可得,利用球心的性質(zhì)和線面垂直的性質(zhì)可得四邊形為平行四邊形,最后利用勾股定理可求外接球的半徑,從而可得外接球的表面積.【詳解】如圖所示,設(shè)的中點(diǎn)為,外接圓的圓心為,四面體的外接球的球心為,連接,則平面,.因?yàn)椋?,因?yàn)?,?由正弦定理可得,故,又因?yàn)椋?因?yàn)?,故平面,所以,因?yàn)槠矫?,平面,故,故,所以四邊形為平行四邊形,所以,所以,故外接球的半徑為,外接球的表面積為.故選:D.【點(diǎn)睛】本題考查平面圖形的折疊以及三棱錐外接球表面積的計(jì)算,還考查正弦定理和余弦定理,折疊問(wèn)題注意翻折前后的變量與不變量,外接球問(wèn)題注意先確定外接球的球心的位置,然后把半徑放置在可解的直角三角形中來(lái)計(jì)算,本題有一定的難度.6、C【解析】

利用正方體將三視圖還原,觀察可得最長(zhǎng)棱為AD,算出長(zhǎng)度.【詳解】幾何體的直觀圖如圖所示,易得最長(zhǎng)的棱長(zhǎng)為故選:C.【點(diǎn)睛】本題考查了三視圖還原幾何體的問(wèn)題,其中利用正方體作襯托是關(guān)鍵,屬于基礎(chǔ)題.7、C【解析】

根據(jù)函數(shù)奇偶性可排除AB選項(xiàng);結(jié)合特殊值,即可排除D選項(xiàng).【詳解】∵,,∴函數(shù)為奇函數(shù),∴排除選項(xiàng)A,B;又∵當(dāng)時(shí),,故選:C.【點(diǎn)睛】本題考查了依據(jù)函數(shù)解析式選擇函數(shù)圖象,注意奇偶性及特殊值的用法,屬于基礎(chǔ)題.8、C【解析】

由題可知,設(shè)函數(shù),,根據(jù)導(dǎo)數(shù)求出的極值點(diǎn),得出單調(diào)性,根據(jù)在區(qū)間內(nèi)的解集中有且僅有三個(gè)整數(shù),轉(zhuǎn)化為在區(qū)間內(nèi)的解集中有且僅有三個(gè)整數(shù),結(jié)合圖象,可求出實(shí)數(shù)的取值范圍.【詳解】設(shè)函數(shù),,因?yàn)?,所以,或,因?yàn)闀r(shí),,或時(shí),,,其圖象如下:當(dāng)時(shí),至多一個(gè)整數(shù)根;當(dāng)時(shí),在內(nèi)的解集中僅有三個(gè)整數(shù),只需,,所以.故選:C.【點(diǎn)睛】本題考查不等式的解法和應(yīng)用問(wèn)題,還涉及利用導(dǎo)數(shù)求函數(shù)單調(diào)性和函數(shù)圖象,同時(shí)考查數(shù)形結(jié)合思想和解題能力.9、C【解析】

令,則,,將指數(shù)式化成對(duì)數(shù)式得、后,然后取絕對(duì)值作差比較可得.【詳解】令,則,,,,,因此,.故選:C.【點(diǎn)睛】本題考查了利用作差法比較大小,同時(shí)也考查了指數(shù)式與對(duì)數(shù)式的轉(zhuǎn)化,考查推理能力,屬于中等題.10、D【解析】

由正態(tài)分布的性質(zhì),根據(jù)題意,得到,求出概率,再由題中數(shù)據(jù),即可求出結(jié)果.【詳解】由題意,成績(jī)X近似服從正態(tài)分布,則正態(tài)分布曲線的對(duì)稱軸為,根據(jù)正態(tài)分布曲線的對(duì)稱性,求得,所以該市某校有500人中,估計(jì)該校數(shù)學(xué)成績(jī)不低于110分的人數(shù)為人,故選:.【點(diǎn)睛】本題考查正態(tài)分布的圖象和性質(zhì),考查學(xué)生分析問(wèn)題的能力,難度容易.11、A【解析】

根據(jù)題意求得參數(shù),根據(jù)對(duì)數(shù)的運(yùn)算性質(zhì),以及對(duì)數(shù)函數(shù)的單調(diào)性即可判斷.【詳解】依題意,得,故,故,,,則.故選:A.【點(diǎn)睛】本題考查利用指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的單調(diào)性比較大小,考查推理論證能力,屬基礎(chǔ)題.12、C【解析】

命題:函數(shù)在上單調(diào)遞減,即可判斷出真假.命題:在中,利用余弦函數(shù)單調(diào)性判斷出真假.【詳解】解:命題:函數(shù),所以,當(dāng)時(shí),,即函數(shù)在上單調(diào)遞減,因此是假命題.命題:在中,在上單調(diào)遞減,所以,是真命題.則下列命題為真命題的是.故選:C.【點(diǎn)睛】本題考查了函數(shù)的單調(diào)性、正弦定理、三角形邊角大小關(guān)系、簡(jiǎn)易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

先求出,從而得函數(shù)在區(qū)間上為增函數(shù);在區(qū)間為減函數(shù).即可得的最大值為,令,得函數(shù)取得最小值,由有實(shí)數(shù)解,,進(jìn)而得實(shí)數(shù)的取值范圍.【詳解】解:,當(dāng)時(shí),;當(dāng)時(shí),;函數(shù)在區(qū)間上為增函數(shù);在區(qū)間為減函數(shù).所以的最大值為,令,所以當(dāng)時(shí),函數(shù)取得最小值,又因?yàn)榉匠逃袑?shí)數(shù)解,那么,即,所以實(shí)數(shù)的取值范圍是:.故答案為:【點(diǎn)睛】本題考查了函數(shù)的單調(diào)性,函數(shù)的最值問(wèn)題,導(dǎo)數(shù)的應(yīng)用,屬于中檔題.14、1【解析】

利用二項(xiàng)式定理得到,將89寫成1+88,然后再利用二項(xiàng)式定理展開(kāi)即可.【詳解】,因展開(kāi)式中后面10項(xiàng)均有88這個(gè)因式,所以除以的余數(shù)為1.故答案為:1【點(diǎn)睛】本題考查二項(xiàng)式定理的綜合應(yīng)用,涉及余數(shù)的問(wèn)題,解決此類問(wèn)題的關(guān)鍵是靈活構(gòu)造二項(xiàng)式,并將它展開(kāi)分析,本題是一道基礎(chǔ)題.15、【解析】

對(duì)數(shù)函數(shù)的定義域需滿足真數(shù)大于0,再由指數(shù)型不等式求解出解集即可.【詳解】對(duì)函數(shù)有意義,即.故答案為:【點(diǎn)睛】本題考查求對(duì)數(shù)函數(shù)的定義域,還考查了指數(shù)型不等式求解,屬于基礎(chǔ)題.16、【解析】

求的最小值可以轉(zhuǎn)化為求以AB為直徑的圓到點(diǎn)O的最小距離,由此即可得到本題答案.【詳解】如圖所示,設(shè),由題,得,又,所以,則點(diǎn)C在以AB為直徑的圓上,取AB的中點(diǎn)為M,則,設(shè)以AB為直徑的圓與線段OM的交點(diǎn)為E,則的最小值是,因?yàn)?,又,所以的最小值?故答案為:【點(diǎn)睛】本題主要考查向量的綜合應(yīng)用問(wèn)題,涉及到圓的相關(guān)知識(shí)與余弦定理,考查學(xué)生的分析問(wèn)題和解決問(wèn)題的能力,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、【解析】

將圓的極坐標(biāo)方程化為直角坐標(biāo)方程,直線的參數(shù)方程化為普通方程,再根據(jù)直線與圓相切,利用圓心到直線的距離等于半徑,即可求實(shí)數(shù)的值.【詳解】由,得,,即圓的方程為,又由消,得,直線與圓相切,,.【點(diǎn)睛】本題重點(diǎn)考查方程的互化,考查直線與圓的位置關(guān)系,解題的關(guān)鍵是利用圓心到直線的距離等于半徑,研究直線與圓相切.18、(1)證明見(jiàn)詳解;(2)或或【解析】

(1)(2)首先用基本不等式得到,然后解出不等式即可【詳解】(1)因?yàn)樗裕?)當(dāng)時(shí)所以當(dāng)且僅當(dāng)即時(shí)等號(hào)成立因?yàn)榇嬖冢?,使得成立所以所以或解得:或或【點(diǎn)睛】1.要熟練掌握絕對(duì)值的三角不等式,即2.應(yīng)用基本不等式求最值時(shí)要滿足“一正二定三相等”.19、(1).(2).【解析】試題分析:(Ⅰ)通過(guò)討論x的范圍,得到關(guān)于x的不等式組,解出取并集即可;(Ⅱ)求出f(x)的最大值,得到關(guān)于a的不等式,解出即可.試題解析:(1)不等式等價(jià)于或或,解得或,所以不等式的解集是;(2),,,解得實(shí)數(shù)的取值范圍是.點(diǎn)睛:含絕對(duì)值不等式的解法有兩個(gè)基本方法,一是運(yùn)用零點(diǎn)分區(qū)間討論,二是利用絕對(duì)值的幾何意義求解.法一是運(yùn)用分類討論思想,法二是運(yùn)用數(shù)形結(jié)合思想,將絕對(duì)值不等式與函數(shù)以及不等式恒成立交匯、滲透,解題時(shí)強(qiáng)化函數(shù)、數(shù)形結(jié)合與轉(zhuǎn)化化歸思想方法的靈活應(yīng)用,這是命題的新動(dòng)向.20、(1)見(jiàn)證明;(2)【解析】

(1)設(shè)是的中點(diǎn),連接、,先證明是平行四邊形,再證明平面,即(2)以為坐標(biāo)原點(diǎn),的方向?yàn)檩S的正方向,建空間直角坐標(biāo)系,分別計(jì)算各個(gè)點(diǎn)坐標(biāo),計(jì)算平面法向量,利用向量的夾角公式得到直線與平面所成角的正弦值.【詳解】(1)證明:設(shè)是的中點(diǎn),連接、,是的中點(diǎn),,,,,,,是平行四邊形,,,,,,,,由余弦定理得,,,,平面,,;(2)由(1)得平面,,平面平面,過(guò)點(diǎn)作,垂足為,平面,以為坐標(biāo)原點(diǎn),的方向?yàn)檩S的正方向,建立如圖的空間直角坐標(biāo)系,則,,,,設(shè)是平面的一個(gè)法向量,則,,令,則,,,直線與平面所成角的正弦值為.【點(diǎn)睛】本題考查了線面垂直,線線垂直,利用空間直角坐標(biāo)系解決線面夾角問(wèn)題,意在考查學(xué)生的空間想象能力和計(jì)算能力.21、(1)(ⅰ)證明見(jiàn)解析(ⅱ)(2)存在,【解析】

(1)(i)連接交于點(diǎn),連接,,依題意易證四邊形為平行四邊形,從而有,,由此能證明PC∥平面(ii)推導(dǎo)出,以為原點(diǎn)建立空間直角坐標(biāo)系,利用向量法求解;(2)設(shè),求出平面的法向量,利用向量法求解.【詳解】(1)(ⅰ)證明:連接交于點(diǎn),連接,,因?yàn)闉榫€段的中點(diǎn),所以,因?yàn)?,所以因?yàn)椤嗡运倪呅螢槠叫兴倪呅危杂忠驗(yàn)椋杂忠驗(yàn)槠矫?,平面,所以平面.(ⅱ)解:如圖,在平行四邊形中因?yàn)?,,所以以為原點(diǎn)建立空間直角坐標(biāo)系則,,,所以,,,平面的法向量為設(shè)平面的法向量為,則,即,取,得,設(shè)平面和平面所成的銳二面角為,則所以銳二面角的余弦值為(2)設(shè)所以,,設(shè)平面的法向量為,則,取,得,因?yàn)橹本€與平面所成的角的正弦值為,所以解得所以存在滿足,使得直線與平面所成的角的正弦值為.【點(diǎn)睛】此題二查線面平行的證明,考查銳二面角的余弦值的求法,考查滿足線面角的正弦值的點(diǎn)是否存在的判斷與求法,考查空間中線線,線面,面面的位置關(guān)系等知識(shí),考查了推理能力與計(jì)算能力,屬于中檔題.22、(1),;(2).【解析】

(1

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論