版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高三上數學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.數列{an},滿足對任意的n∈N+,均有an+an+1+an+2為定值.若a7=2,a9=3,a98=4,則數列{an}的前100項的和S100=()A.132 B.299 C.68 D.992.的展開式中的系數是-10,則實數()A.2 B.1 C.-1 D.-23.已知是函數的極大值點,則的取值范圍是A. B.C. D.4.如圖,在四邊形中,,,,,,則的長度為()A. B.C. D.5.設等差數列的前n項和為,若,則()A. B. C.7 D.26.函數在上單調遞減的充要條件是()A. B. C. D.7.在中,為邊上的中線,為的中點,且,,則()A. B. C. D.8.在邊長為的菱形中,,沿對角線折成二面角為的四面體(如圖),則此四面體的外接球表面積為()A. B.C. D.9.已知集合,集合,則()A. B. C. D.10.若的展開式中二項式系數和為256,則二項式展開式中有理項系數之和為()A.85 B.84 C.57 D.5611.“是函數在區(qū)間內單調遞增”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件12.直三棱柱中,,,則直線與所成的角的余弦值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.給出下列等式:,,,…請從中歸納出第個等式:______.14.某種牛肉干每袋的質量服從正態(tài)分布,質檢部門的檢測數據顯示:該正態(tài)分布為,.某旅游團游客共購買這種牛肉干100袋,估計其中質量低于的袋數大約是_____袋.15.在平面直角坐標系中,若雙曲線(,)的離心率為,則該雙曲線的漸近線方程為________.16.已知復數對應的點位于第二象限,則實數的范圍為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,是邊長為的正方形的中心,平面,為的中點.(Ⅰ)求證:平面平面;(Ⅱ)若,求二面角的余弦值.18.(12分)已知橢圓C:(a>b>0)的兩個焦點分別為F1(-,0)、F2(,0).點M(1,0)與橢圓短軸的兩個端點的連線相互垂直.(1)求橢圓C的方程;(2)已知點N的坐標為(3,2),點P的坐標為(m,n)(m≠3).過點M任作直線l與橢圓C相交于A、B兩點,設直線AN、NP、BN的斜率分別為k1、k2、k3,若k1+k3=2k2,試求m,n滿足的關系式.19.(12分)已知的面積為,且.(1)求角的大小及長的最小值;(2)設為的中點,且,的平分線交于點,求線段的長.20.(12分)設數列,其前項和,又單調遞增的等比數列,,.(Ⅰ)求數列,的通項公式;(Ⅱ)若,求數列的前n項和,并求證:.21.(12分)如圖所示,在四棱錐中,底面是棱長為2的正方形,側面為正三角形,且面面,分別為棱的中點.(1)求證:平面;(2)求二面角的正切值.22.(10分)已知中,角,,的對邊分別為,,,已知向量,且.(1)求角的大小;(2)若的面積為,,求.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
由為定值,可得,則是以3為周期的數列,求出,即求.【詳解】對任意的,均有為定值,,故,是以3為周期的數列,故,.故選:.【點睛】本題考查周期數列求和,屬于中檔題.2、C【解析】
利用通項公式找到的系數,令其等于-10即可.【詳解】二項式展開式的通項為,令,得,則,所以,解得.故選:C【點睛】本題考查求二項展開式中特定項的系數,考查學生的運算求解能力,是一道容易題.3、B【解析】
方法一:令,則,,當,時,,單調遞減,∴時,,,且,∴,即在上單調遞增,時,,,且,∴,即在上單調遞減,∴是函數的極大值點,∴滿足題意;當時,存在使得,即,又在上單調遞減,∴時,,所以,這與是函數的極大值點矛盾.綜上,.故選B.方法二:依據極值的定義,要使是函數的極大值點,須在的左側附近,,即;在的右側附近,,即.易知,時,與相切于原點,所以根據與的圖象關系,可得,故選B.4、D【解析】
設,在中,由余弦定理得,從而求得,再由由正弦定理得,求得,然后在中,用余弦定理求解.【詳解】設,在中,由余弦定理得,則,從而,由正弦定理得,即,從而,在中,由余弦定理得:,則.故選:D【點睛】本題主要考查正弦定理和余弦定理的應用,還考查了數形結合的思想和運算求解的能力,屬于中檔題.5、B【解析】
根據等差數列的性質并結合已知可求出,再利用等差數列性質可得,即可求出結果.【詳解】因為,所以,所以,所以,故選:B【點睛】本題主要考查等差數列的性質及前項和公式,屬于基礎題.6、C【解析】
先求導函數,函數在上單調遞減則恒成立,對導函數不等式換元成二次函數,結合二次函數的性質和圖象,列不等式組求解可得.【詳解】依題意,,令,則,故在上恒成立;結合圖象可知,,解得故.故選:C.【點睛】本題考查求三角函數單調區(qū)間.求三角函數單調區(qū)間的兩種方法:(1)代換法:就是將比較復雜的三角函數含自變量的代數式整體當作一個角(或),利用基本三角函數的單調性列不等式求解;(2)圖象法:畫出三角函數的正、余弦曲線,結合圖象求它的單調區(qū)間.7、A【解析】
根據向量的線性運算可得,利用及,計算即可.【詳解】因為,所以,所以,故選:A【點睛】本題主要考查了向量的線性運算,向量數量積的運算,向量數量積的性質,屬于中檔題.8、A【解析】
畫圖取的中點M,法一:四邊形的外接圓直徑為OM,即可求半徑從而求外接球表面積;法二:根據,即可求半徑從而求外接球表面積;法三:作出的外接圓直徑,求出和,即可求半徑從而求外接球表面積;【詳解】如圖,取的中點M,和的外接圓半徑為,和的外心,到弦的距離(弦心距)為.法一:四邊形的外接圓直徑,,;法二:,,;法三:作出的外接圓直徑,則,,,,,,,,,.故選:A【點睛】此題考查三棱錐的外接球表面積,關鍵點是通過幾何關系求得球心位置和球半徑,方法較多,屬于較易題目.9、C【解析】
求出集合的等價條件,利用交集的定義進行求解即可.【詳解】解:∵,,∴,故選:C.【點睛】本題主要考查了對數的定義域與指數不等式的求解以及集合的基本運算,屬于基礎題.10、A【解析】
先求,再確定展開式中的有理項,最后求系數之和.【詳解】解:的展開式中二項式系數和為256故,要求展開式中的有理項,則則二項式展開式中有理項系數之和為:故選:A【點睛】考查二項式的二項式系數及展開式中有理項系數的確定,基礎題.11、C【解析】,令解得當,的圖像如下圖當,的圖像如下圖由上兩圖可知,是充要條件【考點定位】考查充分條件和必要條件的概念,以及函數圖像的畫法.12、A【解析】
設,延長至,使得,連,可證,得到(或補角)為所求的角,分別求出,解即可.【詳解】設,延長至,使得,連,在直三棱柱中,,,四邊形為平行四邊形,,(或補角)為直線與所成的角,在中,,在中,,在中,,在中,,在中,.
故選:A.【點睛】本題考查異面直線所成的角,要注意幾何法求空間角的步驟“做”“證”“算”缺一不可,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
通過已知的三個等式,找出規(guī)律,歸納出第個等式即可.【詳解】解:因為:,,,等式的右邊系數是2,且角是等比數列,公比為,則角滿足:第個等式中的角,所以;故答案為:.【點睛】本題主要考查歸納推理,注意已知表達式的特征是解題的關鍵,屬于中檔題.14、1【解析】
根據正態(tài)分布對稱性,求得質量低于的袋數的估計值.【詳解】由于,所以,所以袋牛肉干中,質量低于的袋數大約是袋.故答案為:【點睛】本小題主要考查正態(tài)分布對稱性的應用,屬于基礎題.15、【解析】
利用,解出,即可求出雙曲線的漸近線方程.【詳解】,且,,,該雙曲線的漸近線方程為:.故答案為:.【點睛】本題考查了雙曲線離心率與漸近線方程,考查了雙曲線基本量的關系,考查了運算能力,屬于基礎題.16、【解析】
由復數對應的點,在第二象限,得,且,從而求出實數的范圍.【詳解】解:∵復數對應的點位于第二象限,∴,且,∴,故答案為:.【點睛】本題主要考查復數與復平面內對應點之間的關系,解不等式,且是解題的關鍵,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)詳見解析;(Ⅱ).【解析】
(Ⅰ)由正方形的性質得出,由平面得出,進而可推導出平面,再利用面面垂直的判定定理可證得結論;(Ⅱ)取的中點,連接、,以、、所在直線分別為、、軸建立空間直角坐標系,利用空間向量法能求出二面角的余弦值.【詳解】(Ⅰ)是正方形,,平面,平面,、平面,且,平面,又平面,平面平面;(Ⅱ)取的中點,連接、,是正方形,易知、、兩兩垂直,以點為坐標原點,以、、所在直線分別為、、軸建立如圖所示的空間直角坐標系,在中,,,,、、、,設平面的一個法向量,,,由,得,令,則,,.設平面的一個法向量,,,由,得,取,得,,得.,二面角為鈍二面角,二面角的余弦值為.【點睛】本題考查面面垂直的證明,同時也考查了利用空間向量法求解二面角,考查推理能力與計算能力,屬于中等題.18、(1);(2)m-n-1=0【解析】試題分析:(1)利用M與短軸端點構成等腰直角三角形,可求得b的值,進而得到橢圓方程;(2)設出過M的直線l的方程,將l與橢圓C聯(lián)立,得到兩交點坐標關系,然后將k1+k3表示為直線l斜率的關系式,化簡后得k1+k3=2,于是可得m,n的關系式.試題解析:(1)由題意,c=,b=1,所以a=故橢圓C的方程為(2)①當直線l的斜率不存在時,方程為x=1,代入橢圓得,y=±不妨設A(1,),B(1,-)因為k1+k3==2又k1+k3=2k2,所以k2=1所以m,n的關系式為=1,即m-n-1=0②當直線l的斜率存在時,設l的方程為y=k(x-1)將y=k(x-1)代入,整理得:(3k2+1)x2-6k2x+3k2-3=0設A(x1,y1),B(x2,y2),則又y1=k(x1-1),y2=k(x2-1)所以k1+k3======2所以2k2=2,所以k2==1所以m,n的關系式為m-n-1=0綜上所述,m,n的關系式為m-n-1=0.考點:橢圓標準方程,直線與橢圓位置關系,19、(1),;(2).【解析】
(1)根據面積公式和數量積性質求角及最大邊;(2)根據的長度求出,再根據面積比值求,從而求出.【詳解】(1)在中,由,得,由,得,所以,所以,,因為在中,,所以,因為(當且僅當時取等),所以長的最小值為;(2)在三角形中,因為為中線,所以,,所以,因為,所以,所以,由(1)知,所以,或,,所以,因為為角平分線,,,或2,所以,或,所以.【點睛】本題考查了平面向量數量積的性質及其運算,余弦定理解三角形及三角形面積公式的應用,屬于中檔題.20、(1),;(2)詳見解析.【解析】
(1)當時,,當時,,當時,也滿足,∴,∵等比數列,∴,∴,又∵,∴或(舍去),∴;(2)由(1)可得:,∴,顯然數列是遞增數列,∴,即.)21、(1)見證明;(2)【解析】
(1)取PD中點G,可證EFGA是平行四邊形,從而,得證線面平行;(2)取AD中點O,連結PO,可得面,連交于,可證是二面角的平面角,再在中求解即得.【詳解】(1)證明:取PD中點G,連結為的中位線,且,又且,且,∴EFGA是平行四邊形,則,又面,面,面;(2)解:取AD中點O,連結PO,∵面面,為正三角形,面,且,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣告?zhèn)髅疆a品技術協(xié)議管理辦法
- 第五章 診斷與辯證課件
- 創(chuàng)新教學法:《剪羊毛》音樂課件2024
- 精美課件助力法律教學:《婚姻法》課件制作技巧分享
- 2024教育藍本:《青玉案元夕》新視角教案
- 《aoe》教案設計大賽:創(chuàng)新與實踐
- 2024年SEM入門培訓教程-邁向成功之路
- 《接觸網施工》課件 3.3.1 腕臂預配
- 2024年20加減法課件:創(chuàng)新與傳承的交匯
- 2024年八年級上冊物理教案實踐探討
- 2024-2025學年五年級科學上冊第二單元《地球表面的變化》測試卷(教科版)
- 學校廚房設備投標方案(技術標)
- 2025年高考作文專練(25道真題+審題立意+范文)- 2025年高考語文作文備考總復習
- 中國高血壓防治指南(2024年修訂版)要點解讀
- 2024年新人教版七年級上冊數學教學課件 第三章 代數式 數學活動
- 九年級物理全冊教案【人教版】
- 《中華民族一家親-同心共筑中國夢》隊會課件
- 2024義務教育《英語課程標準》(2022版)
- 國家開放大學《管理信息系統(tǒng)》大作業(yè)參考答案
- Unit 4 Time to celebrate 大單元教學設計 2024-2025學年外研版英語七年級上冊
- 二十屆三中全會精神應知應會知識測試30題(附答案)
評論
0/150
提交評論