![廣東省佛山市高三1月調(diào)研(期末)測試新高考數(shù)學(xué)試題_第1頁](http://file4.renrendoc.com/view2/M00/29/2D/wKhkFmZyMxaADKuGAAHZH0DCyL0626.jpg)
![廣東省佛山市高三1月調(diào)研(期末)測試新高考數(shù)學(xué)試題_第2頁](http://file4.renrendoc.com/view2/M00/29/2D/wKhkFmZyMxaADKuGAAHZH0DCyL06262.jpg)
![廣東省佛山市高三1月調(diào)研(期末)測試新高考數(shù)學(xué)試題_第3頁](http://file4.renrendoc.com/view2/M00/29/2D/wKhkFmZyMxaADKuGAAHZH0DCyL06263.jpg)
![廣東省佛山市高三1月調(diào)研(期末)測試新高考數(shù)學(xué)試題_第4頁](http://file4.renrendoc.com/view2/M00/29/2D/wKhkFmZyMxaADKuGAAHZH0DCyL06264.jpg)
![廣東省佛山市高三1月調(diào)研(期末)測試新高考數(shù)學(xué)試題_第5頁](http://file4.renrendoc.com/view2/M00/29/2D/wKhkFmZyMxaADKuGAAHZH0DCyL06265.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
廣東省佛山市高三1月調(diào)研(期末)測試新高考數(shù)學(xué)試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線x2a2-y2b2=1(a>0,b>0),其右焦點F的坐標(biāo)為(c,0),點A是第一象限內(nèi)雙曲線漸近線上的一點,O為坐標(biāo)原點,滿足|OA|=A.2 B.2 C.2332.若,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件3.在中,,,,點,分別在線段,上,且,,則().A. B. C.4 D.94.已知隨機變量服從正態(tài)分布,,()A. B. C. D.5.已知雙曲線:的左、右兩個焦點分別為,,若存在點滿足,則該雙曲線的離心率為()A.2 B. C. D.56.執(zhí)行如圖所示的程序框圖,則輸出的()A.2 B.3 C. D.7.已知點,是函數(shù)的函數(shù)圖像上的任意兩點,且在點處的切線與直線AB平行,則()A.,b為任意非零實數(shù) B.,a為任意非零實數(shù)C.a(chǎn)、b均為任意實數(shù) D.不存在滿足條件的實數(shù)a,b8.雙曲線:(,)的一個焦點為(),且雙曲線的兩條漸近線與圓:均相切,則雙曲線的漸近線方程為()A. B. C. D.9.設(shè)a,b∈(0,1)∪(1,+∞),則"a=b"是"logA.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件10.已知四棱錐的底面為矩形,底面,點在線段上,以為直徑的圓過點.若,則的面積的最小值為()A.9 B.7 C. D.11.過拋物線的焦點且與的對稱軸垂直的直線與交于,兩點,,為的準(zhǔn)線上的一點,則的面積為()A.1 B.2 C.4 D.812.一個陶瓷圓盤的半徑為,中間有一個邊長為的正方形花紋,向盤中投入1000粒米后,發(fā)現(xiàn)落在正方形花紋上的米共有51粒,據(jù)此估計圓周率的值為(精確到0.001)()A.3.132 B.3.137 C.3.142 D.3.147二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓與雙曲線有相同的焦點、,其中為左焦點.點為兩曲線在第一象限的交點,、分別為曲線、的離心率,若是以為底邊的等腰三角形,則的取值范圍為________.14.正四棱柱中,,.若是側(cè)面內(nèi)的動點,且,則與平面所成角的正切值的最大值為___________.15.如圖,在平面四邊形ABCD中,|AC|=3,|BD|=4,則(AB16.雙曲線的左右頂點為,以為直徑作圓,為雙曲線右支上不同于頂點的任一點,連接交圓于點,設(shè)直線的斜率分別為,若,則_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)討論函數(shù)的單調(diào)性;(2)已知在處的切線與軸垂直,若方程有三個實數(shù)解、、(),求證:.18.(12分)在直角坐標(biāo)系中,以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為.(1)求曲線的直角坐標(biāo)方程和曲線的參數(shù)方程;(2)設(shè)曲線與曲線在第二象限的交點為,曲線與軸的交點為,點,求的周長的最大值.19.(12分)在某社區(qū)舉行的2020迎春晚會上,張明和王慧夫妻倆參加該社區(qū)的“夫妻蒙眼擊鼓”游戲,每輪游戲中張明和王慧各蒙眼擊鼓一次,每個人擊中鼓則得積分100分,沒有擊中鼓則扣積分50分,最終積分以家庭為單位計分.已知張明每次擊中鼓的概率為,王慧每次擊中鼓的概率為;每輪游戲中張明和王慧擊中與否互不影響,假設(shè)張明和王慧他們家庭參加兩輪蒙眼擊鼓游戲.(1)若家庭最終積分超過200分時,這個家庭就可以領(lǐng)取一臺全自動洗衣機,問張明和王慧他們家庭可以領(lǐng)取一臺全自動洗衣機的概率是多少?(2)張明和王慧他們家庭兩輪游戲得積分之和的分布列和數(shù)學(xué)期望.20.(12分)2018年反映社會現(xiàn)實的電影《我不是藥神》引起了很大的轟動,治療特種病的創(chuàng)新藥研發(fā)成了當(dāng)務(wù)之急.為此,某藥企加大了研發(fā)投入,市場上治療一類慢性病的特效藥品的研發(fā)費用(百萬元)和銷量(萬盒)的統(tǒng)計數(shù)據(jù)如下:研發(fā)費用(百萬元)2361013151821銷量(萬盒)1122.53.53.54.56(1)求與的相關(guān)系數(shù)精確到0.01,并判斷與的關(guān)系是否可用線性回歸方程模型擬合?(規(guī)定:時,可用線性回歸方程模型擬合);(2)該藥企準(zhǔn)備生產(chǎn)藥品的三類不同的劑型,,,并對其進行兩次檢測,當(dāng)?shù)谝淮螜z測合格后,才能進行第二次檢測.第一次檢測時,三類劑型,,合格的概率分別為,,,第二次檢測時,三類劑型,,合格的概率分別為,,.兩次檢測過程相互獨立,設(shè)經(jīng)過兩次檢測后,,三類劑型合格的種類數(shù)為,求的數(shù)學(xué)期望.附:(1)相關(guān)系數(shù)(2),,,.21.(12分)已知函數(shù),其中為實常數(shù).(1)若存在,使得在區(qū)間內(nèi)單調(diào)遞減,求的取值范圍;(2)當(dāng)時,設(shè)直線與函數(shù)的圖象相交于不同的兩點,,證明:.22.(10分)某商場舉行優(yōu)惠促銷活動,顧客僅可以從以下兩種優(yōu)惠方案中選擇一種.方案一:每滿100元減20元;方案二:滿100元可抽獎一次.具體規(guī)則是從裝有2個紅球、2個白球的箱子隨機取出3個球(逐個有放回地抽?。?,所得結(jié)果和享受的優(yōu)惠如下表:(注:所有小球僅顏色有區(qū)別)紅球個數(shù)3210實際付款7折8折9折原價(1)該商場某顧客購物金額超過100元,若該顧客選擇方案二,求該顧客獲得7折或8折優(yōu)惠的概率;(2)若某顧客購物金額為180元,選擇哪種方案更劃算?
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
計算得到Ac,bca【詳解】雙曲線的一條漸近線方程為y=bax,A故Ac,bca,F(xiàn)c,0,故Mc,故選:C.【點睛】本題考查了雙曲線離心率,意在考查學(xué)生的計算能力和綜合應(yīng)用能力.2、A【解析】
本題根據(jù)基本不等式,結(jié)合選項,判斷得出充分性成立,利用“特殊值法”,通過特取的值,推出矛盾,確定必要性不成立.題目有一定難度,注重重要知識、基礎(chǔ)知識、邏輯推理能力的考查.【詳解】當(dāng)時,,則當(dāng)時,有,解得,充分性成立;當(dāng)時,滿足,但此時,必要性不成立,綜上所述,“”是“”的充分不必要條件.【點睛】易出現(xiàn)的錯誤有,一是基本不等式掌握不熟,導(dǎo)致判斷失誤;二是不能靈活的應(yīng)用“賦值法”,通過特取的值,從假設(shè)情況下推出合理結(jié)果或矛盾結(jié)果.3、B【解析】
根據(jù)題意,分析可得,由余弦定理求得的值,由可得結(jié)果.【詳解】根據(jù)題意,,則在中,又,則則則則故選:B【點睛】此題考查余弦定理和向量的數(shù)量積運算,掌握基本概念和公式即可解決,屬于簡單題目.4、B【解析】
利用正態(tài)分布密度曲線的對稱性可得出,進而可得出結(jié)果.【詳解】,所以,.故選:B.【點睛】本題考查利用正態(tài)分布密度曲線的對稱性求概率,屬于基礎(chǔ)題.5、B【解析】
利用雙曲線的定義和條件中的比例關(guān)系可求.【詳解】.選B.【點睛】本題主要考查雙曲線的定義及離心率,離心率求解時,一般是把已知條件,轉(zhuǎn)化為a,b,c的關(guān)系式.6、B【解析】
運行程序,依次進行循環(huán),結(jié)合判斷框,可得輸出值.【詳解】起始階段有,,第一次循環(huán)后,,第二次循環(huán)后,,第三次循環(huán)后,,第四次循環(huán)后,,所有后面的循環(huán)具有周期性,周期為3,當(dāng)時,再次循環(huán)輸出的,,此時,循環(huán)結(jié)束,輸出,故選:B【點睛】本題主要考查程序框圖的相關(guān)知識,經(jīng)過幾次循環(huán)找出規(guī)律是關(guān)鍵,屬于基礎(chǔ)題型.7、A【解析】
求得的導(dǎo)函數(shù),結(jié)合兩點斜率公式和兩直線平行的條件:斜率相等,化簡可得,為任意非零實數(shù).【詳解】依題意,在點處的切線與直線AB平行,即有,所以,由于對任意上式都成立,可得,為非零實數(shù).故選:A【點睛】本題考查導(dǎo)數(shù)的運用,求切線的斜率,考查兩點的斜率公式,以及化簡運算能力,屬于中檔題.8、A【解析】
根據(jù)題意得到,化簡得到,得到答案.【詳解】根據(jù)題意知:焦點到漸近線的距離為,故,故漸近線為.故選:.【點睛】本題考查了直線和圓的位置關(guān)系,雙曲線的漸近線,意在考查學(xué)生的計算能力和轉(zhuǎn)化能力.9、A【解析】
根據(jù)題意得到充分性,驗證a=2,b=1【詳解】a,b∈0,1∪1,+∞,當(dāng)"a=b當(dāng)logab=log故選:A.【點睛】本題考查了充分不必要條件,意在考查學(xué)生的計算能力和推斷能力.10、C【解析】
根據(jù)線面垂直的性質(zhì)以及線面垂直的判定,根據(jù)勾股定理,得到之間的等量關(guān)系,再用表示出的面積,利用均值不等式即可容易求得.【詳解】設(shè),,則.因為平面,平面,所以.又,,所以平面,則.易知,.在中,,即,化簡得.在中,,.所以.因為,當(dāng)且僅當(dāng),時等號成立,所以.故選:C.【點睛】本題考查空間幾何體的線面位置關(guān)系及基本不等式的應(yīng)用,考查空間想象能力以及數(shù)形結(jié)合思想,涉及線面垂直的判定和性質(zhì),屬中檔題.11、C【解析】
設(shè)拋物線的解析式,得焦點為,對稱軸為軸,準(zhǔn)線為,這樣可設(shè)點坐標(biāo)為,代入拋物線方程可求得,而到直線的距離為,從而可求得三角形面積.【詳解】設(shè)拋物線的解析式,則焦點為,對稱軸為軸,準(zhǔn)線為,∵直線經(jīng)過拋物線的焦點,,是與的交點,又軸,∴可設(shè)點坐標(biāo)為,代入,解得,又∵點在準(zhǔn)線上,設(shè)過點的的垂線與交于點,,∴.故應(yīng)選C.【點睛】本題考查拋物線的性質(zhì),解題時只要設(shè)出拋物線的標(biāo)準(zhǔn)方程,就能得出點坐標(biāo),從而求得參數(shù)的值.本題難度一般.12、B【解析】
結(jié)合隨機模擬概念和幾何概型公式計算即可【詳解】如圖,由幾何概型公式可知:.故選:B【點睛】本題考查隨機模擬的概念和幾何概型,屬于基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
設(shè),由橢圓和雙曲線的定義得到,根據(jù)是以為底邊的等腰三角形,得到,從而有,根據(jù),得到,再利用導(dǎo)數(shù)法求的范圍.【詳解】設(shè),由橢圓的定義得,由雙曲線的定義得,所以,因為是以為底邊的等腰三角形,所以,即,因為,所以,因為,所以,所以,即,而,因為,所以在上遞增,所以.故答案為:【點睛】本題主要考查橢圓,雙曲線的定義和幾何性質(zhì),還考查了運算求解的能力,屬于中檔題.14、2.【解析】
如圖,以為原點建立空間直角坐標(biāo)系,設(shè)點,由得,證明為與平面所成角,令,用三角函數(shù)表示出,求解三角函數(shù)的最大值得到結(jié)果.【詳解】如圖,以為原點建立空間直角坐標(biāo)系,設(shè)點,則,,又,得即;又平面,為與平面所成角,令,當(dāng)時,最大,即與平面所成角的正切值的最大值為2.故答案為:2【點睛】本題主要考查了立體幾何中的動點問題,考查了直線與平面所成角的計算.對于這類題,一般是建立空間直角坐標(biāo),在動點坐標(biāo)內(nèi)引入?yún)?shù),將最值問題轉(zhuǎn)化為函數(shù)的最值問題求解,考查了學(xué)生的運算求解能力和直觀想象能力.15、-7【解析】
由題意得AB+【詳解】由題意得ABBC+∴AB+【點睛】突破本題的關(guān)鍵是抓住題中所給圖形的特點,利用平面向量基本定理和向量的加減運算,將所給向量統(tǒng)一用AC,16、【解析】
根據(jù)雙曲線上的點的坐標(biāo)關(guān)系得,交圓于點,所以,建立等式,兩式作商即可得解.【詳解】設(shè),交圓于點,所以易知:即.故答案為:【點睛】此題考查根據(jù)雙曲線上的點的坐標(biāo)關(guān)系求解斜率關(guān)系,涉及雙曲線中的部分定值結(jié)論,若能熟記常見二級結(jié)論,此題可以簡化計算.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)①當(dāng)時,在單調(diào)遞增,②當(dāng)時,單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為(2)證明見解析【解析】
(1)先求解導(dǎo)函數(shù),然后對參數(shù)分類討論,分析出每種情況下函數(shù)的單調(diào)性即可;(2)根據(jù)條件先求解出的值,然后構(gòu)造函數(shù)分析出之間的關(guān)系,再構(gòu)造函數(shù)分析出之間的關(guān)系,由此證明出.【詳解】(1),①當(dāng)時,恒成立,則在單調(diào)遞增②當(dāng)時,令得,解得,又,∴∴當(dāng)時,,單調(diào)遞增;當(dāng)時,,單調(diào)遞減;當(dāng)時,,單調(diào)遞增.(2)依題意得,,則由(1)得,在單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增∴若方程有三個實數(shù)解,則法一:雙偏移法設(shè),則∴在上單調(diào)遞增,∴,∴,即∵,∴,其中,∵在上單調(diào)遞減,∴,即設(shè),∴在上單調(diào)遞增,∴,∴,即∵,∴,其中,∵在上單調(diào)遞增,∴,即∴.法二:直接證明法∵,,在上單調(diào)遞增,∴要證,即證設(shè),則∴在上單調(diào)遞減,在上單調(diào)遞增∴,∴,即(注意:若沒有證明,扣3分)關(guān)于的證明:(1)且時,(需要證明),其中∴∴∴(2)∵,∴∴,即∵,,∴,則∴【點睛】本題考查函數(shù)與倒導(dǎo)數(shù)的綜合應(yīng)用,難度較難.(1)對于含參函數(shù)單調(diào)性的分析,可通過分析參數(shù)的臨界值,由此分類討論函數(shù)單調(diào)性;(2)利用導(dǎo)數(shù)證明不等式常用方法:構(gòu)造函數(shù),利用新函數(shù)的單調(diào)性確定函數(shù)的最值,從而達到證明不等式的目的.18、(1)曲線的直角坐標(biāo)方程為,曲線的參數(shù)方程為為參數(shù)(2)【解析】
(1)將代入,可得,所以曲線的直角坐標(biāo)方程為.由可得,將,代入上式,可得,整理可得,所以曲線的參數(shù)方程為為參數(shù).(2)由題可設(shè),,,所以,,,所以,因為,所以,所以當(dāng),即時,l取得最大值為,所以的周長的最大值為.19、(1)(2)詳見解析【解析】
(1)要積分超過分,則需兩人共擊中次,或者擊中次,由此利用相互獨立事件概率計算公式,計算出所求概率.(2)求得的所有可能取值,根據(jù)相互獨立事件概率計算公式,計算出分布列并求得數(shù)學(xué)期望.【詳解】(1)由題意,當(dāng)家庭最終積分超過200分時,這個家庭就可以領(lǐng)取一臺全自動洗衣機,所以要想領(lǐng)取一臺全自動洗衣機,則需要這個家庭夫妻倆在兩輪游戲中至少擊中三次鼓.設(shè)事件為“張明第次擊中”,事件為“王慧第次擊中”,,由事件的獨立性和互斥性可得(張明和王慧家庭至少擊中三次鼓),所以張明和王慧他們家庭可以領(lǐng)取一臺全自動洗衣機的概率是.(2)的所有可能的取值為-200,-50,100,250,400.,,,,.∴的分布列為-200-50100250400∴(分)【點睛】本小題考查概率,分布列,數(shù)學(xué)期望等概率與統(tǒng)計的基礎(chǔ)知識;考查運算求解能力,推理論證能力,數(shù)據(jù)處理,應(yīng)用意識.20、(1)0.98;可用線性回歸模型擬合.(2)【解析】
(1)根據(jù)題目提供的數(shù)據(jù)求出,代入相關(guān)系數(shù)公式求出,根據(jù)的大小來確定結(jié)果;(2)求出藥品的每類劑型經(jīng)過兩次檢測后合格的概率,發(fā)現(xiàn)它們相同,那么經(jīng)過兩次檢測后,,三類劑型合格的種類數(shù)為,服從二項分布,利用二項分布的期望公式求解即可.【詳解】解:(1)由題意可知,,由公式,,∴與的關(guān)系可用線性回歸模型擬合;(2)藥品
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025會計基礎(chǔ)知識重點:融資租賃合同
- 2025池塘清淤工程的施工合同
- 9 知法守法 依法維權(quán) 依法維權(quán)有途徑(說課稿)-部編版道德與法治六年級上冊
- 21 淡水資源 說課稿-2024-2025學(xué)年科學(xué)三年級上冊青島版
- 2025法律法規(guī)工傷員工續(xù)簽合同問題 管理資料
- 6將相和(第一課時)說課稿-2024-2025學(xué)年五年級上冊語文統(tǒng)編版
- 農(nóng)村荒山承包合同范本
- 硬件維護投標(biāo)方案
- 2023二年級數(shù)學(xué)下冊 四 認(rèn)識萬以內(nèi)的數(shù)第8課時 近似數(shù)說課稿 蘇教版001
- Unit 1 Making friends PartA Let's talk(說課稿)-2024-2025學(xué)年人教PEP版(2024)英語三年級上冊
- 2025公司借款合同范本借款合同
- 閩教版(2020)小學(xué)信息技術(shù)三年級上冊第2課《人工智能在身邊》說課稿及反思
- 病毒性肺炎疾病演示課件
- 中考英語語法填空專項練習(xí)附答案(已排版-可直接打印)
- 口腔醫(yī)學(xué)中的人工智能應(yīng)用培訓(xùn)課件
- 軟星酒店網(wǎng)絡(luò)規(guī)劃與設(shè)計
- 自然辯證法概論(新)課件
- 基層醫(yī)療機構(gòu)基本情況調(diào)查報告
- 六西格瑪(6Sigma)詳解及實際案例分析
- 機械制造技術(shù)-成都工業(yè)學(xué)院中國大學(xué)mooc課后章節(jié)答案期末考試題庫2023年
- 電解槽檢修施工方案
評論
0/150
提交評論