版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.如圖,在平面直角坐標(biāo)系中,以為圓心作⊙,⊙與軸交于、,與軸交于點(diǎn),為⊙上不同于、的任意一點(diǎn),連接、,過點(diǎn)分別作于,于.設(shè)點(diǎn)的橫坐標(biāo)為,.當(dāng)點(diǎn)在⊙上順時(shí)針從點(diǎn)運(yùn)動(dòng)到點(diǎn)的過程中,下列圖象中能表示與的函數(shù)關(guān)系的部分圖象是()A. B. C. D.2.如圖,在平面直角坐標(biāo)系中,四邊形為菱形,,,,則對角線交點(diǎn)的坐標(biāo)為()A. B. C. D.3.下列大學(xué)?;諆?nèi)部圖案中可以看成由某一個(gè)基本圖形通過平移形成的是()A. B. C. D.4.一元二次方程x2﹣6x﹣1=0配方后可變形為()A. B.C. D.5.如圖,在中,,,,以點(diǎn)為圓心,長為半徑畫弧,交邊于點(diǎn),則陰影區(qū)域的面積為()A. B. C. D.6.下列說法正確的是()A.投擲一枚質(zhì)地均勻的硬幣次,正面向上的次數(shù)一定是次B.某種彩票的中獎(jiǎng)率是,說明每買張彩票,一定有張中獎(jiǎng)C.籃球隊(duì)員在罰球線上投籃一次,“投中”為隨機(jī)事件D.“任意畫一個(gè)三角形,其內(nèi)角和為”是隨機(jī)事件7.如圖,已知菱形OABC,OC在x軸上,AB交y軸于點(diǎn)D,點(diǎn)A在反比例函數(shù)上,點(diǎn)B在反比例函數(shù)上,且OD=2,則k的值為()A.3 B. C. D.8.下列方程中沒有實(shí)數(shù)根的是()A. B.C. D.9.若關(guān)于x的方程(m﹣2)x2+mx﹣1=0是一元二次方程,則m的取值范圍是()A.m≠2 B.m=2 C.m≥2 D.m≠010.如圖,路燈距離地面8米,身高1.6米的小明站在距離燈的底部(點(diǎn)0)20米的A處,則小明的影長為()米.A.4 B.5 C.6 D.711.在一個(gè)布袋中裝有紅、白兩種顏色的小球,它們除顏色外沒有任何其他區(qū)別.其中紅球若干,白球5個(gè),袋中的球已攪勻.若從袋中隨機(jī)取出1個(gè)球,取出紅球的可能性大,則紅球的個(gè)數(shù)是()A.4個(gè) B.5個(gè) C.不足4個(gè) D.6個(gè)或6個(gè)以上12.如圖所示的是太原市某公園“水上滑梯”的側(cè)面圖,其中段可看成是雙曲線的一部分,其中,矩形中有一個(gè)向上攀爬的梯子,米,入口,且米,出口點(diǎn)距水面的距離為米,則點(diǎn)之間的水平距離的長度為()A.米 B.米 C.米 D.米二、填空題(每題4分,共24分)13.已知二次函數(shù)y=(x-2)2+3,當(dāng)x_______________時(shí),y14.若代數(shù)式有意義,則的取值范圍是____________.15.甲、乙兩同學(xué)在最近的5次數(shù)學(xué)測驗(yàn)中數(shù)學(xué)成績的方差分別為甲,乙,則數(shù)學(xué)成績比較穩(wěn)定的同學(xué)是____________16.某小區(qū)2010年屋頂綠化面積為2000平方米,計(jì)劃2012年屋頂綠化面積要達(dá)到2880平方米.如果每年屋頂綠化面積的增長率相同,那么這個(gè)增長率是_________.17.一只跳蚤在第一象限及x軸、y軸上跳動(dòng),在第一秒鐘,它從原點(diǎn)跳動(dòng)到(0,1),然后接著按圖中箭頭所示方向跳動(dòng)[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳動(dòng)一個(gè)單位,那么第35秒時(shí)跳蚤所在位置的坐標(biāo)是__________18.在?ABCD中,∠ABC的平分線BF交對角線AC于點(diǎn)E,交AD于點(diǎn)F.若=,則的值為_____.三、解答題(共78分)19.(8分)如圖,在中,以為直徑的交于點(diǎn),連接,.(1)求證:是的切線;(2)若,求點(diǎn)到的距離.20.(8分)如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+2x+c與x軸交于A(﹣1,0)B(3,0)兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)D是該拋物線的頂點(diǎn).(1)求拋物線的解析式和直線AC的解析式;(2)請?jiān)趛軸上找一點(diǎn)M,使△BDM的周長最小,求出點(diǎn)M的坐標(biāo);(3)試探究:在拋物線上是否存在點(diǎn)P,使以點(diǎn)A,P,C為頂點(diǎn),AC為直角邊的三角形是直角三角形?若存在,請求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.21.(8分)如圖,已知拋物線y=x2+bx+c與x軸相交于A(﹣1,0),B(m,0)兩點(diǎn),與y軸相交于點(diǎn)C(0,﹣3),拋物線的頂點(diǎn)為D.(1)求B、D兩點(diǎn)的坐標(biāo);(2)若P是直線BC下方拋物線上任意一點(diǎn),過點(diǎn)P作PH⊥x軸于點(diǎn)H,與BC交于點(diǎn)M,設(shè)F為y軸一動(dòng)點(diǎn),當(dāng)線段PM長度最大時(shí),求PH+HF+CF的最小值;(3)在第(2)問中,當(dāng)PH+HF+CF取得最小值時(shí),將△OHF繞點(diǎn)O順時(shí)針旋轉(zhuǎn)60°后得到△OH′F′,過點(diǎn)F′作OF′的垂線與x軸交于點(diǎn)Q,點(diǎn)R為拋物線對稱軸上的一點(diǎn),在平面直角坐標(biāo)系中是否存在點(diǎn)S,使得點(diǎn)D、Q、R、S為頂點(diǎn)的四邊形為菱形,若存在,請直接寫出點(diǎn)S的坐標(biāo),若不存在,請說明理由.22.(10分)趙化鑫城某超市購進(jìn)了一批單價(jià)為16元的日用品,銷售一段時(shí)間后,為獲得更多的利潤,商場決定提高銷售的價(jià)格,經(jīng)試驗(yàn)發(fā)現(xiàn),若按每件20元銷售,每月能賣360件;若按每件25元銷售,每月能賣210件;若每月的銷售件數(shù)y(件)與價(jià)格x(元/件)滿足y=kx+b.(1)求出k與b的值,并指出x的取值范圍?(2)為了使每月獲得價(jià)格利潤1920元,商品價(jià)格應(yīng)定為多少元?(3)要使每月利潤最大,商品價(jià)格又應(yīng)定為多少?最大利潤是多少?23.(10分)如圖,二次函數(shù)的圖象與軸相交于、兩點(diǎn),與軸相交于點(diǎn),點(diǎn)、是二次函數(shù)圖象上的一對對稱點(diǎn),一次函數(shù)的圖象過點(diǎn)、.(1)求二次函數(shù)的解析式和點(diǎn)坐標(biāo).(2)根據(jù)圖象直接寫出使一次函數(shù)值小于二次函數(shù)值的的取值范圍.24.(10分)“低碳生活,綠色出行”,自行車正逐漸成為人們喜愛的交通工具.某運(yùn)動(dòng)商城的自行車銷售量自年起逐月增加,據(jù)統(tǒng)計(jì)該商城月份銷售自行車輛,月份銷售了輛.(1)求這個(gè)運(yùn)動(dòng)商城這兩個(gè)月的月平均增長率是多少?(2)若該商城前個(gè)月的自行車銷量的月平均增長率相同,問該商城月份賣出多少輛自行車?25.(12分)如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=mx的圖象交于A(1,4),B(4,(1)求反比例函數(shù)和一次函數(shù)的解析式;(2)直接寫出當(dāng)x>0時(shí),kx+b<(3)點(diǎn)P是x軸上的一動(dòng)點(diǎn),試確定點(diǎn)P并求出它的坐標(biāo),使PA+PB最?。?6.經(jīng)過校園某路口的行人,可能左轉(zhuǎn),也可能直行或右轉(zhuǎn).假設(shè)這三種可能性相同,現(xiàn)有小明和小亮兩人經(jīng)過該路口,請用列表法或畫樹狀圖法,求兩人之中至少有一人直行的概率.
參考答案一、選擇題(每題4分,共48分)1、A【分析】由題意,連接PC、EF,利用勾股定理求出,然后得到AB的長度,由垂徑定理可得,點(diǎn)E是AQ中點(diǎn),點(diǎn)F是BQ的中點(diǎn),則EF是△QAB的中位線,即為定值,由,即可得到答案.【詳解】解:如圖,連接PC,EF,則∵點(diǎn)P為(3,0),點(diǎn)C為(0,2),∴,∴半徑,∴;∵于,于,∴點(diǎn)E是AQ中點(diǎn),點(diǎn)F是BQ的中點(diǎn),∴EF是△QAB的中位線,∴為定值;∵AB為直徑,則∠AQB=90°,∴四邊形PFQE是矩形,∴,為定值;∴當(dāng)點(diǎn)在⊙上順時(shí)針從點(diǎn)運(yùn)動(dòng)到點(diǎn)的過程中,y的值不變;故選:A.【點(diǎn)睛】本題考查了圓的性質(zhì),垂徑定理,矩形的判定和性質(zhì),勾股定理,以及三角形的中位線定理,正確作出輔助線,根據(jù)所學(xué)性質(zhì)進(jìn)行求解,正確找到是解題的關(guān)鍵.2、D【分析】過點(diǎn)作軸于點(diǎn),由直角三角形的性質(zhì)求出長和長即可.【詳解】解:過點(diǎn)作軸于點(diǎn),∵四邊形為菱形,,∴,OB⊥AC,,∵,∴,∴,∴,,∴,∴.故選D.【點(diǎn)睛】本題考查了菱形的性質(zhì)、勾股定理及含30°直角三角形的性質(zhì),正確作出輔助線是解題的關(guān)鍵.3、C【分析】由平移的性質(zhì),分別進(jìn)行判斷,即可得到答案.【詳解】解:由平移的性質(zhì)可知,C選項(xiàng)的圖案是通過平移得到的;A、B、D中的圖案不是平移得到的;故選:C.【點(diǎn)睛】本題考查了平移的性質(zhì),解題的關(guān)鍵是掌握圖案的平移進(jìn)行解題.4、B【分析】根據(jù)配方法即可求出答案.【詳解】解:∵x2﹣6x﹣1=0,∴x2﹣6x=1,∴(x﹣3)2=10,故選B.【點(diǎn)睛】此題主要考查一元二次方程的配方法,解題的關(guān)鍵是熟知配方法的運(yùn)用.5、C【分析】根據(jù)直角三角形的性質(zhì)得到AC=2,BC=2,∠B=60,根據(jù)扇形和三角形的面積公式即可得到結(jié)論.【詳解】∵在Rt△ABC中,∠ACB=90,∠A=30,AB=4,∴BC=AB=2,AC=,∠B=60,∴陰影部分的面積=S△ACB?S扇形BCD=×2×2-=,故選:C.【點(diǎn)睛】本題考查了扇形面積的計(jì)算,含30角的直角三角形的性質(zhì),正確的識(shí)別圖形是解題的關(guān)鍵6、C【分析】根據(jù)題意直接利用概率的意義以及三角形內(nèi)角和定理分別分析得出答案.【詳解】解:A、投擲一枚質(zhì)地均勻的硬幣100次,正面向上的次數(shù)一定是50次,錯(cuò)誤;B、某種彩票的中獎(jiǎng)率是,說明每買100張彩票,不一定有1張中獎(jiǎng),故此選項(xiàng)錯(cuò)誤;C、“籃球隊(duì)員在罰球線上投籃一次,投中”為隨機(jī)事件,正確;D、“任意畫一個(gè)三角形,其內(nèi)角和為360°”是不可能事件,故此選項(xiàng)錯(cuò)誤.故選:C.【點(diǎn)睛】本題主要考查概率的意義,熟練并正確掌握概率的意義是解題關(guān)鍵.7、B【分析】由OD=,則點(diǎn)A、B的縱坐標(biāo)為,得到A(,),B(,),求得AB=AO=,AD=,根據(jù)勾股定理即可得到結(jié)論.【詳解】解:∵四邊形OABC是菱形,∴AB∥OC,AB=AO,∵OD=,∴點(diǎn)A、B的縱坐標(biāo)為,∴A(,),B(,),∴AB=,AD=,∴AO=,在Rt△AOD中,由勾股定理,得,∴,解得:;故選:B.【點(diǎn)睛】本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,菱形的性質(zhì),勾股定理,正確的識(shí)別圖形是解題的關(guān)鍵.8、D【分析】分別計(jì)算出判別式△=b2?4ac的值,然后根據(jù)判別式的意義分別判斷即可.【詳解】解:A、△==5>0,方程有兩個(gè)不相等的實(shí)數(shù)根;B、△=32?4×1×2=1>0,方程有兩個(gè)不相等的實(shí)數(shù)根;C、△=112?4×2019×(?20)=161641>0,方程有兩個(gè)不相等的實(shí)數(shù)根;D、△=12?4×1×2=?7<0,方程沒有實(shí)數(shù)根.故選:D.【點(diǎn)睛】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2?4ac的意義,當(dāng)△>0,方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)△=0,方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)△<0,方程沒有實(shí)數(shù)根.9、A【解析】解:∵關(guān)于x的方程(m﹣1)x1+mx﹣1=0是一元二次方程,∴m-1≠0,解得:m≠1.故選A.10、B【分析】直接利用相似三角形的性質(zhì)得出,故,進(jìn)而得出AM的長即可得出答案.【詳解】解:由題意可得:OC∥AB,則△MBA∽△MCO,∴,即解得:AM=1.故選:B.【點(diǎn)睛】此題主要考查了相似三角形的應(yīng)用,根據(jù)題意得出△MBA∽△MCO是解題關(guān)鍵.11、D【解析】由取出紅球的可能性大知紅球的個(gè)數(shù)比白球個(gè)數(shù)多,據(jù)此可得答案.【詳解】解:∵袋子中白球有5個(gè),且從袋中隨機(jī)取出1個(gè)球,取出紅球的可能性大,∴紅球的個(gè)數(shù)比白球個(gè)數(shù)多,∴紅球個(gè)數(shù)滿足6個(gè)或6個(gè)以上,故選:D.【點(diǎn)睛】本題主要考查可能性大小,只要在總情況數(shù)目相同的情況下,比較其包含的情況總數(shù)即可.12、D【分析】根據(jù)題意B、C所在的雙曲線為反比例函數(shù),B點(diǎn)的坐標(biāo)已知為B(2,5),代入即可求出反比例函數(shù)的解析式:y=,C(x,1)代入y=中,求出C點(diǎn)橫坐標(biāo)為10,可以得出DE=OD-OE即可求出答案.【詳解】解:設(shè)B、C所在的反比例函數(shù)為y=B(xB,yB)∴xB=OE=AB=2yB=EB=OA=5代入反比例函數(shù)式中5=得到k=10∴y=∵C(xC,yC)yC=CD=1代入y=中∴1=xC=10∴DE=OD-OE=xC-xB=10-2=8故選D【點(diǎn)睛】此題主要考查了反比例函數(shù)的定義,根據(jù)已知參數(shù)求出反比例函數(shù)解析式是解題的關(guān)鍵.二、填空題(每題4分,共24分)13、<2(或x≤2).【解析】試題分析:對于開口向上的二次函數(shù),在對稱軸的左邊,y隨x的增大而減小,在對稱軸的右邊,y隨x的增大而增大.根據(jù)性質(zhì)可得:當(dāng)x<2時(shí),y隨x的增大而減小.考點(diǎn):二次函數(shù)的性質(zhì)14、x≥1且x≠1【分析】根據(jù)二次根式的性質(zhì)和分式的意義,被開方數(shù)大于等于0,分母不等于0,即可求解.【詳解】解:根據(jù)二次根式有意義,分式有意義得:x-1≥0且x-1≠0,
解得:x≥1且x≠1.
故答案為:x≥1且x≠1.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)為:分式有意義,分母不為0;二次根式的被開方數(shù)是非負(fù)數(shù),難度不大.15、甲【分析】根據(jù)方差的意義即方差是用來衡量一組數(shù)據(jù)波動(dòng)大小的量,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動(dòng)越小,數(shù)據(jù)越穩(wěn)定進(jìn)行分析即可.【詳解】解:由于甲<乙,則數(shù)學(xué)成績較穩(wěn)定的同學(xué)是甲.故答案為:甲.【點(diǎn)睛】本題考查方差的意義.注意掌握方差是用來衡量一組數(shù)據(jù)波動(dòng)大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動(dòng)越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動(dòng)越小,數(shù)據(jù)越穩(wěn)定.16、20%【解析】分析:本題需先設(shè)出這個(gè)增長率是x,再根據(jù)已知條件找出等量關(guān)系列出方程,求出x的值,即可得出答案.解答:解:設(shè)這個(gè)增長率是x,根據(jù)題意得:2000×(1+x)2=2880解得:x1=20%,x2=-220%(舍去)故答案為20%.17、(5,0)【詳解】解:跳蚤運(yùn)動(dòng)的速度是每秒運(yùn)動(dòng)一個(gè)單位長度,(0,0)→(0,1)→(1,1)→(1,0)用的秒數(shù)分別是1秒,2秒,3秒,到(2,0)用4秒,到(2,2)用6秒,到(0,2)用8秒,到(0,3)用9秒,到(3,3)用12秒,到(4,0)用16秒,依此類推,到(5,0)用35秒.故第35秒時(shí)跳蚤所在位置的坐標(biāo)是(5,0).18、.【分析】根據(jù)平行四邊形的性質(zhì)和角平分線的性質(zhì),得出邊的關(guān)系,進(jìn)而利用相似三角形的性質(zhì)求解.【詳解】解:∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠AFB=∠EBC,∵BF是∠ABC的角平分線,∴∠EBC=∠ABE=∠AFB,∴AB=AF,∴,∵AD∥BC,∴△AFE∽△CBE,∴,∴;故答案為:.【點(diǎn)睛】此題主要考查相似三角形的判定與性質(zhì),解題的關(guān)鍵是熟知平行四邊形的性質(zhì)、角平分線的性質(zhì)及相似三角形的判定定理.三、解答題(共78分)19、(1)見解析;(2)【分析】(1)由是的直徑可得,然后利用直角三角形的性質(zhì)和角的等量代換可得,進(jìn)而可得結(jié)論;(2)易證,于是可利用相似三角形的性質(zhì)求出AB的長,進(jìn)而可得AD的長,過作于,則,于是△OHC∽△ADC,然后再利用相似三角形的性質(zhì)可求得OH的長,問題即得解決.【詳解】(1)證明:∵是的直徑,∴,∴,∵,∴,即,∴是的切線;(2)解:∵,,∴,∴,∴,解得:,∴,過作于,∵,∴,∴△OHC∽△ADC,∴,∴,∴點(diǎn)到的距離是.【點(diǎn)睛】本題考查了圓周角定理的推論、圓的切線的判定、相似三角形的判定和性質(zhì)以及點(diǎn)到直線的距離等知識(shí),屬于常考題型,熟練掌握相似三角形的判定和性質(zhì)是解本題的關(guān)鍵.20、(1)拋物線解析式為y=﹣x2+2x+3;直線AC的解析式為y=3x+3;(2)點(diǎn)M的坐標(biāo)為(0,3);(3)符合條件的點(diǎn)P的坐標(biāo)為(,)或(,﹣),【解析】分析:(1)設(shè)交點(diǎn)式y(tǒng)=a(x+1)(x-3),展開得到-2a=2,然后求出a即可得到拋物線解析式;再確定C(0,3),然后利用待定系數(shù)法求直線AC的解析式;(2)利用二次函數(shù)的性質(zhì)確定D的坐標(biāo)為(1,4),作B點(diǎn)關(guān)于y軸的對稱點(diǎn)B′,連接DB′交y軸于M,如圖1,則B′(-3,0),利用兩點(diǎn)之間線段最短可判斷此時(shí)MB+MD的值最小,則此時(shí)△BDM的周長最小,然后求出直線DB′的解析式即可得到點(diǎn)M的坐標(biāo);(3)過點(diǎn)C作AC的垂線交拋物線于另一點(diǎn)P,如圖2,利用兩直線垂直一次項(xiàng)系數(shù)互為負(fù)倒數(shù)設(shè)直線PC的解析式為y=-x+b,把C點(diǎn)坐標(biāo)代入求出b得到直線PC的解析式為y=-x+3,再解方程組得此時(shí)P點(diǎn)坐標(biāo);當(dāng)過點(diǎn)A作AC的垂線交拋物線于另一點(diǎn)P時(shí),利用同樣的方法可求出此時(shí)P點(diǎn)坐標(biāo).詳解:(1)設(shè)拋物線解析式為y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴拋物線解析式為y=﹣x2+2x+3;當(dāng)x=0時(shí),y=﹣x2+2x+3=3,則C(0,3),設(shè)直線AC的解析式為y=px+q,把A(﹣1,0),C(0,3)代入得,解得,∴直線AC的解析式為y=3x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴頂點(diǎn)D的坐標(biāo)為(1,4),作B點(diǎn)關(guān)于y軸的對稱點(diǎn)B′,連接DB′交y軸于M,如圖1,則B′(﹣3,0),∵M(jìn)B=MB′,∴MB+MD=MB′+MD=DB′,此時(shí)MB+MD的值最小,而BD的值不變,∴此時(shí)△BDM的周長最小,易得直線DB′的解析式為y=x+3,當(dāng)x=0時(shí),y=x+3=3,∴點(diǎn)M的坐標(biāo)為(0,3);(3)存在.過點(diǎn)C作AC的垂線交拋物線于另一點(diǎn)P,如圖2,∵直線AC的解析式為y=3x+3,∴直線PC的解析式可設(shè)為y=﹣x+b,把C(0,3)代入得b=3,∴直線PC的解析式為y=﹣x+3,解方程組,解得或,則此時(shí)P點(diǎn)坐標(biāo)為(,);過點(diǎn)A作AC的垂線交拋物線于另一點(diǎn)P,直線PC的解析式可設(shè)為y=﹣x+b,把A(﹣1,0)代入得+b=0,解得b=﹣,∴直線PC的解析式為y=﹣x﹣,解方程組,解得或,則此時(shí)P點(diǎn)坐標(biāo)為(,﹣).綜上所述,符合條件的點(diǎn)P的坐標(biāo)為(,)或(,﹣).點(diǎn)睛:本題考查了二次函數(shù)的綜合題:熟練掌握二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征和二次函數(shù)的性質(zhì);會(huì)利用待定系數(shù)法求函數(shù)解析式,理解兩直線垂直時(shí)一次項(xiàng)系數(shù)的關(guān)系,通過解方程組求把兩函數(shù)的交點(diǎn)坐標(biāo);理解坐標(biāo)與圖形性質(zhì),會(huì)運(yùn)用兩點(diǎn)之間線段最短解決最短路徑問題;會(huì)運(yùn)用分類討論的思想解決數(shù)學(xué)問題.21、(1)B(3,0),D(1,﹣4);(2);(3)存在,S的坐標(biāo)為(3,0)或(﹣1,﹣2)或(﹣1,2)或(﹣1,﹣)【分析】(1)將A(﹣1,0)、C(0,﹣3)代入y=x2+bx+c,待定系數(shù)法即可求得拋物線的解析式,再配方即可得到頂點(diǎn)D的坐標(biāo),根據(jù)y=0,可得點(diǎn)B的坐標(biāo);(2)根據(jù)BC的解析式和拋物線的解析式,設(shè)P(x,x2﹣2x﹣3),則M(x,x﹣3),表示PM的長,根據(jù)二次函數(shù)的最值可得:當(dāng)x=時(shí),PM的最大值,此時(shí)P(,﹣),進(jìn)而確定F的位置:在x軸的負(fù)半軸了取一點(diǎn)K,使∠OCK=30°,過F作FN⊥CK于N,當(dāng)N、F、H三點(diǎn)共線時(shí),如圖2,F(xiàn)H+FN最小,即PH+HF+CF的值最小,根據(jù)含30°角的直角三角形的性質(zhì),即可得結(jié)論;(3)先根據(jù)旋轉(zhuǎn)確定Q的位置,與點(diǎn)A重合,根據(jù)菱形的判定畫圖,分4種情況討論:分別以DQ為邊和對角線進(jìn)行討論,根據(jù)菱形的邊長相等和平移的性質(zhì),可得點(diǎn)S的坐標(biāo).【詳解】(1)把A(﹣1,0),點(diǎn)C(0,﹣3)代入拋物線y=x2+bx+c,得:,解得:,∴拋物線的解析式為:y=x2﹣2x﹣3=(x﹣1)2﹣4,∴頂點(diǎn)D(1,﹣4),當(dāng)y=0時(shí),x2﹣2x﹣3=0,解得:x=3或﹣1,∴B(3,0);(2)∵B(3,0),C(0,﹣3),設(shè)直線BC的解析式為:y=kx+b,則,解得:,∴直線BC的解析式為:y=x﹣3,設(shè)P(x,x2﹣2x﹣3),則M(x,x﹣3),∴PM=(x﹣3)﹣(x2﹣2x﹣3)=﹣x2+3x=﹣(x﹣)2+,當(dāng)x=時(shí),PM有最大值,此時(shí)P(,﹣),在x軸的負(fù)半軸了取一點(diǎn)K,使∠OCK=30°,過F作FN⊥CK于N,∴FN=CF,當(dāng)N、F、H三點(diǎn)共線時(shí),如圖1,F(xiàn)H+FN最小,即PH+HF+CF的值最小,∵Rt△OCK中,∠OCK=30°,OC=3,∴OK=,∵OH=,∴KH=+,∵Rt△KNH中,∠KHN=30°,∴KN=KH=,∴NH=KN=,∴PH+HF+CF的最小值=PH+NH==;(3)Rt△OFH中,∠OHF=30°,OH=,∴OF=OF'=,由旋轉(zhuǎn)得:∠FOF'=60°∴∠QOF'=30°,∴在Rt△QF'O中,QF'=OF'÷=÷=,OQ=2QF'=2×=1,∴Q與A重合,即Q(﹣1,0)分4種情況:①如圖2,以QD為邊時(shí),由菱形和拋物線的對稱性可得S(3,0);②如圖3,以QD為邊時(shí),由勾股定理得:AD=,∵四邊形DQSR是菱形,∴QS=AD=2,QS∥DR,∴S(﹣1,﹣2);③如圖4,同理可得:S(﹣1,2);④如圖5,作AD的中垂線,交對稱軸于R,可得菱形QSDR,∵A(﹣1,0),D(1,﹣4),∴AD的中點(diǎn)N的坐標(biāo)為(0,﹣2),且AD=2,∴DN=,cos∠ADR=,∴DR=,∴QS=DR=,∴S(﹣1,﹣);綜上,S的坐標(biāo)為(3,0)或(﹣1,﹣2)或(﹣1,2)或(﹣1,﹣).【點(diǎn)睛】本題主要考查二次函數(shù)和幾何圖形的綜合,添加合適的輔助線構(gòu)造含30°角的直角三角形,利用菱形的判定定理,進(jìn)行分類討論,是解題的關(guān)鍵.22、(1)k=﹣30,b=960,x取值范圍為16≤x≤32;(2)商品的定價(jià)為24元;(3)商品價(jià)格應(yīng)定為24元,最大利潤是1元.【分析】(1)根據(jù)待定系數(shù)法求解即可;根據(jù)單價(jià)不低于進(jìn)價(jià)(16元)和銷售件數(shù)y≥0可得關(guān)于x的不等式組,解不等式組即得x的取值范圍;(2)根據(jù)每件的利潤×銷售量=1,可得關(guān)于x的方程,解方程即可求出結(jié)果;(3)設(shè)每月利潤為W元,根據(jù)W=每件的利潤×銷售量可得W與x的函數(shù)關(guān)系式,然后根據(jù)二次函數(shù)的性質(zhì)解答即可.【詳解】解:(1)由題意,得:,解得:,∴y=﹣30x+960,∵y≥0,∴﹣30x+960≥0,解得:x≤32,又∵x≥16,∴x的取值范圍是:16≤x≤32;答:k=﹣30,b=960,x取值范圍為:16≤x≤32;(2)由題意,得:(﹣30x+960)(x﹣16)=1,解得:x1=x2=24,答:商品的定價(jià)為24元;(3)設(shè)每月利潤為W元,由題意,得:W=(﹣30x+960)(x﹣16)=﹣30(x﹣24)2+1.∵﹣30<0,∴當(dāng)x=24時(shí),W最大=1.答:商品價(jià)格應(yīng)定為24元,最大利潤是1元.【點(diǎn)睛】本題是方程和函數(shù)的應(yīng)用題,主要考查了待定系數(shù)法求一次函數(shù)的解析式、一元二次方程的解法和二次函數(shù)的性質(zhì)等知識(shí),屬于??碱}型,熟練掌握一元二次方程的解法和二次函數(shù)的性質(zhì)是解題的關(guān)鍵.23、(1)y=﹣x2﹣2x+3,(﹣2,3);(2)﹣2<x<1【分析】(1)根據(jù)C、D關(guān)于對稱軸x=-1對稱,C(0,3),可以求出點(diǎn)D坐標(biāo).設(shè)二次函數(shù)解析式為y=a(x+3)(x-1),把C(0,3)代入得到求出a即可.
(2)一次函數(shù)值小于二次函數(shù)值,在圖象上一次函數(shù)的圖象在二次函數(shù)的圖象下面即可寫出x的范圍.【詳解】解:(1)設(shè)該拋物線的解析式為y=a(x+3)(x﹣1)(a≠0),把C(0,3)代入,得:3=a(0+3)(0﹣1),解,得a=﹣1,所以該拋物線的解析式為y=﹣(x+3)(x﹣1)=﹣x2﹣2x+3,即y=﹣x2﹣2x+3;∵拋物線的對稱軸是x=﹣1,而,C、D關(guān)于直線x=﹣1對稱,∴D(﹣2,3);(2)根據(jù)圖象知,一次函數(shù)值小于二次函數(shù)值的x的取值范圍是:﹣2<x<1【點(diǎn)睛】本題考查二次函數(shù)綜合題,主要考查了二次函數(shù)的對稱性,以及待定系數(shù)法求二次函數(shù)解析式和利用自變量的取值范圍確定函數(shù)值大小關(guān)系.24、(1)該商城2、3月份的月平均增長率為25%;(2)商城4月份賣出125輛自行車【分析】(1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版第三方抵押擔(dān)保資產(chǎn)管理協(xié)議2篇
- 挖掘機(jī)攪拌機(jī)租賃合同-2025年度6篇
- 2024年空調(diào)設(shè)備維修與安裝服務(wù)合同
- 專業(yè)代理服務(wù)協(xié)議模板2024年版版B版
- Unit 2 Hobbies 第四課時(shí):pronunciation 說課稿 2024-2025學(xué)年人教版(2024)七年級(jí)英語上冊
- 二零二五年度煤礦安全生產(chǎn)技術(shù)研發(fā)承包合同4篇
- 二零二五版抵押借款合同與借款合同信用評級(jí)與風(fēng)險(xiǎn)監(jiān)控3篇
- 2025年物業(yè)保潔服務(wù)外包與客戶滿意度提升合同2篇
- 2025年度航空航天技術(shù)成果轉(zhuǎn)讓協(xié)議4篇
- 2025年度房產(chǎn)買賣合同資金監(jiān)管與支付流程規(guī)范3篇
- 廣東省佛山市2025屆高三高中教學(xué)質(zhì)量檢測 (一)化學(xué)試題(含答案)
- 《國有控股上市公司高管薪酬的管控研究》
- 餐飲業(yè)環(huán)境保護(hù)管理方案
- 人教版【初中數(shù)學(xué)】知識(shí)點(diǎn)總結(jié)-全面+九年級(jí)上冊數(shù)學(xué)全冊教案
- 食品安全分享
- 礦山機(jī)械設(shè)備安全管理制度
- 計(jì)算機(jī)等級(jí)考試二級(jí)WPS Office高級(jí)應(yīng)用與設(shè)計(jì)試題及答案指導(dǎo)(2025年)
- 造價(jià)框架協(xié)議合同范例
- 糖尿病肢端壞疽
- 心衰患者的個(gè)案護(hù)理
- 醫(yī)護(hù)人員禮儀培訓(xùn)
評論
0/150
提交評論