版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)的一個(gè)單調(diào)遞增區(qū)間是()A. B. C. D.2.已知,,,若,則正數(shù)可以為()A.4 B.23 C.8 D.173.已知復(fù)數(shù)滿足,則的共軛復(fù)數(shù)是()A. B. C. D.4.已知雙曲線的一條漸近線方程為,,分別是雙曲線C的左、右焦點(diǎn),點(diǎn)P在雙曲線C上,且,則()A.9 B.5 C.2或9 D.1或55.已知函數(shù)滿足=1,則等于()A.- B. C.- D.6.我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》有一問(wèn)題:“今有鱉臑(biēnaò),下廣五尺,無(wú)袤;上袤四尺,無(wú)廣;高七尺.問(wèn)積幾何?”該幾何體的三視圖如圖所示,則此幾何體外接球的表面積為()A.平方尺 B.平方尺C.平方尺 D.平方尺7.已知的內(nèi)角的對(duì)邊分別是且,若為最大邊,則的取值范圍是()A. B. C. D.8.已知集合A={﹣2,﹣1,0,1,2},B={x|x2﹣4x﹣5<0},則A∩B=()A.{﹣2,﹣1,0} B.{﹣1,0,1,2} C.{﹣1,0,1} D.{0,1,2}9.設(shè)過(guò)點(diǎn)的直線分別與軸的正半軸和軸的正半軸交于兩點(diǎn),點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱,為坐標(biāo)原點(diǎn),若,且,則點(diǎn)的軌跡方程是()A. B.C. D.10.已知函數(shù),為的零點(diǎn),為圖象的對(duì)稱軸,且在區(qū)間上單調(diào),則的最大值是()A. B. C. D.11.若雙曲線的焦距為,則的一個(gè)焦點(diǎn)到一條漸近線的距離為()A. B. C. D.12.甲乙丙丁四人中,甲說(shuō):我年紀(jì)最大,乙說(shuō):我年紀(jì)最大,丙說(shuō):乙年紀(jì)最大,丁說(shuō):我不是年紀(jì)最大的,若這四人中只有一個(gè)人說(shuō)的是真話,則年紀(jì)最大的是()A.甲 B.乙 C.丙 D.丁二、填空題:本題共4小題,每小題5分,共20分。13.正四面體的一個(gè)頂點(diǎn)是圓柱上底面的圓心,另外三個(gè)頂點(diǎn)圓柱下底面的圓周上,記正四面體的體積為,圓柱的體積為,則的值是______.14.的三個(gè)內(nèi)角A,B,C所對(duì)應(yīng)的邊分別為a,b,c,已知,則________.15.?dāng)?shù)列滿足遞推公式,且,則___________.16.如圖,己知半圓的直徑,點(diǎn)是弦(包含端點(diǎn),)上的動(dòng)點(diǎn),點(diǎn)在弧上.若是等邊三角形,且滿足,則的最小值為_(kāi)__________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)若正數(shù)滿足,求的最小值.18.(12分)已知是遞增的等比數(shù)列,,且、、成等差數(shù)列.(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)設(shè),,求數(shù)列的前項(xiàng)和.19.(12分)在直角坐標(biāo)系中,以為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.曲線的極坐標(biāo)方程為:,曲線的參數(shù)方程為其中,為參數(shù),為常數(shù).(1)寫(xiě)出與的直角坐標(biāo)方程;(2)在什么范圍內(nèi)取值時(shí),與有交點(diǎn).20.(12分)已知函數(shù)(,),.(Ⅰ)討論的單調(diào)性;(Ⅱ)若對(duì)任意的,恒成立,求實(shí)數(shù)的取值范圍.21.(12分)已知,.(1)當(dāng)時(shí),證明:;(2)設(shè)直線是函數(shù)在點(diǎn)處的切線,若直線也與相切,求正整數(shù)的值.22.(10分)某超市在節(jié)日期間進(jìn)行有獎(jiǎng)促銷,規(guī)定凡在該超市購(gòu)物滿400元的顧客,均可獲得一次摸獎(jiǎng)機(jī)會(huì).摸獎(jiǎng)規(guī)則如下:獎(jiǎng)盒中放有除顏色不同外其余完全相同的4個(gè)球(紅、黃、黑、白).顧客不放回的每次摸出1個(gè)球,若摸到黑球則摸獎(jiǎng)停止,否則就繼續(xù)摸球.按規(guī)定摸到紅球獎(jiǎng)勵(lì)20元,摸到白球或黃球獎(jiǎng)勵(lì)10元,摸到黑球不獎(jiǎng)勵(lì).(1)求1名顧客摸球2次摸獎(jiǎng)停止的概率;(2)記X為1名顧客摸獎(jiǎng)獲得的獎(jiǎng)金數(shù)額,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
利用同角三角函數(shù)的基本關(guān)系式、二倍角公式和輔助角公式化簡(jiǎn)表達(dá)式,再根據(jù)三角函數(shù)單調(diào)區(qū)間的求法,求得的單調(diào)區(qū)間,由此確定正確選項(xiàng).【詳解】因?yàn)?,由單調(diào)遞增,則(),解得(),當(dāng)時(shí),D選項(xiàng)正確.C選項(xiàng)是遞減區(qū)間,A,B選項(xiàng)中有部分增區(qū)間部分減區(qū)間.故選:D【點(diǎn)睛】本小題考查三角函數(shù)的恒等變換,三角函數(shù)的圖象與性質(zhì)等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,推理論證能力,數(shù)形結(jié)合思想,應(yīng)用意識(shí).2、C【解析】
首先根據(jù)對(duì)數(shù)函數(shù)的性質(zhì)求出的取值范圍,再代入驗(yàn)證即可;【詳解】解:∵,∴當(dāng)時(shí),滿足,∴實(shí)數(shù)可以為8.故選:C【點(diǎn)睛】本題考查對(duì)數(shù)函數(shù)的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.3、B【解析】
根據(jù)復(fù)數(shù)的除法運(yùn)算法則和共軛復(fù)數(shù)的定義直接求解即可.【詳解】由,得,所以.故選:B【點(diǎn)睛】本題考查了復(fù)數(shù)的除法的運(yùn)算法則,考查了復(fù)數(shù)的共軛復(fù)數(shù)的定義,屬于基礎(chǔ)題.4、B【解析】
根據(jù)漸近線方程求得,再利用雙曲線定義即可求得.【詳解】由于,所以,又且,故選:B.【點(diǎn)睛】本題考查由漸近線方程求雙曲線方程,涉及雙曲線的定義,屬基礎(chǔ)題.5、C【解析】
設(shè)的最小正周期為,可得,則,再根據(jù)得,又,則可求出,進(jìn)而可得.【詳解】解:設(shè)的最小正周期為,因?yàn)?,所以,所以,所以,又,所以?dāng)時(shí),,,因?yàn)?,整理得,因?yàn)?,,,則所以.故選:C.【點(diǎn)睛】本題考查三角形函數(shù)的周期性和對(duì)稱性,考查學(xué)生分析能力和計(jì)算能力,是一道難度較大的題目.6、A【解析】
根據(jù)三視圖得出原幾何體的立體圖是一個(gè)三棱錐,將三棱錐補(bǔ)充成一個(gè)長(zhǎng)方體,此長(zhǎng)方體的外接球就是該三棱錐的外接球,由球的表面積公式計(jì)算可得選項(xiàng).【詳解】由三視圖可得,該幾何體是一個(gè)如圖所示的三棱錐,為三棱錐外接球的球心,此三棱錐的外接球也是此三棱錐所在的長(zhǎng)方體的外接球,所以為的中點(diǎn),設(shè)球半徑為,則,所以外接球的表面積,故選:A.【點(diǎn)睛】本題考查求幾何體的外接球的表面積,關(guān)鍵在于由幾何體的三視圖得出幾何體的立體圖,找出外接球的球心位置和半徑,屬于中檔題.7、C【解析】
由,化簡(jiǎn)得到的值,根據(jù)余弦定理和基本不等式,即可求解.【詳解】由,可得,可得,通分得,整理得,所以,因?yàn)闉槿切蔚淖畲蠼?,所以,又由余弦定理,?dāng)且僅當(dāng)時(shí),等號(hào)成立,所以,即,又由,所以的取值范圍是.故選:C.【點(diǎn)睛】本題主要考查了代數(shù)式的化簡(jiǎn),余弦定理,以及基本不等式的綜合應(yīng)用,試題難度較大,屬于中檔試題,著重考查了推理與運(yùn)算能力.8、D【解析】
解一元二次不等式化簡(jiǎn)集合,再由集合的交集運(yùn)算可得選項(xiàng).【詳解】因?yàn)榧?,故選:D.【點(diǎn)睛】本題考查集合的交集運(yùn)算,屬于基礎(chǔ)題.9、A【解析】
設(shè)坐標(biāo),根據(jù)向量坐標(biāo)運(yùn)算表示出,從而可利用表示出;由坐標(biāo)運(yùn)算表示出,代入整理可得所求的軌跡方程.【詳解】設(shè),,其中,,即關(guān)于軸對(duì)稱故選:【點(diǎn)睛】本題考查動(dòng)點(diǎn)軌跡方程的求解,涉及到平面向量的坐標(biāo)運(yùn)算、數(shù)量積運(yùn)算;關(guān)鍵是利用動(dòng)點(diǎn)坐標(biāo)表示出變量,根據(jù)平面向量數(shù)量積的坐標(biāo)運(yùn)算可整理得軌跡方程.10、B【解析】
由題意可得,且,故有①,再根據(jù),求得②,由①②可得的最大值,檢驗(yàn)的這個(gè)值滿足條件.【詳解】解:函數(shù),,為的零點(diǎn),為圖象的對(duì)稱軸,,且,、,,即為奇數(shù)①.在,單調(diào),,②.由①②可得的最大值為1.當(dāng)時(shí),由為圖象的對(duì)稱軸,可得,,故有,,滿足為的零點(diǎn),同時(shí)也滿足滿足在上單調(diào),故為的最大值,故選:B.【點(diǎn)睛】本題主要考查正弦函數(shù)的圖象的特征,正弦函數(shù)的周期性以及它的圖象的對(duì)稱性,屬于中檔題.11、B【解析】
根據(jù)焦距即可求得參數(shù),再根據(jù)點(diǎn)到直線的距離公式即可求得結(jié)果.【詳解】因?yàn)殡p曲線的焦距為,故可得,解得,不妨取;又焦點(diǎn),其中一條漸近線為,由點(diǎn)到直線的距離公式即可求的.故選:B.【點(diǎn)睛】本題考查由雙曲線的焦距求方程,以及雙曲線的幾何性質(zhì),屬綜合基礎(chǔ)題.12、C【解析】
分別假設(shè)甲乙丙丁說(shuō)的是真話,結(jié)合其他人的說(shuō)法,看是否只有一個(gè)說(shuō)的是真話,即可求得年紀(jì)最大者,即可求得答案.【詳解】①假設(shè)甲說(shuō)的是真話,則年紀(jì)最大的是甲,那么乙說(shuō)謊,丙也說(shuō)謊,而丁說(shuō)的是真話,而已知只有一個(gè)人說(shuō)的是真話,故甲說(shuō)的不是真話,年紀(jì)最大的不是甲;②假設(shè)乙說(shuō)的是真話,則年紀(jì)最大的是乙,那么甲說(shuō)謊,丙說(shuō)真話,丁也說(shuō)真話,而已知只有一個(gè)人說(shuō)的是真話,故乙說(shuō)謊,年紀(jì)最大的也不是乙;③假設(shè)丙說(shuō)的是真話,則年紀(jì)最大的是乙,所以乙說(shuō)真話,甲說(shuō)謊,丁說(shuō)的是真話,而已知只有一個(gè)人說(shuō)的是真話,故丙在說(shuō)謊,年紀(jì)最大的也不是乙;④假設(shè)丁說(shuō)的是真話,則年紀(jì)最大的不是丁,而已知只有一個(gè)人說(shuō)的是真話,那么甲也說(shuō)謊,說(shuō)明甲也不是年紀(jì)最大的,同時(shí)乙也說(shuō)謊,說(shuō)明乙也不是年紀(jì)最大的,年紀(jì)最大的只有一人,所以只有丙才是年紀(jì)最大的,故假設(shè)成立,年紀(jì)最大的是丙.綜上所述,年紀(jì)最大的是丙故選:C.【點(diǎn)睛】本題考查合情推理,解題時(shí)可從一種情形出發(fā),推理出矛盾的結(jié)論,說(shuō)明這種情形不會(huì)發(fā)生,考查了分析能力和推理能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
設(shè)正四面體的棱長(zhǎng)為,求出底面外接圓的半徑與高,代入體積公式求解.【詳解】解:設(shè)正四面體的棱長(zhǎng)為,則底面積為,底面外接圓的半徑為,高為.∴正四面體的體積,圓柱的體積.則.故答案為:.【點(diǎn)睛】本題主要考查多面體與旋轉(zhuǎn)體體積的求法,考查計(jì)算能力,屬于中檔題.14、【解析】
利用正弦定理邊化角可得,從而可得,進(jìn)而求解.【詳解】由,由正弦定理可得,即,整理可得,又因?yàn)?,所以,因?yàn)?,所以,故答案為:【點(diǎn)睛】本題主要考查了正弦定理解三角形、兩角和的正弦公式,屬于基礎(chǔ)題.15、2020【解析】
可對(duì)左右兩端同乘以得,依次寫(xiě)出,,,,累加可得,再由得,代入即可求解【詳解】左右兩端同乘以有,從而,,,,將以上式子累加得.由得.令,有.故答案為:2020【點(diǎn)睛】本題考查數(shù)列遞推式和累加法的應(yīng)用,屬于基礎(chǔ)題16、1【解析】
建系,設(shè),表示出點(diǎn)坐標(biāo),則,根據(jù)的范圍得出答案.【詳解】解:以為原點(diǎn)建立平面坐標(biāo)系如圖所示:則,,,,設(shè),則,,,,,,,顯然當(dāng)取得最大值4時(shí),取得最小值1.故答案為:1.【點(diǎn)睛】本題考查了平面向量的數(shù)量積運(yùn)算,坐標(biāo)運(yùn)算,屬于中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、【解析】試題分析:由柯西不等式得,所以試題解析:因?yàn)榫鶠檎龜?shù),且,所以.于是由均值不等式可知,當(dāng)且僅當(dāng)時(shí),上式等號(hào)成立.從而.故的最小值為.此時(shí).考點(diǎn):柯西不等式18、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)設(shè)等比數(shù)列的公比為,根據(jù)題中條件求出的值,結(jié)合等比數(shù)列的通項(xiàng)公式可得出數(shù)列的通項(xiàng)公式;(Ⅱ)求得,然后利用裂項(xiàng)相消法可求得.【詳解】(Ⅰ)設(shè)數(shù)列的公比為,由題意及,知.、、成等差數(shù)列成等差數(shù)列,,,即,解得或(舍去),.數(shù)列的通項(xiàng)公式為;(Ⅱ),.【點(diǎn)睛】本題考查等比數(shù)列通項(xiàng)的求解,同時(shí)也考查了裂項(xiàng)求和法,考查計(jì)算能力,屬于基礎(chǔ)題.19、(1),.(2)【解析】
(1)利用,代入可求;消參可得直角坐標(biāo)方程.(2)將的參數(shù)方程代入的直角坐標(biāo)方程,與有交點(diǎn),可得,解不等式即可求解.【詳解】(1)(2)將的參數(shù)方程代入的直角坐標(biāo)方程得:與有交點(diǎn),即【點(diǎn)睛】本題考查了極坐標(biāo)方程與普通方程的轉(zhuǎn)化、參數(shù)方程與普通方程的轉(zhuǎn)化、直線與圓的位置關(guān)系的判斷,屬于基礎(chǔ)題.20、(Ⅰ)見(jiàn)解析(Ⅱ)【解析】
(Ⅰ)求導(dǎo)得到,討論和兩種情況,得到答案.(Ⅱ)變換得到,設(shè),求,令,故在單調(diào)遞增,存在使得,,計(jì)算得到答案.【詳解】(Ⅰ)(),當(dāng)時(shí),在單調(diào)遞減,在單調(diào)遞增;當(dāng)時(shí),在單調(diào)遞增,在單調(diào)遞減.(Ⅱ)(),即,().令(),則,令,,故在單調(diào)遞增,注意到,,于是存在使得,可知在單調(diào)遞增,在單調(diào)遞減.∴.綜上知,.【點(diǎn)睛】本題考查了函數(shù)的單調(diào)性,恒成立問(wèn)題,意在考查學(xué)生對(duì)于導(dǎo)數(shù)知識(shí)的綜合應(yīng)用能力.21、(1)證明見(jiàn)解析;(2).【解析】
(1)令,求導(dǎo),可知單調(diào)遞增,且,,因而在上存在零點(diǎn),在此取得最小值,再證最小值大于零即可.(2)根據(jù)題意得到在點(diǎn)處的切線的方程①,再設(shè)直線與相切于點(diǎn),有
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二年級(jí)思想品德上冊(cè) 家鄉(xiāng)面貌新教案1 山東人民版
- 2024年大數(shù)據(jù)服務(wù)合同續(xù)簽
- 2024年商鋪買賣及后續(xù)經(jīng)營(yíng)權(quán)轉(zhuǎn)讓合同
- 2024互聯(lián)網(wǎng)公司與運(yùn)營(yíng)商關(guān)于網(wǎng)絡(luò)服務(wù)的協(xié)議
- 2024固體廢物處理與資源綜合利用合同
- 2024年學(xué)校廚師團(tuán)隊(duì)建設(shè)合同
- 2024年廣告投放合同:某品牌在短視頻平臺(tái)投放廣告
- 2024年商業(yè)空間木地板施工合同
- 2024年國(guó)際食品出口許可合同
- 2023年長(zhǎng)春醫(yī)學(xué)高等??茖W(xué)校招聘工作人員考試真題
- 安全駕駛培訓(xùn)
- GB/T 30595-2024建筑保溫用擠塑聚苯板(XPS)系統(tǒng)材料
- 山東濟(jì)南天橋區(qū)2024-2025學(xué)年八年級(jí)物理第一學(xué)期期中考試試題(含答案)
- 《中華人民共和國(guó)突發(fā)事件應(yīng)對(duì)法》知識(shí)培訓(xùn)
- 托班語(yǔ)言夏天課程設(shè)計(jì)
- 黑龍江省哈爾濱市第一二四中學(xué)2024-2025學(xué)年七年級(jí)上學(xué)期期中考試數(shù)學(xué)試卷(含答案)
- 湖北省武漢市洪山區(qū)2023-2024學(xué)年八年級(jí)上學(xué)期期中英語(yǔ)試題(無(wú)答案)
- 光伏項(xiàng)目施工總進(jìn)度計(jì)劃表(含三級(jí))
- 醫(yī)院培訓(xùn)課件:《健康教育 知-信-行》
- 球磨機(jī)安裝施工工法
- 家校合作落實(shí)雙減政策家長(zhǎng)會(huì)動(dòng)態(tài)PPT
評(píng)論
0/150
提交評(píng)論