![車端AI實(shí)時(shí)分析系統(tǒng)-2024-06-智能網(wǎng)聯(lián)_第1頁(yè)](http://file4.renrendoc.com/view3/M00/0C/0F/wKhkFmZzig-ANCWHAAC5kgLII0A006.jpg)
![車端AI實(shí)時(shí)分析系統(tǒng)-2024-06-智能網(wǎng)聯(lián)_第2頁(yè)](http://file4.renrendoc.com/view3/M00/0C/0F/wKhkFmZzig-ANCWHAAC5kgLII0A0062.jpg)
![車端AI實(shí)時(shí)分析系統(tǒng)-2024-06-智能網(wǎng)聯(lián)_第3頁(yè)](http://file4.renrendoc.com/view3/M00/0C/0F/wKhkFmZzig-ANCWHAAC5kgLII0A0063.jpg)
![車端AI實(shí)時(shí)分析系統(tǒng)-2024-06-智能網(wǎng)聯(lián)_第4頁(yè)](http://file4.renrendoc.com/view3/M00/0C/0F/wKhkFmZzig-ANCWHAAC5kgLII0A0064.jpg)
![車端AI實(shí)時(shí)分析系統(tǒng)-2024-06-智能網(wǎng)聯(lián)_第5頁(yè)](http://file4.renrendoc.com/view3/M00/0C/0F/wKhkFmZzig-ANCWHAAC5kgLII0A0065.jpg)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
REAL-TIMEANALYTICSFORENDPOINTAIIN
AUTOMOTIVESYSTEMS
JUNE2024
KURTDEKOSKI
BUSINESSDEVELOPMENTANDPRODUCTMANAGEMENTFORAUTOMOTIVESWSEPBD
RENESASELECTRONICSCORPORATION
?2024RenesasElectronicsCorporation.Allrightsreserved.
RENESASCONFIDENTIAL
from
AplatformpoweringEdgeAI
onRenesasprocessors
MLModel
Development
Explainability+
HardwareAnalytics
Solutions+
ReferenceDesigns
?2024RenesasElectronicsCorporation.Allrightsreserved.
RENESASCONFIDENTIAL
Page2
REALITYAIPLATFORMCOMBINESADVANCEDSIGNALPROCESSINGANDMACHINELEARNINGONMCU/MPUEDGENODES
AdvancedSignalProcessing
Automaticallysearchesawiderangeofsignal-processingtransformstocreateacustom,optimizedfeaturetransform
ArtificialIntelligenceandAnomalyDetection
Automaticallygeneratesmachinelearningmodels,explanatoryvisualizationsand
hardwaredesignanalytics
MCU/MPUEdgeNodes
RunsonalmosteveryMCUandMPUcoreavailablefromRenesas,withnewones
addedconstantly.RealityAIalsosupportsRenesasmotorcontrolboards.
SCALABLEFROM16-BITto64-BITCORES
?2024RenesasElectronicsCorporation.Allrightsreserved.
RENESASCONFIDENTIAL
Page3
AI/MLTECHNOLOGY
ChangingIndustryNeedsDrivingAutomotive
ElectrificationAutonomous
Driving
Increaseddrivingsafety
Decreasedrelianceondriver
SoftwareDefinedVehicleDigitizationandAI
Software-firstdevelopmentstructure
Sensorfusion
BenefitsofAIandML
Reducedhumanerror,especiallyinprocessesthatinvolveanalyzingnumericalorsignaldata.AIwon’tmakeoversightsduetofatigueorerrorasahumanmight.
Increaseoperationalefficiencybyautomatingmorefunctionsandidentifyingandconsolidatingredundantprocesses.
RealityAIprovidesthesmallestmodelsinthemarketintermsofRAM,Flashandprocessingcycles
RealityAImodelsaresupportedforRenesasMCUs
?2024RenesasElectronicsCorporation.Allrightsreserved.
RENESASCONFIDENTIAL
Page4
AUTONOMOUSMEGATREND
INCREASEDLEVELOFAUTONOMY,REDUCEDLEVELOFDRIVERENGAGEMENT
INCREASEDLEVELOFFEATURESTOMIMICDRIVERPERCEPTION
AIsoftware:AIforself-drivingcarsusingsensor-fedmachinelearningalgorithms
AVhardware:Sensorsprovidethekeydatainputstothecar’sAIsystems
Level5Autonomy
FullAutomation
Thevehicleiscapableof
performingalldrivingfunctionsunderallconditions.Thedrivermayhavetheoptiontocontrolthevehicle.
Level4Autonomy
HighAutomation
Thevehicleiscapableof
performingalldrivingfunctionsundercertainconditions.Thedrivermayhavetheoptiontocontrolthevehicle.
Level2Autonomy
PartialAutomation
Vehiclehascombined
automatedfunctionslike
accelerationandsteering,butthedrivermustremain
engagedwiththedrivingtaskandmonitortheenvironmentatalltimes.
Level3Autonomy
ConditionalAutomation
Driverisanecessitybutisnot
requiredtomonitorthe
environment.Thedrivermustbereadytotakecontrolofthevehicleatalltimeswithnotice.
LevelsofvehicularautonomydefinedbytheSocietyofAutomotiveEngineers(SAE)
Page5
?2024RenesasElectronicsCorporation.Allrightsreserved.
RENESASCONFIDENTIAL
MostlyuseAIfordifficultproblemswheretraditionalmethodsaren’tworkingandtherearenoobvioussolutions
Instrumentationandhardwareissuesaddcomplexity,mostoptimizeforcost
Cannotdeploy“blackbox”solutions
REALITYAISOFTWAREANDSOLUTIONSADDRESSCOMMONENGINEERINGFRUSTRATIONSWITHAI/ML
Engineers’frustrationswithAI/ML
HowRealityAImakesitbetter
Builtspecificallyfornon-visualsensingbasedonadvancedsignalprocessingmathandedge
deploymentonRenesasMCUs
Analyticstosupporthardwaredesign(notjustalgorithmsandmodelbuilding)
Explainabilitybasedontime-frequencycharacteristicswithfulltransparency
?2024RenesasElectronicsCorporation.Allrightsreserved.
RENESASCONFIDENTIAL
Page6
REALITYAIPRODUCTPORTFOLIOOFFERSBOTHSOFTWAREANDSOLUTIONS
Software
RealityAI
Softwareformodelcreationandhardwareoptimizationon
RenesasMCUs,MPUsand
motorcontrolkits
RealityAITools?
Buildmodels,visualizeexplanations,optimizehardwarebuild
RealityCheckTMMotor
Forembeddedpredictivemaintenanceandcontrolfeedback
RealityCheckTMAD
Forcloud-basedanomalydetectioninfactoryandon-line
Completeframeworkforspecificusecases,includinghardware,firmware,softwareandML
referencedesigns
RealityAISolutions
RealityCheckTMHVAC
Completeframeworkforsmart,self-diagnosingHVAC
AutomotiveSWS
Completeframeworkforaudio-basedADASsensingforvehicles
RenesasCore
ArmCore
?2024RenesasElectronicsCorporation.Allrightsreserved.
RENESASCONFIDENTIAL
Page7
REALITYAIPRODUCTPORTFOLIOOVERVIEW
RealityCheckMotor
AnomalyDetection
SWS-EVD
GettingStartedPackage
墓RealtyAIToolse
RealityCheckAD
DemoVideos
SoftwareManual
ApplicationNotes
SignalClassification
RealityCheckHVAC
Regression
(continuousvalueprediction)
NativedeploymentavailablenowforallRenesasRA,RX,RZ,RL78,RH850,andR-Carfamiliesofdevices
?2024RenesasElectronicsCorporation.Allrightsreserved.
RENESASCONFIDENTIAL
Page8
REALITYAIADDRESSESTHEFULLAIOTDESIGNLIFECYCLE
Only5%oftypicalprojectcostsarespentonbuildingmodels
?RealityAlToolse
Softwarehelpswiththeother95%
SensorSelection
andBOM
Optimization
Algorithmically-DrivenFeatureDiscovery
墓RealityAI'Tools?software
DataReadiness
AIExploreTM(AutoML)
EdgeAI/TinyMLCodeOptimization
Instrumentation&hardware
development,datacollection,
validationandinternal
confidencebuilding
?2024RenesasElectronicsCorporation.Allrightsreserved.
RENESASCONFIDENTIAL
Page9
RENESAS/REALITYAIFAMILY
InputSignal
Application
?AutoML
(nocoding)
?Explainability
AIExploreTM(AutoML)
Application
Software
Stack
SensorSelection
andBOM
Optimization
Customer's
?Cost-optimizedspecifications
?Minimumsensorset
ML/AI
Generated
Code
DataReadiness
?Automated
?Consistency
?Quality
?Coverage
EdgeAI/TinyMLCodeOptimization
OutputApplicationTriggers
?Embeddedcode
generation–C,C++
?Easeofdeployment
?MATLABcompatibility
NativedeploymentavailablenowforallRenesasRA,RX,RZ,RL78,RH850,andR-Carfamiliesofdevices
?2024RenesasElectronicsCorporation.Allrightsreserved.
RENESASCONFIDENTIAL
Page10
REALITYAITOOLS?–APPLICATIONINPUTSIGNAL
Fullyexplainable.“Whentheresonancepeakat146hz
disappears,weknowthefanisblocked”
30+dBshiftin
100dBSiren@15m
100dBSiren@0m
overallnoiselevel
Image
?2024RenesasElectronicsCorporation.Allrightsreserved.
RENESASCONFIDENTIAL
Page11
“GETSTARTED”WITHREALITYAIPRODUCTPORTFOLIO
Mostcustomersstartwithoneofour“GetStarted”packagesthatcombinesoftwarewithenhancedonboardingandservices,beforeswitchingtoanannualsoftwaresubscription
StarterPoCPrototype
Idon’thavedataIhavedata
4-monthPrototypePoC
?8-weekTrialRunwithaccessextendedtofourmonths
?EnhancedsupportfromRealityAI,includingpre-processing,model
constructionandpost-processing
?Constructionoflaptop-basedorothernon-embeddedprototype/demo
6-monthEdgeAIPrototype
?4-monthPrototypePoC,withaccessextendedtosixmonths
?DeliveryofEdgeAImodelcompiledforCortexM-classarchitectureorLinux
?Assistancewithhardwareand
applicationintegration/debugging
8-weekTrialRun
?Requirementsanddataassessment
?Onboardingandsetup
?TwoiterationsrunbyRealityAIteam
?Usertrainingonowndataandmodels
?Uptofourweeksofaccessfor
evaluationandcontinueddevelopment
5-monthPoC
?8-week“Phase0”
?Monitoringofclientdatacollection
?FouriterationsrunbyRealityAIteam
?Usertrainingonowndataandmodels
?ValidationstatisticsforevaluationofPoCresults
7-monthWorkingPrototype
?8-week“Phase0”
?Monitoringofclientdatacollection
?5-monthPOC
?Constructionoflaptop-basedoranothernon-embeddedprototype/demo
8-week“Phase0”
?Requirementsanddataassessment
?Datacoverageandcollectionplan
?Instrumentation/hardwareplan
?FeasibilityPoCplan
?R&Droadmapwithmachinelearning
?2024RenesasElectronicsCorporation.Allrightsreserved.
RENESASCONFIDENTIAL
Page12
REALITYAIDEVELOPMENT
WITHRENESASAUTOMOTIVEMCUsandSoCs
RenesasCore
16-bitMCU32-bitMCU
POWER
SUPERLOWPOWER
EFFICIENCY
RenesasmeetsthevariedrequirementsofourcustomerswitharichlineupofautomotiveMCUsandSoCs
Arm?Core
32-bitMCU
SCALABLEWITHSoC
64-bitSoC
HIGHPERFORMANCE
Embedded
AI-enabled
Solution
RealityCheck
Motor
CBM
EVDriveMotor
SWS-EVD
RealityAITools?
RealityCheckAD
OD-GR
BMS
RealityCheck
HVAC
MassProduction
Sampling
Development
Concept
?2024RenesasElectronicsCorporation.Allrightsreserved.
RENESASCONFIDENTIAL
Page13
AUTOMOTIVE,CONSUMERANDINDUSTRIALIOTAPPLICATIONS
RealityAITinyMLmodelsrunoneveryRenesasMCU
AutomotiveSWS
Completeframeworkforaudio-basedADASsensingforvehicles
RealityCheckHVAC
Completeframeworkforsmart,self-diagnosingHVAC(nowengagingwithearlyadoptercustomers)
Diagnosethesourceof
Remotelivestockbehaviormonitoring
Airconditionersthatpredicttheirownmaintenanceneeds
Hearapproachingemergencyvehicles,carsandbicycles
powerqualityissuesbasedon3-phaseAC
Detectweather,terrain,roadconditionsand
micro-collisions
Maketiresthatreporttheirstateofwear
HomeApplianceelectric
motorsthatmonitorthehealthofthesystemstheydrive
Predicte-bikechaindeteriorationPumpsthatknowtheyaredry
orcavitating
RealityCheckMotor
Forembeddedpredictivemaintenanceandcontrolfeedback
Filtersthatknowhowlonguntiltheywillclog
?2024RenesasElectronicsCorporation.Allrightsreserved.
RENESASCONFIDENTIAL
Page14
TARGETUSECASE
SEEINGWITHSOUND
Environmentparticipantsemitsoundsthatcanoftenbeheardbeforetheyareseen
?Aroundcorners
?Obstructedviews
?Atadistance
?Vehicleblindspots
?Whereothersensorscannotsee
?Wheredriversarenotfocused
Usingsounds,theAItechnologyforSWS
providesearlywarningofemergencysirens,on-
comingvehiclesandothersoundsourcestoaugmentexistingautonamousdrivingandADASsystems
SWS-EVD
WhySWS–Contributingfactorsandcauses:
DistractedDriving
AutomotiveApplicationFeatures
EmergencyVehicleDetection+BlindSpotDetection
+OtherVehicles+HornHonks
ActiveandPassiveNoiseCancelation
+Pedestrians+Cyclists
AutonomousEmergencyBraking–Pedestrian/Cyclist
CyclistDooringPrevention
+PavementConditions/Terrain
?2024RenesasElectronicsCorporation.Allrightsreserved.
RENESASCONFIDENTIAL
Page15
TARGETUSECASE
SEEINGWITHSOUND
Vehicles30m–obstructedview/intersectionwithmoderatenoise
DemonstrationVideo
Blindspots
Sirens1km–normaloperatingconditionsandspeeds
?2024RenesasElectronicsCorporation.Allrightsreserved.
RENESASCONFIDENTIAL
Page16
TARGETUSECASE:CONDITIONMONITORING
ROADCONDITIONSANDTERRAIN
Targetingvariousnoisepatternsthatindicatedifferingroadsurfacesthataffectdrivinghabits
DryRoadSurface
WetRoadSurface(howmuch)
Snowy/IcyRoadSurface
GravelorSandRoadSurfaces
Cobblestonesurfaces
DevelopmentLevel=PoC
墓RealityAIToolse
Arm?Core
RenesasCore
?2024RenesasElectronicsCorporation.Allrightsreserved.
RENESASCONFIDENTIAL
Page17
TARGETUSECASE
MICRO-COLLISION
Detectionofsmallimpactsagainstthevehicle
GlassBreakage
Scrapes/Scratches
SmallDings/Dents
DevelopmentLevel=PoC
墓RealityAIToolse
Arm?Core
RenesasCore
?2024RenesasElectronicsCorporation.Allrightsreserved.
RENESASCONFIDENTIAL
Page18
TARGETUSECASE
AUDIOANDVOICECOMMANDS
Identifyoccupantsforindividualizedsoundzone
Clearcommunicationfrom
fronttorearoccupants
PresenceDetectionofeachoccupantandseatinglocation.
AllowsfortargetedSoundZoneforaudioperformance
Allowsforcontrolledin-cabincommunication
Anti-spoofing
Recordedverseactual
AI/MLtrainedVoicebasedUserAccessControl
Voice
AntiSpoofing
Anti-SpoofingDemo
Arm?Core
墓RealtyAIToolse
RenesasCore
?2024RenesasElectronicsCorporation.Allrightsreserved.
RENESASCONFIDENTIAL
Page19
TARGETUSECASES
PRESENCEDETECTIONANDDRIVER/OCCUPANTBEHAVIORANDPROFILING
GestureRecognition
OccupantMoving
OccupantBreathing
UseAI/MLtolearnGestures
OccupantDetection
AI/MLtrainedtorecognizehumansounds
PresenceDetection
Method1:Sound
Video
RenesasCore
PresenceDetectionandOccupantBehaviorandProfilingMethod2:DopplerRadar
Video
Method3:UWB
UsesdopplerradarorUWBtodistinguishbetweenhumans,petsandinanimateobjects(shiftinginseat,jostling,breathing,gestures,etc.)
?2024RenesasElectronicsCorporation.Allrightsreserved.
RENESASCONFIDENTIAL
Page20
RealityCheckMotor
AI/MLUnbalancedLoadDetection+Sensor-lessFOC
UnbalancedDetection
NOADDITIONALSENSORS!
LeveragesAvailableElectrical&MotorSignals
BalancedUnbalanced
12mmM4screw,11mmoffcentertocreateunbalancedcondition
Motor
Speed/Torque
AI/MLMotor
Speed/Torque+Sensor-less
FOC
LowSpeedHighToque
HighSpeedLowTorque
TARGETUSECASES:CONDITIONMONITORINGELECTRICMOTOR–(RealityCheckMotor)
AI/MLMotor
Mis-alignment+Sensor-less
FOC
Aligned
Mis-Aligned
Motor
Mis-alignment
DevelopmentLevelforSmallmotors=Pre-Production
DemoVideo
Enablessensor-lessMLmodelstobedeployeddirectlytothemotorcontrolboard:
?Useselectricalinformationalreadyavailableontheboard
?Takeshighsample-ratecurrentandvoltageasaproxyextracomponents(like
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 天津租房合同范本
- 餐飲公司股東合同范本
- 北京汽車租賃班車合同
- 電商物流園區(qū)工程運(yùn)輸合同
- 超市裝修預(yù)訂金合同范例
- 高端別墅鏈家居間服務(wù)合同
- 設(shè)備承包合同
- 底商房屋租賃合同
- 網(wǎng)絡(luò)平臺(tái)安全保障服務(wù)協(xié)議
- 北京裝飾裝修工程施工合同
- 成人學(xué)士學(xué)位英語(yǔ)1000個(gè)高頻必考詞匯匯總
- 2023年菏澤醫(yī)學(xué)??茖W(xué)校單招綜合素質(zhì)模擬試題及答案解析
- 常見食物的嘌呤含量表匯總
- 人教版數(shù)學(xué)八年級(jí)下冊(cè)同步練習(xí)(含答案)
- SB/T 10752-2012馬鈴薯雪花全粉
- 2023年湖南高速鐵路職業(yè)技術(shù)學(xué)院高職單招(英語(yǔ))試題庫(kù)含答案解析
- 濕型砂中煤粉作用及檢測(cè)全解析
- 積累運(yùn)用表示動(dòng)作的詞語(yǔ)課件
- 機(jī)動(dòng)車登記證書英文證書模板
- 第8課《山山水水》教學(xué)設(shè)計(jì)(新人教版小學(xué)美術(shù)六年級(jí)上冊(cè))
- T∕ZSQX 008-2020 建設(shè)工程全過(guò)程質(zhì)量行為導(dǎo)則
評(píng)論
0/150
提交評(píng)論