北京市北京師范大附屬實驗中學2024年畢業(yè)升學考試模擬卷數學卷含解析_第1頁
北京市北京師范大附屬實驗中學2024年畢業(yè)升學考試模擬卷數學卷含解析_第2頁
北京市北京師范大附屬實驗中學2024年畢業(yè)升學考試模擬卷數學卷含解析_第3頁
北京市北京師范大附屬實驗中學2024年畢業(yè)升學考試模擬卷數學卷含解析_第4頁
北京市北京師范大附屬實驗中學2024年畢業(yè)升學考試模擬卷數學卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

北京市北京師范大附屬實驗中學2024年畢業(yè)升學考試模擬卷數學卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.用五個完全相同的小正方體組成如圖所示的立體圖形,從正面看到的圖形是()A. B. C. D.2.如圖1,在△ABC中,D、E分別是AB、AC的中點,將△ADE沿線段DE向下折疊,得到圖1.下列關于圖1的四個結論中,不一定成立的是()A.點A落在BC邊的中點 B.∠B+∠1+∠C=180°C.△DBA是等腰三角形 D.DE∥BC3.已知圓內接正三角形的面積為3,則邊心距是()A.2 B.1 C. D.4.如圖,正六邊形ABCDEF內接于,M為EF的中點,連接DM,若的半徑為2,則MD的長度為A. B. C.2 D.15.如圖1,在等邊△ABC中,D是BC的中點,P為AB邊上的一個動點,設AP=x,圖1中線段DP的長為y,若表示y與x的函數關系的圖象如圖2所示,則△ABC的面積為()A.4 B. C.12 D.6.如圖,在△ABC中,∠AED=∠B,DE=6,AB=10,AE=8,則BC的長度為()A. B. C.3 D.7.若函數與y=﹣2x﹣4的圖象的交點坐標為(a,b),則的值是()A.﹣4 B.﹣2 C.1 D.28.如圖,點F是ABCD的邊AD上的三等分點,BF交AC于點E,如果△AEF的面積為2,那么四邊形CDFE的面積等于()A.18 B.22 C.24 D.469.如圖1,點P從△ABC的頂點A出發(fā),沿A﹣B﹣C勻速運動,到點C停止運動.點P運動時,線段AP的長度y與運動時間x的函數關系如圖2所示,其中D為曲線部分的最低點,則△ABC的面積是()A.10 B.12 C.20 D.2410.如圖是一個由5個相同的正方體組成的立體圖形,它的主視圖是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.對于實數,我們用符號表示兩數中較小的數,如.因此,________;若,則________.12.如圖,點A在反比例函數y=(x>0)的圖像上,過點A作AD⊥y軸于點D,延長AD至點C,使CD=2AD,過點A作AB⊥x軸于點B,連結BC交y軸于點E,若△ABC的面積為6,則k的值為________.13.如圖,在邊長為1的正方形格點圖中,B、D、E為格點,則∠BAC的正切值為_____.14.將點P(﹣1,3)繞原點順時針旋轉180°后坐標變?yōu)開____.15.計算_______.16.對于實數a,b,定義運算“*”:a*b=,例如:因為4>2,所以4*2=42﹣4×2=8,則(﹣3)*(﹣2)=___________.三、解答題(共8題,共72分)17.(8分)如圖,已知點C是∠AOB的邊OB上的一點,求作⊙P,使它經過O、C兩點,且圓心在∠AOB的平分線上.18.(8分)如圖,分別與相切于點,點在上,且,,垂足為.求證:;若的半徑,,求的長19.(8分)如圖,⊙O是△ABC的外接圓,AD是⊙O的直徑,BC的延長線于過點A的直線相交于點E,且∠B=∠EAC.(1)求證:AE是⊙O的切線;(2)過點C作CG⊥AD,垂足為F,與AB交于點G,若AG?AB=36,tanB=,求DF的值20.(8分)如圖,⊙O是△ABC的外接圓,FH是⊙O的切線,切點為F,FH∥BC,連結AF交BC于E,∠ABC的平分線BD交AF于D,連結BF.(1)證明:AF平分∠BAC;(2)證明:BF=FD;(3)若EF=4,DE=3,求AD的長.21.(8分)把0,1,2三個數字分別寫在三張完全相同的不透明卡片的正面上,把這三張卡片背面朝上,洗勻后放在桌面上,先從中隨機抽取一張卡片,記錄下數字.放回后洗勻,再從中抽取一張卡片,記錄下數字.請用列表法或樹狀圖法求兩次抽取的卡片上的數字都是偶數的概率.22.(10分)如圖,在平面直角坐標系中,四邊形OABC為矩形,直線y=kx+b交BC于點E(1,m),交AB于點F(4,),反比例函數y=(x>0)的圖象經過點E,F.(1)求反比例函數及一次函數解析式;(2)點P是線段EF上一點,連接PO、PA,若△POA的面積等于△EBF的面積,求點P的坐標.23.(12分)計算:.先化簡,再求值:,其中.24.如圖,在每個小正方形的邊長為1的網格中,點A,B,M,N均在格點上,P為線段MN上的一個動點(1)MN的長等于_______,(2)當點P在線段MN上運動,且使PA2+PB2取得最小值時,請借助網格和無刻度的直尺,在給定的網格中畫出點P的位置,并簡要說明你是怎么畫的,(不要求證明)

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】從正面看第一層是三個小正方形,第二層左邊一個小正方形,故選:A.2、A【解析】

根據折疊的性質明確對應關系,易得∠A=∠1,DE是△ABC的中位線,所以易得B、D答案正確,D是AB中點,所以DB=DA,故C正確.【詳解】根據題意可知DE是三角形ABC的中位線,所以DE∥BC;∠B+∠1+∠C=180°;∵BD=AD,∴△DBA是等腰三角形.故只有A錯,BA≠CA.故選A.【點睛】主要考查了三角形的內角和外角之間的關系以及等腰三角形的性質.還涉及到翻折變換以及中位線定理的運用.(1)三角形的外角等于與它不相鄰的兩個內角和.(1)三角形的內角和是180度.求角的度數常常要用到“三角形的內角和是180°這一隱含的條件.通過折疊變換考查正多邊形的有關知識,及學生的邏輯思維能力.解答此類題最好動手操作.3、B【解析】

根據題意畫出圖形,連接AO并延長交BC于點D,則AD⊥BC,設OD=x,由三角形重心的性質得AD=3x,利用銳角三角函數表示出BD的長,由垂徑定理表示出BC的長,然后根據面積法解答即可.【詳解】如圖,連接AO并延長交BC于點D,則AD⊥BC,設OD=x,則AD=3x,∵tan∠BAD=,∴BD=tan30°·AD=x,∴BC=2BD=2x,∵,∴×2x×3x=3,∴x=1所以該圓的內接正三邊形的邊心距為1,故選B.【點睛】本題考查正多邊形和圓,三角形重心的性質,垂徑定理,銳角三角函數,面積法求線段的長,解答本題的關鍵是明確題意,求出相應的圖形的邊心距.4、A【解析】

連接OM、OD、OF,由正六邊形的性質和已知條件得出OM⊥OD,OM⊥EF,∠MFO=60°,由三角函數求出OM,再由勾股定理求出MD即可.【詳解】連接OM、OD、OF,∵正六邊形ABCDEF內接于⊙O,M為EF的中點,∴OM⊥OD,OM⊥EF,∠MFO=60°,∴∠MOD=∠OMF=90°,∴OM=OF?sin∠MFO=2×=,∴MD=,故選A.【點睛】本題考查了正多邊形和圓、正六邊形的性質、三角函數、勾股定理;熟練掌握正六邊形的性質,由三角函數求出OM是解決問題的關鍵.5、D【解析】分析:由圖1、圖2結合題意可知,當DP⊥AB時,DP最短,由此可得DP最短=y最小=,這樣如圖3,過點P作PD⊥AB于點P,連接AD,結合△ABC是等邊三角形和點D是BC邊的中點進行分析解答即可.詳解:由題意可知:當DP⊥AB時,DP最短,由此可得DP最短=y最小=,如圖3,過點P作PD⊥AB于點P,連接AD,∵△ABC是等邊三角形,點D是BC邊上的中點,∴∠ABC=60°,AD⊥BC,∵DP⊥AB于點P,此時DP=,∴BD=,∴BC=2BD=4,∴AB=4,∴AD=AB·sin∠B=4×sin60°=,∴S△ABC=AD·BC=.故選D.點睛:“讀懂題意,知道當DP⊥AB于點P時,DP最短=”是解答本題的關鍵.6、A【解析】∵∠AED=∠B,∠A=∠A

∴△ADE∽△ACB∴,∵DE=6,AB=10,AE=8,∴,解得BC=.故選A.7、B【解析】

求出兩函數組成的方程組的解,即可得出a、b的值,再代入求值即可.【詳解】解方程組,把①代入②得:=﹣2x﹣4,整理得:x2+2x+1=0,解得:x=﹣1,∴y=﹣2,交點坐標是(﹣1,﹣2),∴a=﹣1,b=﹣2,∴=﹣1﹣1=﹣2,故選B.【點睛】本題考查了一次函數與反比例函數的交點問題和解方程組等知識點,關鍵是求出a、b的值.8、B【解析】

連接FC,先證明△AEF∽△BEC,得出AE∶EC=1∶3,所以S△EFC=3S△AEF,在根據點F是□ABCD的邊AD上的三等分點得出S△FCD=2S△AFC,四邊形CDFE的面積=S△FCD+S△EFC,再代入△AEF的面積為2即可求出四邊形CDFE的面積.【詳解】解:∵AD∥BC,∴∠EAF=∠ACB,∠AFE=∠FBC;∵∠AEF=∠BEC,∴△AEF∽△BEC,∴==,∵△AEF與△EFC高相等,∴S△EFC=3S△AEF,∵點F是□ABCD的邊AD上的三等分點,∴S△FCD=2S△AFC,∵△AEF的面積為2,∴四邊形CDFE的面積=S△FCD+S△EFC=16+6=22.故選B.【點睛】本題考查了相似三角形的應用與三角形的面積,解題的關鍵是熟練的掌握相似三角形的應用與三角形的面積的相關知識點.9、B【解析】過點A作AM⊥BC于點M,由題意可知當點P運動到點M時,AP最小,此時長為4,觀察圖象可知AB=AC=5,∴BM==3,∴BC=2BM=6,∴S△ABC==12,故選B.【點睛】本題考查了動點問題的函數圖象,根據已知和圖象能確定出AB、AC的長,以及點P運動到與BC垂直時最短是解題的關鍵.10、A【解析】

根據從正面看得到的圖形是主視圖,可得答案.【詳解】解:從正面看第一層是三個小正方形,第二層中間有一個小正方形,

故選:A.【點睛】本題考查了簡單組合體的三視圖,從正面看得到的圖形是主視圖.二、填空題(本大題共6個小題,每小題3分,共18分)11、2或-1.【解析】①∵--,∴min{-,-}=-;②∵min{(x?1)2,x2}=1,∴當x>0.5時,(x?1)2=1,∴x?1=±1,∴x?1=1,x?1=?1,解得:x1=2,x2=0(不合題意,舍去),當x?0.5時,x2=1,解得:x1=1(不合題意,舍去),x2=?1,12、1【解析】

連結BD,利用三角形面積公式得到S△ADB=S△ABC=2,則S矩形OBAD=2S△ADB=1,于是可根據反比例函數的比例系數k的幾何意義得到k的值.【詳解】連結BD,如圖,∵DC=2AD,∴S△ADB=S△BDC=S△BAC=×6=2,∵AD⊥y軸于點D,AB⊥x軸,∴四邊形OBAD為矩形,∴S矩形OBAD=2S△ADB=2×2=1,∴k=1.故答案為:1.【點睛】本題考查了反比例函數的比例系數k的幾何意義:在反比例函數y=圖象中任取一點,過這一個點向x軸和y軸分別作垂線,與坐標軸圍成的矩形的面積是定值|k|.13、【解析】

根據圓周角定理可得∠BAC=∠BDC,然后求出tan∠BDC的值即可.【詳解】由圖可得,∠BAC=∠BDC,∵⊙O在邊長為1的網格格點上,∴BE=3,DB=4,則tan∠BDC==∴tan∠BAC=故答案為【點睛】本題考查的知識點是圓周角定理及其推論及解直角三角形,解題的關鍵是熟練的掌握圓周角定理及其推論及解直角三角形.14、(1,﹣3)【解析】

畫出平面直角坐標系,然后作出點P繞原點O順時針旋轉180°的點P′的位置,再根據平面直角坐標系寫出坐標即可.【詳解】如圖所示:點P(-1,3)繞原點O順時針旋轉180°后的對應點P′的坐標為(1,-3).

故答案是:(1,-3).【點睛】考查了坐標與圖形變化-旋轉,作出圖形,利用數形結合的思想求解更簡便,形象直觀.15、【解析】

根據同底數冪的乘法法則計算即可.【詳解】故答案是:【點睛】本題考查了同底數冪的乘法,熟練掌握同底數冪的乘法運算法則是解題的關鍵.16、-1.【解析】解:∵-3<-2,∴(-3)*(-2)=(-3)-(-2)=-1.故答案為-1.三、解答題(共8題,共72分)17、答案見解析【解析】

首先作出∠AOB的角平分線,再作出OC的垂直平分線,兩線的交點就是圓心P,再以P為圓心,PC長為半徑畫圓即可.【詳解】解:如圖所示:.【點睛】本題考查基本作圖,掌握垂直平分線及角平分線的做法是本題的解題關鍵..18、(1)見解析(2)5【解析】

解:(1)證明:如圖,連接,則.∵,∴.∵,∴四邊形是平行四邊形.∴.(2)連接,則.∵,,,∴,.∴.∴.設,則.在中,有.∴.即.19、(1)見解析;(2)4【解析】分析:(1)欲證明AE是⊙O切線,只要證明OA⊥AE即可;(2)由△ACD∽△CFD,可得,想辦法求出CD、AD即可解決問題.詳解:(1)證明:連接CD.∵∠B=∠D,AD是直徑,∴∠ACD=90°,∠D+∠1=90°,∠B+∠1=90°,∵∠B=∠EAC,∴∠EAC+∠1=90°,∴OA⊥AE,∴AE是⊙O的切線.(2)∵CG⊥AD.OA⊥AE,∴CG∥AE,∴∠2=∠3,∵∠2=∠B,∴∠3=∠B,∵∠CAG=∠CAB,∴△ABC∽△ACG,∴,∴AC2=AG?AB=36,∴AC=6,∵tanD=tanB=,在Rt△ACD中,tanD==CD==6,AD==6,∵∠D=∠D,∠ACD=∠CFD=90°,∴△ACD∽△CFD,∴,∴DF=4,點睛:本題考查切線的性質、圓周角定理、垂徑定理、相似三角形的判定和性質、解直角三角形等知識,解題關鍵是靈活運用所學知識解決問題,屬于中考??碱}型.20、【小題1】見解析【小題2】見解析【小題3】【解析】證明:(1)連接OF∴FH切·O于點F∴OF⊥FH…………1分∵BC||FH∴OF⊥BC…………2分∴BF="CF"…………3分∴∠BAF=∠CAF即AF平分∠BAC…4分(2)∵∠CAF=∠CBF又∠CAF=∠BAF∴∠CBF=∠BAF…………6分∵BD平分∠ABC∴∠ABD=∠CBD∴∠BAF+∠ABD=∠CBF+∠CBD即∠FBD=∠FDB…………7分∴BF="DF"…………8分(3)∵∠BFE=∠AFB∠FBE=∠FAB∴ΔBEF∽ΔABF…………9分∴即BF2=EF·AF……10分∵EF=4DE=3∴BF="DF"=4+3=7AF=AD+7即4(AD+7)=49解得AD=21、見解析,.【解析】

畫樹狀圖展示所有9種等可能的結果數,找出兩次抽取的卡片上的數字都是偶數的結果數,然后根據概率公式求解.【詳解】解:畫樹狀圖為:共有9種等可能的結果數,其中兩次抽取的卡片上的數字都是偶數的結果數為4,所以兩次抽取的卡片上的數字都是偶數的概率=.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數目m,然后利用概率公式計算事件A或事件B的概率.22、(1);;(2)點P坐標為(,).【解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論