湖北省武漢市華中師大一附中2024年中考五模數學試題含解析_第1頁
湖北省武漢市華中師大一附中2024年中考五模數學試題含解析_第2頁
湖北省武漢市華中師大一附中2024年中考五模數學試題含解析_第3頁
湖北省武漢市華中師大一附中2024年中考五模數學試題含解析_第4頁
湖北省武漢市華中師大一附中2024年中考五模數學試題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖北省武漢市華中師大一附中2024年中考五模數學試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.二次函數y=ax1+bx+c(a≠0)的部分圖象如圖所示,圖象過點(﹣1,0),對稱軸為直線x=1,下列結論:(1)4a+b=0;(1)9a+c>﹣3b;(3)7a﹣3b+1c>0;(4)若點A(﹣3,y1)、點B(﹣,y1)、點C(7,y3)在該函數圖象上,則y1<y3<y1;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x1,且x1<x1,則x1<﹣1<5<x1.其中正確的結論有()A.1個 B.3個 C.4個 D.5個2.如圖,一個鐵環(huán)上掛著6個分別編有號碼1,2,3,4,5,6的鐵片.如果把其中編號為2,4的鐵片取下來,再先后把它們穿回到鐵環(huán)上的仼意位置,則鐵環(huán)上的鐵片(無論沿鐵環(huán)如何滑動)不可能排成的情形是()A. B.C. D.3.下列調查中,最適合采用普查方式的是()A.對太原市民知曉“中國夢”內涵情況的調查B.對全班同學1分鐘仰臥起坐成績的調查C.對2018年央視春節(jié)聯歡晚會收視率的調查D.對2017年全國快遞包裹產生的包裝垃圾數量的調查4.如圖,已知直線,點E,F分別在、上,,如果∠B=40°,那么()A.20° B.40° C.60° D.80°5.如圖,正方形ABCD中,E,F分別在邊AD,CD上,AF,BE相交于點G,若AE=3ED,DF=CF,則的值是A. B. C. D.6.如果一個多邊形的內角和是外角和的3倍,則這個多邊形的邊數是()A.8 B.9 C.10 D.117.如圖,BC是⊙O的直徑,A是⊙O上的一點,∠B=58°,則∠OAC的度數是()A.32° B.30° C.38° D.58°8.的相反數是()A.2 B.﹣2 C.4 D.﹣9.已知x=2是關于x的一元二次方程x2﹣x﹣2a=0的一個解,則a的值為()A.0 B.﹣1 C.1 D.210.下列運算正確的是()A.a6÷a2=a3B.(2a+b)(2a﹣b)=4a2﹣b2C.(﹣a)2?a3=a6D.5a+2b=7ab11.如圖,已知,那么下列結論正確的是()A. B. C. D.12.在平面直角坐標系xOy中,二次函數y=ax2+bx+c(a≠0)的大致圖象如圖所示,則下列結論正確的是()A.a<0,b<0,c>0B.﹣=1C.a+b+c<0D.關于x的方程ax2+bx+c=﹣1有兩個不相等的實數根二、填空題:(本大題共6個小題,每小題4分,共24分.)13.在某一時刻,測得一根高為2m的竹竿的影長為1m,同時測得一棟建筑物的影長為9m,那么這棟建筑物的高度為_____m.14.如圖,若∠1+∠2=180°,∠3=110°,則∠4=.15.如圖,在△ABC中,BD和CE是△ABC的兩條角平分線.若∠A=52°,則∠1+∠2的度數為_______.16.一只不透明的袋子中裝有紅球和白球共30個,這些球除了顏色外都相同,校課外學習小組做摸球實驗,將球攪勻后任意摸出一個球,記下顏色后放回,攪勻,通過多次重復試驗,算得摸到紅球的頻率是0.2,則袋中有________個紅球.17.如圖,邊長為的正方形紙片剪出一個邊長為m的正方形之后,剩余部分可剪拼成一個矩形,若拼成的矩形一邊長為4,則另一邊長為18.若關于x的方程=0有增根,則m的值是______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)為了傳承祖國的優(yōu)秀傳統文化,某校組織了一次“詩詞大會”,小明和小麗同時參加,其中,有一道必答題是:從如圖所示的九宮格中選取七個字組成一句唐詩,其答案為“山重水復疑無路”.(1)小明回答該問題時,僅對第二個字是選“重”還是選“窮”難以抉擇,隨機選擇其中一個,則小明回答正確的概率是;(2)小麗回答該問題時,對第二個字是選“重”還是選“窮”、第四個字是選“富”還是選“復”都難以抉擇,若分別隨機選擇,請用列表或畫樹狀圖的方法求小麗回答正確的概率.九宮格20.(6分)如圖1,已知扇形MON的半徑為,∠MON=90°,點B在弧MN上移動,聯結BM,作OD⊥BM,垂足為點D,C為線段OD上一點,且OC=BM,聯結BC并延長交半徑OM于點A,設OA=x,∠COM的正切值為y.(1)如圖2,當AB⊥OM時,求證:AM=AC;(2)求y關于x的函數關系式,并寫出定義域;(3)當△OAC為等腰三角形時,求x的值.21.(6分)先化簡,后求值:,其中.22.(8分)某社區(qū)活動中心為鼓勵居民加強體育鍛煉,準備購買10副某種品牌的羽毛球拍,每副球拍配x(x≥2)個羽毛球,供社區(qū)居民免費借用.該社區(qū)附近A、B兩家超市都有這種品牌的羽毛球拍和羽毛球出售,且每副球拍的標價均為30元,每個羽毛球的標價為3元,目前兩家超市同時在做促銷活動:A超市:所有商品均打九折(按標價的90%)銷售;B超市:買一副羽毛球拍送2個羽毛球.設在A超市購買羽毛球拍和羽毛球的費用為yA(元),在B超市購買羽毛球拍和羽毛球的費用為yB(元).請解答下列問題:分別寫出yA、yB與x之間的關系式;若該活動中心只在一家超市購買,你認為在哪家超市購買更劃算?若每副球拍配15個羽毛球,請你幫助該活動中心設計出最省錢的購買方案.23.(8分)頂點為D的拋物線y=﹣x2+bx+c交x軸于A、B(3,0),交y軸于點C,直線y=﹣x+m經過點C,交x軸于E(4,0).求出拋物線的解析式;如圖1,點M為線段BD上不與B、D重合的一個動點,過點M作x軸的垂線,垂足為N,設點M的橫坐標為x,四邊形OCMN的面積為S,求S與x之間的函數關系式,并求S的最大值;點P為x軸的正半軸上一個動點,過P作x軸的垂線,交直線y=﹣x+m于G,交拋物線于H,連接CH,將△CGH沿CH翻折,若點G的對應點F恰好落在y軸上時,請直接寫出點P的坐標.24.(10分)如圖,已知是的直徑,點、在上,且,過點作,垂足為.求的長;若的延長線交于點,求弦、和弧圍成的圖形(陰影部分)的面積.25.(10分)為節(jié)約用水,某市居民生活用水按階梯式水價計量,水價分為三個階梯,價格表如下表所示:某市自來水銷售價格表類別月用水量(立方米)供水價格(元/立方米)污水處理費(元/立方米)居民生活用水階梯一0~18(含18)1.901.00階梯二18~25(含25)2.85階梯三25以上5.70(注:居民生活用水水價=供水價格+污水處理費)(1)當居民月用水量在18立方米及以下時,水價是_____元/立方米.(2)4月份小明家用水量為20立方米,應付水費為:18×(1.90+1.00)+2×(2.85+1.00)=59.90(元)預計6月份小明家的用水量將達到30立方米,請計算小明家6月份的水費.(3)為了節(jié)省開支,小明家決定每月用水的費用不超過家庭收入的1%,已知小明家的平均月收入為7530元,請你為小明家每月用水量提出建議26.(12分)如圖,在平面直角坐標系中,A、B為x軸上兩點,C、D為y軸上的兩點,經過點A、C、B的拋物線的一部分C1與經過點A、D、B的拋物線的一部分C2組合成一條封閉曲線,我們把這條封閉曲線稱為“蛋線”.已知點C的坐標為(0,),點M是拋物線C2:(<0)的頂點.(1)求A、B兩點的坐標;(2)“蛋線”在第四象限上是否存在一點P,使得△PBC的面積最大?若存在,求出△PBC面積的最大值;若不存在,請說明理由;(3)當△BDM為直角三角形時,求的值.27.(12分)△ABC內接于⊙O,AC為⊙O的直徑,∠A=60°,點D在AC上,連接BD作等邊三角形BDE,連接OE.如圖1,求證:OE=AD;如圖2,連接CE,求證:∠OCE=∠ABD;如圖3,在(2)的條件下,延長EO交⊙O于點G,在OG上取點F,使OF=2OE,延長BD到點M使BD=DM,連接MF,若tan∠BMF=,OD=3,求線段CE的長.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】根據題意和函數的圖像,可知拋物線的對稱軸為直線x=-=1,即b=-4a,變形為4a+b=0,所以(1)正確;由x=-3時,y>0,可得9a+3b+c>0,可得9a+c>-3c,故(1)正確;因為拋物線與x軸的一個交點為(-1,0)可知a-b+c=0,而由對稱軸知b=-4a,可得a+4a+c=0,即c=-5a.代入可得7a﹣3b+1c=7a+11a-5a=14a,由函數的圖像開口向下,可知a<0,因此7a﹣3b+1c<0,故(3)不正確;根據圖像可知當x<1時,y隨x增大而增大,當x>1時,y隨x增大而減小,可知若點A(﹣3,y1)、點B(﹣,y1)、點C(7,y3)在該函數圖象上,則y1=y3<y1,故(4)不正確;根據函數的對稱性可知函數與x軸的另一交點坐標為(5,0),所以若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x1,且x1<x1,則x1<﹣1<x1,故(5)正確.正確的共有3個.故選B.點睛:本題考查了二次函數圖象與系數的關系:二次函數y=ax1+bx+c(a≠0),二次項系數a決定拋物線的開口方向和大小,當a>0時,拋物線向上開口;當a<0時,拋物線向下開口;一次項系數b和二次項系數a共同決定對稱軸的位置,當a與b同號時(即ab>0),對稱軸在y軸左;

當a與b異號時(即ab<0),對稱軸在y軸右;常數項c決定拋物線與y軸交點.

拋物線與y軸交于(0,c);拋物線與x軸交點個數由△決定,△=b1﹣4ac>0時,拋物線與x軸有1個交點;△=b1﹣4ac=0時,拋物線與x軸有1個交點;△=b1﹣4ac<0時,拋物線與x軸沒有交點.2、D【解析】

摘掉鐵片2,4后,鐵片1,1,5,6在鐵環(huán)上按逆時針排列,無論將鐵片2,4穿回哪里,鐵片1,1,5,6在鐵環(huán)上的順序不變,觀察四個選擇即可得出結論.【詳解】解:摘掉鐵片2,4后,鐵片1,1,5,6在鐵環(huán)上按逆時針排列,∵選項A,B,C中鐵片順序為1,1,5,6,選項D中鐵片順序為1,5,6,1.故選D.【點睛】本題考查了規(guī)律型:圖形的變化類,找準鐵片1,1,5,6在鐵環(huán)上的順序不變是解題的關鍵.3、B【解析】分析:由普查得到的調查結果比較準確,但所費人力、物力和時間較多,而抽樣調查得到的調查結果比較近似.詳解:A、調查范圍廣適合抽樣調查,故A不符合題意;B、適合普查,故B符合題意;C、調查范圍廣適合抽樣調查,故C不符合題意;D、調查范圍廣適合抽樣調查,故D不符合題意;故選:B.點睛:本題考查了抽樣調查和全面調查的區(qū)別,選擇普查還是抽樣調查要根據所要考查的對象的特征靈活選用,一般來說,對于具有破壞性的調查、無法進行普查、普查的意義或價值不大,應選擇抽樣調查,對于精確度要求高的調查,事關重大的調查往往選用普查.4、C【解析】

根據平行線的性質,可得的度數,再根據以及平行線的性質,即可得出的度數.【詳解】∵,,∴,∵,∴,∵,∴,故選C.【點睛】本題主要考查了平行線的性質的運用,解題時注意:兩直線平行,同旁內角互補,且內錯角相等.5、C【解析】

如圖作,FN∥AD,交AB于N,交BE于M.設DE=a,則AE=3a,利用平行線分線段成比例定理解決問題即可.【詳解】如圖作,FN∥AD,交AB于N,交BE于M.∵四邊形ABCD是正方形,∴AB∥CD,∵FN∥AD,∴四邊形ANFD是平行四邊形,∵∠D=90°,∴四邊形ANFD是矩形,∵AE=3DE,設DE=a,則AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=a,∴FM=a,∵AE∥FM,∴,故選C.【點睛】本題考查正方形的性質、平行線分線段成比例定理、三角形中位線定理等知識,解題的關鍵是學會添加常用輔助線,構造平行線解決問題,學會利用參數解決問題,屬于中考??碱}型.6、A【解析】分析:根據多邊形的內角和公式及外角的特征計算.詳解:多邊形的外角和是360°,根據題意得:

110°?(n-2)=3×360°

解得n=1.

故選A.點睛:本題主要考查了多邊形內角和公式及外角的特征.求多邊形的邊數,可以轉化為方程的問題來解決.7、A【解析】

根據∠B=58°得出∠AOC=116°,半徑相等,得出OC=OA,進而得出∠OAC=32°,利用直徑和圓周角定理解答即可.【詳解】解:∵∠B=58°,∴∠AOC=116°,∵OA=OC,∴∠C=∠OAC=32°,故選:A.【點睛】此題考查了圓周角的性質與等腰三角形的性質.此題比較簡單,解題的關鍵是注意數形結合思想的應用.8、A【解析】分析:根據只有符號不同的兩個數是互為相反數解答即可.詳解:的相反數是,即2.故選A.點睛:本題考查了相反數的定義,解答本題的關鍵是熟練掌握相反數的定義,正數的相反數是負數,0的相反數是0,負數的相反數是正數.9、C【解析】試題分析:把方程的解代入方程,可以求出字母系數a的值.∵x=2是方程的解,∴4﹣2﹣2a=0,∴a=1.故本題選C.【考點】一元二次方程的解;一元二次方程的定義.10、B【解析】

A選項:利用同底數冪的除法法則,底數不變,只把指數相減即可;

B選項:利用平方差公式,應先把2a看成一個整體,應等于(2a)2-b2而不是2a2-b2,故本選項錯誤;

C選項:先把(-a)2化為a2,然后利用同底數冪的乘法法則,底數不變,只把指數相加,即可得到;

D選項:兩項不是同類項,故不能進行合并.【詳解】A選項:a6÷a2=a4,故本選項錯誤;

B選項:(2a+b)(2a-b)=4a2-b2,故本選項正確;

C選項:(-a)2?a3=a5,故本選項錯誤;

D選項:5a與2b不是同類項,不能合并,故本選項錯誤;

故選:B.【點睛】考查學生同底數冪的乘除法法則的運用以及對平方差公式的掌握,同時要求學生對同類項進行正確的判斷.11、A【解析】

已知AB∥CD∥EF,根據平行線分線段成比例定理,對各項進行分析即可.【詳解】∵AB∥CD∥EF,∴.故選A.【點睛】本題考查平行線分線段成比例定理,找準對應關系,避免錯選其他答案.12、D【解析】試題分析:根據圖像可得:a<0,b>0,c<0,則A錯誤;,則B錯誤;當x=1時,y=0,即a+b+c=0,則C錯誤;當y=-1時有兩個交點,即有兩個不相等的實數根,則正確,故選D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】分析:根據同時同地的物高與影長成正比列式計算即可得解.詳解:設這棟建筑物的高度為xm,由題意得,,解得x=1,即這棟建筑物的高度為1m.故答案為1.點睛:同時同地的物高與影長成正比,利用相似三角形的相似比,列出方程,通過解方程求出這棟高樓的高度,體現了方程的思想.14、110°.【解析】

解:∵∠1+∠2=180°,∴a∥b,∴∠3=∠4,又∵∠3=110°,∴∠4=110°.故答案為110°.15、64°【解析】解:∵∠A=52°,∴∠ABC+∠ACB=128°.∵BD和CE是△ABC的兩條角平分線,∴∠1=∠ABC,∠2=∠ACB,∴∠1+∠2=(∠ABC+∠ACB)=64°.故答案為64°.點睛:本題考查的是三角形內角和定理、角平分線的定義,掌握三角形內角和等于180°是解題的關鍵.16、1【解析】

在同樣條件下,大量反復試驗時,隨機事件發(fā)生的頻率逐漸穩(wěn)定在概率附近,可以從比例關系入手,設袋中有x個紅球,列出方程=20%,求得x=1.

故答案為1.點睛:此題主要考查了利用頻率估計概率,本題利用了用大量試驗得到的頻率可以估計事件的概率.關鍵是根據紅球的頻率得到相應的等量關系.17、【解析】

因為大正方形邊長為,小正方形邊長為m,所以剩余的兩個直角梯形的上底為m,下底為,所以矩形的另一邊為梯形上、下底的和:+m=.18、2【解析】去分母得,m-1-x=0.∵方程有增根,∴x=1,∴m-1-1=0,∴m=2.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1);(2)【解析】試題分析:(1)利用概率公式直接計算即可;(2)畫出樹狀圖得到所有可能的結果,再找到回答正確的數目即可求出小麗回答正確的概率.試題解析:(1)∵對第二個字是選“重”還是選“窮”難以抉擇,∴若隨機選擇其中一個正確的概率=,故答案為;(2)畫樹形圖得:由樹狀圖可知共有4種可能結果,其中正確的有1種,所以小麗回答正確的概率=.考點:列表法與樹狀圖法;概率公式.20、(1)證明見解析;(2).();(3).【解析】分析:(1)先判斷出∠ABM=∠DOM,進而判斷出△OAC≌△BAM,即可得出結論;(2)先判斷出BD=DM,進而得出,進而得出AE=,再判斷出,即可得出結論;(3)分三種情況利用勾股定理或判斷出不存在,即可得出結論.詳解:(1)∵OD⊥BM,AB⊥OM,∴∠ODM=∠BAM=90°.∵∠ABM+∠M=∠DOM+∠M,∴∠ABM=∠DOM.∵∠OAC=∠BAM,OC=BM,∴△OAC≌△BAM,∴AC=AM.(2)如圖2,過點D作DE∥AB,交OM于點E.∵OB=OM,OD⊥BM,∴BD=DM.∵DE∥AB,∴,∴AE=EM.∵OM=,∴AE=.∵DE∥AB,∴,∴.()(3)(i)當OA=OC時.∵.在Rt△ODM中,.∵.解得,或(舍).(ii)當AO=AC時,則∠AOC=∠ACO.∵∠ACO>∠COB,∠COB=∠AOC,∴∠ACO>∠AOC,∴此種情況不存在.(ⅲ)當CO=CA時,則∠COA=∠CAO=α.∵∠CAO>∠M,∠M=90°﹣α,∴α>90°﹣α,∴α>45°,∴∠BOA=2α>90°.∵∠BOA≤90°,∴此種情況不存在.即:當△OAC為等腰三角形時,x的值為.點睛:本題是圓的綜合題,主要考查了相似三角形的判定和性質,圓的有關性質,勾股定理,等腰三角形的性質,建立y關于x的函數關系式是解答本題的關鍵.21、,【解析】分析:先把分值分母因式分解后約分,再進行通分得到原式=,然后把x的值代入計算即可.詳解:原式=?﹣1=﹣=當x=+1時,原式==.點睛:本題考查了分式的化簡求值:先把分式化簡后,再把分式中未知數對應的值代入求出分式的值.22、解:(1)yA=27x+270,yB=30x+240;(2)當2≤x<10時,到B超市購買劃算,當x=10時,兩家超市一樣劃算,當x>10時在A超市購買劃算;(3)先選擇B超市購買10副羽毛球拍,然后在A超市購買130個羽毛球.【解析】

(1)根據購買費用=單價×數量建立關系就可以表示出yA、yB的解析式;(2)分三種情況進行討論,當yA=yB時,當yA>yB時,當yA<yB時,分別求出購買劃算的方案;(3)分兩種情況進行討論計算求出需要的費用,再進行比較就可以求出結論.【詳解】解:(1)由題意,得yA=(10×30+3×10x)×0.9=27x+270;yB=10×30+3(10x﹣20)=30x+240;(2)當yA=yB時,27x+270=30x+240,得x=10;當yA>yB時,27x+270>30x+240,得x<10;當yA<yB時,27x+270<30x+240,得x>10∴當2≤x<10時,到B超市購買劃算,當x=10時,兩家超市一樣劃算,當x>10時在A超市購買劃算.(3)由題意知x=15,15>10,∴選擇A超市,yA=27×15+270=675(元),先選擇B超市購買10副羽毛球拍,送20個羽毛球,然后在A超市購買剩下的羽毛球:(10×15﹣20)×3×0.9=351(元),共需要費用10×30+351=651(元).∵651元<675元,∴最佳方案是先選擇B超市購買10副羽毛球拍,然后在A超市購買130個羽毛球.【點睛】本題考查一次函數的應用,根據題意確列出函數關系式是本題的解題關鍵.23、(1)y=﹣x2+2x+3;(2)S=﹣(x﹣)2+;當x=時,S有最大值,最大值為;(3)存在,點P的坐標為(4,0)或(,0).【解析】

(1)將點E代入直線解析式中,可求出點C的坐標,將點C、B代入拋物線解析式中,可求出拋物線解析式.(2)將拋物線解析式配成頂點式,可求出點D的坐標,設直線BD的解析式,代入點B、D,可求出直線BD的解析式,則MN可表示,則S可表示.(3)設點P的坐標,則點G的坐標可表示,點H的坐標可表示,HG長度可表示,利用翻折推出CG=HG,列等式求解即可.【詳解】(1)將點E代入直線解析式中,0=﹣×4+m,解得m=3,∴解析式為y=﹣x+3,∴C(0,3),∵B(3,0),則有,解得,∴拋物線的解析式為:y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),設直線BD的解析式為y=kx+b,代入點B、D,,解得,∴直線BD的解析式為y=﹣2x+6,則點M的坐標為(x,﹣2x+6),∴S=(3+6﹣2x)?x?=﹣(x﹣)2+,∴當x=時,S有最大值,最大值為.(3)存在,如圖所示,設點P的坐標為(t,0),則點G(t,﹣t+3),H(t,﹣t2+2t+3),∴HG=|﹣t2+2t+3﹣(﹣t+3)|=|t2﹣t|CG==t,∵△CGH沿GH翻折,G的對應點為點F,F落在y軸上,而HG∥y軸,∴HG∥CF,HG=HF,CG=CF,∠GHC=∠CHF,∴∠FCH=∠CHG,∴∠FCH=∠FHC,∴∠GCH=∠GHC,∴CG=HG,∴|t2﹣t|=t,當t2﹣t=t時,解得t1=0(舍),t2=4,此時點P(4,0).當t2﹣t=﹣t時,解得t1=0(舍),t2=,此時點P(,0).綜上,點P的坐標為(4,0)或(,0).【點睛】此題考查了待定系數法求函數解析式,點坐標轉換為線段長度,幾何圖形與二次函數結合的問題,最后一問推出CG=HG為解題關鍵.24、(1)OE=;(2)陰影部分的面積為【解析】

(1)由題意不難證明OE為△ABC的中位線,要求OE的長度即要求BC的長度,根據特殊角的三角函數即可求得;(2)由題意不難證明△COE≌△AFE,進而將要求的陰影部分面積轉化為扇形FOC的面積,利用扇形面積公式求解即可.【詳解】解:(1)∵AB是⊙O的直徑,∴∠ACB=90°,∵OE⊥AC,∴OE?//?BC,又∵點O是AB中點,∴OE是△ABC的中位線,∵∠D=60°,∴∠B=60°,又∵AB=6,∴BC=AB·cos60°=3,∴OE=BC=;(2)連接OC,∵∠D=60°,∴∠AOC=120°,∵OF⊥AC,∴AE=CE,=,∴∠AOF=∠COF=60°,∴△AOF為等邊三角形,∴AF=AO=CO,∵在Rt△COE與Rt△AFE中,,∴△COE≌△AFE,∴陰影部分的面積=扇形FOC的面積,∵S扇形FOC==π.∴陰影部分的面積為π.【點睛】本題主要考查圓的性質、全等三角形的判定與性質、中位線的證明以及扇形面積的計算,較為綜合.25、(1)1.90;(2)112.65元;(3)當小明家每月的用水量不要超過24立方米時,水費就不會超過他們家庭總收入的1%.【解析】試題分析:(1)由表中數據可知,當用水量在18立方米及以下時,水價為1.9元/立方米;(2)由題意可知小明家6月份的水費是:(1.9+1)×18+(2.85+1)×7+(5.70+1)×5=112.65(元);(3)由已知條件可知,用水量為18立方米時,應交水費52.2元,當用水量為25立方米時,應交水費79.15元,而小明家計劃的水費不超過75.3元,由此可知他們家的用水量不會超過25立方米,設他們家的用水量為x立方米,則由題意可得:18×(1.9+1)+(x-18)×(2.85+1)75.3,解得:x24,即小明家每月的用水量不要超過24立方米.試題解析:(1)由表中數據可知,當用水量在18立方米及以下時,水價為1.9元/立方米;(2)由題意可得:小明家6月份的水費是:(1.9+1)×18+(2.85+1)×7+(5.70+1)×5=112.65(元);(3)由題意可知,當用水量為18立方米時,應交水費52.2元,當用水量為25立方米時,應交水費79.15元,而小明家計劃的水費不超過75.3元,由此可知他們家的用水量不超過18立方米,而不足25立方米,設他們家的用水量為x立方米,則由題意可得:18×(1.9+1)+(x-18)×(2.85+1)75.3,解得:x24,∴當小明家每月的用水量不要超過24立方米時,水費就不會超過他們家庭總收入的1%.26、(1)A(,0)、B(3,0).(2)存在.S△PBC最大值為(3)或時,△BDM為直角三角形.【解析】

(1)在中令y=0,即可得到A、B兩點的坐標.(2)先用待定系數法得到拋物線C1的解析式,由S△PBC=S△POC+S△BOP–S△BOC得到△PBC面積的表達式,根據二次函數最值原理求出最大值.(3)先表示出DM2,BD2,MB2,再分兩種情況:①∠BMD=90°時;②∠BDM=90°時,討論即可求得m的值.【詳解】解:(1)令y=0,則,∵m<0,∴,解得:,.∴A(,0)、B(3,0).(2)存在.理由如下:∵設拋物線C1的表達式為(),把C(0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論