版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
河北省石家莊外國(guó)語(yǔ)校2024年中考考前最后一卷數(shù)學(xué)試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.運(yùn)用乘法公式計(jì)算(4+x)(4﹣x)的結(jié)果是()A.x2﹣16 B.16﹣x2 C.16﹣8x+x2 D.8﹣x22.如圖,在△ABC中,AC=BC,∠ACB=90°,點(diǎn)D在BC上,BD=3,DC=1,點(diǎn)P是AB上的動(dòng)點(diǎn),則PC+PD的最小值為()A.4 B.5 C.6 D.73.一次函數(shù)y=2x+1的圖像不經(jīng)過(guò)(
)A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限4.下列各式中,計(jì)算正確的是()A. B.C. D.5.|–|的倒數(shù)是()A.–2 B.– C. D.26.若△ABC與△DEF相似,相似比為2:3,則這兩個(gè)三角形的面積比為()A.2:3 B.3:2 C.4:9 D.9:47.下列實(shí)數(shù)中,為無(wú)理數(shù)的是()A. B. C.﹣5 D.0.31568.如圖,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn),點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)E,點(diǎn)A的對(duì)應(yīng)點(diǎn)為點(diǎn)D,當(dāng)點(diǎn)E恰好落在邊AC上時(shí),連接AD,若∠ACB=30°,則∠DAC的度數(shù)是()A. B. C. D.9.如圖是本地區(qū)一種產(chǎn)品30天的銷售圖象,圖①是產(chǎn)品日銷售量y(單位:件)與時(shí)間t(單位;天)的函數(shù)關(guān)系,圖②是一件產(chǎn)品的銷售利潤(rùn)z(單位:元)與時(shí)間t(單位:天)的函數(shù)關(guān)系,已知日銷售利潤(rùn)=日銷售量×一件產(chǎn)品的銷售利潤(rùn),下列結(jié)論錯(cuò)誤的是()A.第24天的銷售量為200件 B.第10天銷售一件產(chǎn)品的利潤(rùn)是15元C.第12天與第30天這兩天的日銷售利潤(rùn)相等 D.第27天的日銷售利潤(rùn)是875元10.某圓錐的主視圖是一個(gè)邊長(zhǎng)為3cm的等邊三角形,那么這個(gè)圓錐的側(cè)面積是()A.4.5πcm2 B.3cm2 C.4πcm2 D.3πcm2二、填空題(共7小題,每小題3分,滿分21分)11.下面是用棋子擺成的“上”字:如果按照以上規(guī)律繼續(xù)擺下去,那么通過(guò)觀察,可以發(fā)現(xiàn):第n個(gè)“上”字需用_____枚棋子.12.如圖,是由形狀相同的正六邊形和正三角形鑲嵌而成的一組有規(guī)律的圖案,則第n個(gè)圖案中陰影小三角形的個(gè)數(shù)是.13.?dāng)?shù)據(jù):2,5,4,2,2的中位數(shù)是_____,眾數(shù)是_____,方差是_____.14.已知一次函數(shù)y=ax+b,且2a+b=1,則該一次函數(shù)圖象必經(jīng)過(guò)點(diǎn)_____.15.一個(gè)圓錐的母線長(zhǎng)15CM.高為9CM.則側(cè)面展開(kāi)圖的圓心角________。16.如圖,在兩個(gè)同心圓中,三條直徑把大、小圓都分成相等的六個(gè)部分,若隨意向圓中投球,球落在黑色區(qū)域的概率是______.17.如圖,點(diǎn)D在⊙O的直徑AB的延長(zhǎng)線上,點(diǎn)C在⊙O上,且AC=CD,∠ACD=120°,CD是⊙O的切線:若⊙O的半徑為2,則圖中陰影部分的面積為_(kāi)____.三、解答題(共7小題,滿分69分)18.(10分)如圖,在△ABC中,CD⊥AB于點(diǎn)D,tanA=2cos∠BCD,(1)求證:BC=2AD;(2)若cosB=,AB=10,求CD的長(zhǎng).19.(5分)(1)計(jì)算:;(2)化簡(jiǎn),然后選一個(gè)合適的數(shù)代入求值.20.(8分)如圖,二次函數(shù)的圖象與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,已知點(diǎn)A(﹣4,0).求拋物線與直線AC的函數(shù)解析式;若點(diǎn)D(m,n)是拋物線在第二象限的部分上的一動(dòng)點(diǎn),四邊形OCDA的面積為S,求S關(guān)于m的函數(shù)關(guān)系式;若點(diǎn)E為拋物線上任意一點(diǎn),點(diǎn)F為x軸上任意一點(diǎn),當(dāng)以A、C、E、F為頂點(diǎn)的四邊形是平行四邊形時(shí),請(qǐng)求出滿足條件的所有點(diǎn)E的坐標(biāo).21.(10分)現(xiàn)種植A、B、C三種樹苗一共480棵,安排80名工人一天正好完成,已知每名工人只植一種樹苗,且每名工人每天可植A種樹苗8棵;或植B種樹苗6棵,或植C種樹苗5棵.經(jīng)過(guò)統(tǒng)計(jì),在整個(gè)過(guò)程中,每棵樹苗的種植成本如圖所示.設(shè)種植A種樹苗的工人為x名,種植B種樹苗的工人為y名.求y與x之間的函數(shù)關(guān)系式;設(shè)種植的總成本為w元,①求w與x之間的函數(shù)關(guān)系式;②若種植的總成本為5600元,從植樹工人中隨機(jī)采訪一名工人,求采訪到種植C種樹苗工人的概率.22.(10分)如圖,在矩形ABCD中,AB=3,BC=4,將矩形ABCD繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)α角,得到矩形A'B'C'D',B'C與AD交于點(diǎn)E,AD的延長(zhǎng)線與A'D'交于點(diǎn)F.(1)如圖①,當(dāng)α=60°時(shí),連接DD',求DD'和A'F的長(zhǎng);(2)如圖②,當(dāng)矩形A'B'CD'的頂點(diǎn)A'落在CD的延長(zhǎng)線上時(shí),求EF的長(zhǎng);(3)如圖③,當(dāng)AE=EF時(shí),連接AC,CF,求AC?CF的值.23.(12分)已知拋物線y=x2﹣6x+9與直線y=x+3交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),拋物線的頂點(diǎn)為C,直線y=x+3與x軸交于點(diǎn)D.(1)求拋物線的頂點(diǎn)C的坐標(biāo)及A,B兩點(diǎn)的坐標(biāo);(2)將拋物線y=x2﹣6x+9向上平移1個(gè)單位長(zhǎng)度,再向左平移t(t>0)個(gè)單位長(zhǎng)度得到新拋物線,若新拋物線的頂點(diǎn)E在△DAC內(nèi),求t的取值范圍;(3)點(diǎn)P(m,n)(﹣3<m<1)是拋物線y=x2﹣6x+9上一點(diǎn),當(dāng)△PAB的面積是△ABC面積的2倍時(shí),求m,n的值.24.(14分)如圖1,反比例函數(shù)(x>0)的圖象經(jīng)過(guò)點(diǎn)A(,1),射線AB與反比例函數(shù)圖象交于另一點(diǎn)B(1,a),射線AC與y軸交于點(diǎn)C,∠BAC=75°,AD⊥y軸,垂足為D.(1)求k的值;(2)求tan∠DAC的值及直線AC的解析式;(3)如圖2,M是線段AC上方反比例函數(shù)圖象上一動(dòng)點(diǎn),過(guò)M作直線l⊥x軸,與AC相交于點(diǎn)N,連接CM,求△CMN面積的最大值.
參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、B【解析】
根據(jù)平方差公式計(jì)算即可得解.【詳解】,故選:B.【點(diǎn)睛】本題主要考查了整式的乘法公式,熟練掌握平方差公式的運(yùn)算是解決本題的關(guān)鍵.2、B【解析】試題解析:過(guò)點(diǎn)C作CO⊥AB于O,延長(zhǎng)CO到C′,使OC′=OC,連接DC′,交AB于P,連接CP.此時(shí)DP+CP=DP+PC′=DC′的值最小.∵DC=1,BC=4,∴BD=3,連接BC′,由對(duì)稱性可知∠C′BE=∠CBE=41°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=41°,∴BC=BC′=4,根據(jù)勾股定理可得DC′===1.故選B.3、D【解析】
根據(jù)一次函數(shù)的系數(shù)判斷出函數(shù)圖象所經(jīng)過(guò)的象限,由k=2>0,b=1>0可知,一次函數(shù)y=2x+1的圖象過(guò)一、二、三象限.另外此題還可以通過(guò)直接畫函數(shù)圖象來(lái)解答.【詳解】∵k=2>0,b=1>0,∴根據(jù)一次函數(shù)圖象的性質(zhì)即可判斷該函數(shù)圖象經(jīng)過(guò)一、二、三象限,不經(jīng)過(guò)第四象限.故選D.【點(diǎn)睛】本題考查一次函數(shù)圖象與系數(shù)的關(guān)系,解決此類題目的關(guān)鍵是確定k、b的正負(fù).4、C【解析】
接利用合并同類項(xiàng)法則以及積的乘方運(yùn)算法則、同底數(shù)冪的乘除運(yùn)算法則分別計(jì)算得出答案.【詳解】A、無(wú)法計(jì)算,故此選項(xiàng)錯(cuò)誤;B、a2?a3=a5,故此選項(xiàng)錯(cuò)誤;C、a3÷a2=a,正確;D、(a2b)2=a4b2,故此選項(xiàng)錯(cuò)誤.故選C.【點(diǎn)睛】此題主要考查了合并同類項(xiàng)以及積的乘方運(yùn)算、同底數(shù)冪的乘除運(yùn)算,正確掌握相關(guān)運(yùn)算法則是解題關(guān)鍵.5、D【解析】
根據(jù)絕對(duì)值的性質(zhì),可化簡(jiǎn)絕對(duì)值,根據(jù)倒數(shù)的意義,可得答案.【詳解】|?|=,的倒數(shù)是2;∴|?|的倒數(shù)是2,故選D.【點(diǎn)睛】本題考查了實(shí)數(shù)的性質(zhì),分子分母交換位置是求一個(gè)數(shù)倒數(shù)的關(guān)鍵.6、C【解析】
由△ABC與△DEF相似,相似比為2:3,根據(jù)相似三角形的性質(zhì),即可求得答案.【詳解】∵△ABC與△DEF相似,相似比為2:3,∴這兩個(gè)三角形的面積比為4:1.故選C.【點(diǎn)睛】此題考查了相似三角形的性質(zhì).注意相似三角形的面積比等于相似比的平方.7、B【解析】
根據(jù)無(wú)理數(shù)的定義解答即可.【詳解】選項(xiàng)A、是分?jǐn)?shù),是有理數(shù);選項(xiàng)B、是無(wú)理數(shù);選項(xiàng)C、﹣5為有理數(shù);選項(xiàng)D、0.3156是有理數(shù);故選B.【點(diǎn)睛】本題考查了無(wú)理數(shù)的判定,熟知無(wú)理數(shù)是無(wú)限不循環(huán)小數(shù)是解決問(wèn)題的關(guān)鍵.8、D【解析】
由題意知:△ABC≌△DEC,∴∠ACB=∠DCE=30°,AC=DC,∴∠DAC=(180°?∠DCA)÷2=(180°?30°)÷2=75°.故選D.【點(diǎn)睛】本題主要考查了旋轉(zhuǎn)的性質(zhì),解題的關(guān)鍵是掌握旋轉(zhuǎn)的性質(zhì):①對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等.②對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角.③旋轉(zhuǎn)前、后的圖形全等.9、C【解析】試題解析:A、根據(jù)圖①可得第24天的銷售量為200件,故正確;B、設(shè)當(dāng)0≤t≤20,一件產(chǎn)品的銷售利潤(rùn)z(單位:元)與時(shí)間t(單位:天)的函數(shù)關(guān)系為z=kx+b,把(0,25),(20,5)代入得:,解得:,∴z=-x+25,當(dāng)x=10時(shí),y=-10+25=15,故正確;C、當(dāng)0≤t≤24時(shí),設(shè)產(chǎn)品日銷售量y(單位:件)與時(shí)間t(單位;天)的函數(shù)關(guān)系為y=k1t+b1,把(0,100),(24,200)代入得:,解得:,∴y=t+100,當(dāng)t=12時(shí),y=150,z=-12+25=13,∴第12天的日銷售利潤(rùn)為;150×13=1950(元),第30天的日銷售利潤(rùn)為;150×5=750(元),750≠1950,故C錯(cuò)誤;D、第30天的日銷售利潤(rùn)為;150×5=750(元),故正確.故選C10、A【解析】
根據(jù)已知得出圓錐的底面半徑及母線長(zhǎng),那么利用圓錐的側(cè)面積=底面周長(zhǎng)×母線長(zhǎng)÷2求出即可.【詳解】∵圓錐的軸截面是一個(gè)邊長(zhǎng)為3cm的等邊三角形,∴底面半徑=1.5cm,底面周長(zhǎng)=3πcm,∴圓錐的側(cè)面積=12×3π×3=4.5πcm2故選A.【點(diǎn)睛】此題主要考查了圓錐的有關(guān)計(jì)算,關(guān)鍵是利用圓錐的側(cè)面積=底面周長(zhǎng)×母線長(zhǎng)÷2得出.二、填空題(共7小題,每小題3分,滿分21分)11、4n+2【解析】∵第1個(gè)有:6=4×1+2;第2個(gè)有:10=4×2+2;第3個(gè)有:14=4×3+2;……∴第1個(gè)有:4n+2;故答案為4n+212、4n﹣1.【解析】由圖可知:第一個(gè)圖案有陰影小三角形1個(gè),第二圖案有陰影小三角形1+4=6個(gè),第三個(gè)圖案有陰影小三角形1+8=11個(gè),···那么第n個(gè)就有陰影小三角形1+4(n﹣1)=4n﹣1個(gè).13、221.1.【解析】
先將這組數(shù)據(jù)從小到大排列,再找出最中間的數(shù),即可得出中位數(shù);找出這組數(shù)據(jù)中最多的數(shù)則是眾數(shù);先求出這組數(shù)據(jù)的平均數(shù),再根據(jù)方差公式S2=[(x1-)2+(x2-)2+…+(xn-)2]進(jìn)行計(jì)算即可.【詳解】解:把這組數(shù)據(jù)從小到大排列為:2,2,2,4,5,最中間的數(shù)是2,則中位數(shù)是2;眾數(shù)為2;∵這組數(shù)據(jù)的平均數(shù)是(2+2+2+4+5)÷5=3,∴方差是:[(2?3)2+(2?3)2+(2?3)2+(4?3)2+(5?3)2]=1.1.故答案為2,2,1.1.【點(diǎn)睛】本題考查了中位數(shù)、眾數(shù)與方差的定義,解題的關(guān)鍵是熟練的掌握中位數(shù)、眾數(shù)與方差的定義.14、(2,1)【解析】∵一次函數(shù)y=ax+b,∴當(dāng)x=2,y=2a+b,又2a+b=1,∴當(dāng)x=2,y=1,即該圖象一定經(jīng)過(guò)點(diǎn)(2,1).故答案為(2,1).15、288°【解析】
母線長(zhǎng)為15cm,高為9cm,由勾股定理可得圓錐的底面半徑;由底面周長(zhǎng)與扇形的弧長(zhǎng)相等求得圓心角.【詳解】解:如圖所示,在Rt△SOA中,SO=9,SA=15;則:設(shè)側(cè)面屬開(kāi)圖扇形的國(guó)心角度數(shù)為n,則由得n=288°故答案為:288°.【點(diǎn)睛】本題利用了勾股定理,弧長(zhǎng)公式,圓的周長(zhǎng)公式和扇形面積公式求解.16、【解析】
根據(jù)幾何概率的求法:球落在黑色區(qū)域的概率就是黑色區(qū)域的面積與總面積的比值.【詳解】解:由圖可知黑色區(qū)域與白色區(qū)域的面積相等,故球落在黑色區(qū)域的概率是=.【點(diǎn)睛】本題考查幾何概率的求法:首先根據(jù)題意將代數(shù)關(guān)系用面積表示出來(lái),一般用陰影區(qū)域表示所求事件(A);然后計(jì)算陰影區(qū)域的面積在總面積中占的比例,這個(gè)比例即事件(A)發(fā)生的概率.17、【解析】試題分析:連接OC,求出∠D和∠COD,求出邊DC長(zhǎng),分別求出三角形OCD的面積和扇形COB的面積,即可求出答案.連接OC,∵AC=CD,∠ACD=120°,∴∠CAD=∠D=30°,∵DC切⊙O于C,∴OC⊥CD,∴∠OCD=90°,∴∠COD=60°,在Rt△OCD中,∠OCD=90°,∠D=30°,OC=2,∴CD=2,∴陰影部分的面積是S△OCD﹣S扇形COB=×2×2﹣=2﹣π,故答案為2﹣π.考點(diǎn):1.等腰三角形性質(zhì);2.三角形的內(nèi)角和定理;3.切線的性質(zhì);4.扇形的面積.三、解答題(共7小題,滿分69分)18、(1)證明見(jiàn)解析;(2)CD=2.【解析】
(1)根據(jù)三角函數(shù)的概念可知tanA=,cos∠BCD=,根據(jù)tanA=2cos∠BCD即可得結(jié)論;(2)由∠B的余弦值和(1)的結(jié)論即可求得BD,利用勾股定理求得CD即可.【詳解】(1)∵tanA=,cos∠BCD=,tanA=2cos∠BCD,∴=2·,∴BC=2AD.(2)∵cosB==,BC=2AD,∴=.∵AB=10,∴AD=×10=4,BD=10-4=6,∴BC=8,∴CD==2.【點(diǎn)睛】本題考查了直角三角形中的有關(guān)問(wèn)題,主要考查了勾股定理,三角函數(shù)的有關(guān)計(jì)算.熟練掌握三角函數(shù)的概念是解題關(guān)鍵.19、(1)0;(2),答案不唯一,只要x≠±1,0即可,當(dāng)x=10時(shí),.【解析】
(1)根據(jù)有理數(shù)的乘方法則、零次冪的性質(zhì)、特殊角的三角函數(shù)值計(jì)算即可;(2)先把括號(hào)內(nèi)通分,再把除法運(yùn)算化為乘法運(yùn)算,然后約分,再根據(jù)分式有意義的條件把x=10代入計(jì)算即可.【詳解】解:(1)原式==1﹣3+2+1﹣1=0;(2)原式==由題意可知,x≠1∴當(dāng)x=10時(shí),原式==.【點(diǎn)睛】本題考查實(shí)數(shù)的運(yùn)算;零指數(shù)冪;負(fù)整數(shù)指數(shù)冪;特殊角的三角函數(shù)值;分式的化簡(jiǎn)求值,掌握計(jì)算法則正確計(jì)算是本題的解題關(guān)鍵.20、(1)(1)S=﹣m1﹣4m+4(﹣4<m<0)(3)(﹣3,1)、(,﹣1)、(,﹣1)【解析】
(1)把點(diǎn)A的坐標(biāo)代入拋物線的解析式,就可求得拋物線的解析式,根據(jù)A,C兩點(diǎn)的坐標(biāo),可求得直線AC的函數(shù)解析式;(1)先過(guò)點(diǎn)D作DH⊥x軸于點(diǎn)H,運(yùn)用割補(bǔ)法即可得到:四邊形OCDA的面積=△ADH的面積+四邊形OCDH的面積,據(jù)此列式計(jì)算化簡(jiǎn)就可求得S關(guān)于m的函數(shù)關(guān)系;(3)由于AC確定,可分AC是平行四邊形的邊和對(duì)角線兩種情況討論,得到點(diǎn)E與點(diǎn)C的縱坐標(biāo)之間的關(guān)系,然后代入拋物線的解析式,就可得到滿足條件的所有點(diǎn)E的坐標(biāo).【詳解】(1)∵A(﹣4,0)在二次函數(shù)y=ax1﹣x+1(a≠0)的圖象上,∴0=16a+6+1,解得a=﹣,∴拋物線的函數(shù)解析式為y=﹣x1﹣x+1;∴點(diǎn)C的坐標(biāo)為(0,1),設(shè)直線AC的解析式為y=kx+b,則,解得,∴直線AC的函數(shù)解析式為:;(1)∵點(diǎn)D(m,n)是拋物線在第二象限的部分上的一動(dòng)點(diǎn),∴D(m,﹣m1﹣m+1),過(guò)點(diǎn)D作DH⊥x軸于點(diǎn)H,則DH=﹣m1﹣m+1,AH=m+4,HO=﹣m,∵四邊形OCDA的面積=△ADH的面積+四邊形OCDH的面積,∴S=(m+4)×(﹣m1﹣m+1)+(﹣m1﹣m+1+1)×(﹣m),化簡(jiǎn),得S=﹣m1﹣4m+4(﹣4<m<0);(3)①若AC為平行四邊形的一邊,則C、E到AF的距離相等,∴|yE|=|yC|=1,∴yE=±1.當(dāng)yE=1時(shí),解方程﹣x1﹣x+1=1得,x1=0,x1=﹣3,∴點(diǎn)E的坐標(biāo)為(﹣3,1);當(dāng)yE=﹣1時(shí),解方程﹣x1﹣x+1=﹣1得,x1=,x1=,∴點(diǎn)E的坐標(biāo)為(,﹣1)或(,﹣1);②若AC為平行四邊形的一條對(duì)角線,則CE∥AF,∴yE=yC=1,∴點(diǎn)E的坐標(biāo)為(﹣3,1).綜上所述,滿足條件的點(diǎn)E的坐標(biāo)為(﹣3,1)、(,﹣1)、(,﹣1).21、(1);(2)①;②【解析】
(1)先求出種植C種樹苗的人數(shù),根據(jù)現(xiàn)種植A、B、C三種樹苗一共480棵,可以列出等量關(guān)系,解出y與x之間的關(guān)系;(2)①分別求出種植A,B,C三種樹苗的成本,然后相加即可;②求出種植C種樹苗工人的人數(shù),然后用種植C種樹苗工人的人數(shù)÷總?cè)藬?shù)即可求出概率.【詳解】解:(1)設(shè)種植A種樹苗的工人為x名,種植B種樹苗的工人為y名,則種植C種樹苗的人數(shù)為(80-x-y)人,根據(jù)題意,得:8x+6y+5(80-x-y)=480,整理,得:y=-3x+80;(2)①w=15×8x+12×6y+8×5(80-x-y)=80x+32y+3200,把y=-3x+80代入,得:w=-16x+5760,②種植的總成本為5600元時(shí),w=-16x+5760=5600,解得x=10,y=-3×10+80=50,即種植A種樹苗的工人為10名,種植B種樹苗的工人為50名,種植B種樹苗的工人為:80-10-50=20名.采訪到種植C種樹苗工人的概率為:=.【點(diǎn)睛】本題主要考查了一次函數(shù)的實(shí)際問(wèn)題,以及概率的求法,能夠?qū)?shí)際問(wèn)題轉(zhuǎn)化成數(shù)學(xué)模型是解答此題的關(guān)鍵.22、(1)DD′=1,A′F=4﹣;(2);(1).【解析】
(1)①如圖①中,∵矩形ABCD繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)α角,得到矩形A'B'C'D',只要證明△CDD′是等邊三角形即可解決問(wèn)題;②如圖①中,連接CF,在Rt△CD′F中,求出FD′即可解決問(wèn)題;(2)由△A′DF∽△A′D′C,可推出DF的長(zhǎng),同理可得△CDE∽△CB′A′,可求出DE的長(zhǎng),即可解決問(wèn)題;(1)如圖③中,作FG⊥CB′于G,由S△ACF=?AC?CF=?AF?CD,把問(wèn)題轉(zhuǎn)化為求AF?CD,只要證明∠ACF=90°,證明△CAD∽△FAC,即可解決問(wèn)題;【詳解】解:(1)①如圖①中,∵矩形ABCD繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)α角,得到矩形A'B'C'D',∴A′D′=AD=B′C=BC=4,CD′=CD=A′B′=AB=1∠A′D′C=∠ADC=90°.∵α=60°,∴∠DCD′=60°,∴△CDD′是等邊三角形,∴DD′=CD=1.②如圖①中,連接CF.∵CD=CD′,CF=CF,∠CDF=∠CD′F=90°,∴△CDF≌△CD′F,∴∠DCF=∠D′CF=∠DCD′=10°.在Rt△CD′F中,∵tan∠D′CF=,∴D′F=,∴A′F=A′D′﹣D′F=4﹣.(2)如圖②中,在Rt△A′CD′中,∵∠D′=90°,∴A′C2=A′D′2+CD′2,∴A′C=5,A′D=2.∵∠DA′F=∠CA′D′,∠A′DF=∠D′=90°,∴△A′DF∽△A′D′C,∴,∴,∴DF=.同理可得△CDE∽△CB′A′,∴,∴,∴ED=,∴EF=ED+DF=.(1)如圖③中,作FG⊥CB′于G.∵四邊形A′B′CD′是矩形,∴GF=CD′=CD=1.∵S△CEF=?EF?DC=?CE?FG,∴CE=EF,∵AE=EF,∴AE=EF=CE,∴∠ACF=90°.∵∠ADC=∠ACF,∠CAD=∠FAC,∴△CAD∽△FAC,∴,∴AC2=AD?AF,∴AF=.∵S△ACF=?AC?CF=?AF?CD,∴AC?CF=AF?CD=.23、(1)C(2,0),A(1,4),B(1,9);(2)<t<5;(2)m=,∴n=.【解析】分析:(Ⅰ)將拋物線的一般式配方為頂點(diǎn)式即可求出點(diǎn)C的坐標(biāo),聯(lián)立拋物線與直線的解析式即可求出A、B的坐標(biāo).(Ⅱ)由題意可知:新拋物線的頂點(diǎn)坐標(biāo)為(2﹣t,1),然后求出直線AC的解析式后,將點(diǎn)E的坐標(biāo)分別代入直線AC與AD的解析式中即可求出t的值,從而可知新拋物線的頂點(diǎn)E在△DAC內(nèi),求t的取值范圍.(Ⅲ)直線AB與y軸交于點(diǎn)F,連接CF,過(guò)點(diǎn)P作PM⊥AB于點(diǎn)M,PN⊥x軸于點(diǎn)N,交DB于點(diǎn)G,由直線y=x+2與x軸交于點(diǎn)D,與y軸交于點(diǎn)F,得D(﹣2,0),F(xiàn)(0,2),易得CF⊥AB,△PAB的面積是△ABC面積的2倍,所以AB?PM=AB?CF,PM=2CF=1,從而可求出PG=3,利用點(diǎn)G在直線y=x+2上,P(m,n),所以G(m,m+2),所以PG=n﹣(m+2),所以n=m+4,由于P(m,n)在拋物線y=x2﹣1x+9上,聯(lián)立方程從而可求出m、n的值.詳解:(I)∵y=x2﹣1x+9=(x﹣2)2,∴頂點(diǎn)坐標(biāo)為(2,0).聯(lián)立,解得:或;(II)由題意可知:新拋物線的頂點(diǎn)坐標(biāo)為(2﹣t,1),設(shè)直線AC的解析式為y=kx+b將A(1,4),C(2,0)代入y=kx+b中,∴,解得:,∴直線AC的解析式為y=﹣2x+1.當(dāng)點(diǎn)E在直線AC上時(shí),﹣2(2﹣t)+1=1,解得:t=.當(dāng)點(diǎn)E在直線AD上時(shí),(2﹣t)+2=1,解得:t=5,∴當(dāng)點(diǎn)E在△DAC內(nèi)時(shí),<t<5;(III)如圖,直線AB與y軸交于點(diǎn)F,連接CF,過(guò)點(diǎn)P作PM⊥AB于點(diǎn)M,PN⊥x軸于點(diǎn)N,交DB于點(diǎn)G.由直線y=x+2與x軸交于點(diǎn)D,與y軸交于點(diǎn)F,得D(﹣2,0),F(xiàn)(0,2),∴OD=OF=2.∵∠FOD=90°,∴∠OFD=∠ODF=45°.∵OC=OF=2,∠FOC=90°,∴CF==2,∠OFC=∠OCF=45°,∴∠DFC=∠DFO+∠OFC=45°+45°=90°,∴CF⊥AB.∵△PAB的面積是△ABC面積的2倍,∴AB?PM=AB?CF,∴PM=2CF=1.∵PN⊥x軸,∠FDO=45°,∴∠DGN=45°,∴∠PGM=45°.在Rt△PGM中,sin∠PGM=,∴PG===3.∵點(diǎn)G在直線y=x+2上,P(m,n),∴G(m,m+2).∵﹣2<m<1,∴點(diǎn)P在點(diǎn)G的上方,∴PG=n﹣(m+2),∴n=m+4
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年俱樂(lè)部安保人員雇傭合同2篇
- 2024年度服裝品牌股權(quán)轉(zhuǎn)讓與零售渠道合作合同3篇
- 2024年度新疆油田公司火災(zāi)隱患整改合同3篇
- 2024年度個(gè)人健康養(yǎng)生借款合同3篇
- 2024年水果店承包經(jīng)營(yíng)協(xié)議
- 2024年玻璃制品批發(fā)與安裝服務(wù)合同3篇
- 2024版屋頂綠化草皮種植與城市節(jié)能減排合同3篇
- 2024年度綜合性醫(yī)院護(hù)士專業(yè)人才培養(yǎng)合作聘用合同范本3篇
- 2024年度堤壩施工安全生產(chǎn)責(zé)任合同2篇
- 2024年標(biāo)準(zhǔn)化養(yǎng)殖人員聘用合同版B版
- 生命科學(xué)前沿技術(shù)智慧樹知到期末考試答案章節(jié)答案2024年蘇州大學(xué)
- 2023年小兒推拿保健師考試真題試卷(含答案)
- 高血壓護(hù)理常規(guī)課件
- 心臟介入手術(shù)談話技巧
- 海南省三亞市吉陽(yáng)區(qū)2022-2023學(xué)年六年級(jí)上學(xué)期期末數(shù)學(xué)試卷
- 辦公樓消防改造工程環(huán)境保護(hù)措施
- 2023-2024學(xué)年高一下學(xué)期家長(zhǎng)會(huì) 課件
- 溯源與解讀:學(xué)科實(shí)踐即學(xué)習(xí)方式變革的新方向
- 班克街教育方案
- 護(hù)理教育改革與創(chuàng)新研究
- 知識(shí)點(diǎn)總結(jié)(知識(shí)清單)-2023-2024學(xué)年人教PEP版英語(yǔ)六年級(jí)上冊(cè)
評(píng)論
0/150
提交評(píng)論