廣西桂平市2022年數(shù)學(xué)九年級第一學(xué)期期末經(jīng)典試題含解析_第1頁
廣西桂平市2022年數(shù)學(xué)九年級第一學(xué)期期末經(jīng)典試題含解析_第2頁
廣西桂平市2022年數(shù)學(xué)九年級第一學(xué)期期末經(jīng)典試題含解析_第3頁
廣西桂平市2022年數(shù)學(xué)九年級第一學(xué)期期末經(jīng)典試題含解析_第4頁
廣西桂平市2022年數(shù)學(xué)九年級第一學(xué)期期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每題4分,共48分)1.下列是一元二次方程有()①;②;③;④.A. B. C. D.2.如圖,點A、點B是函數(shù)y=的圖象上關(guān)于坐標(biāo)原點對稱的任意兩點,BC∥x軸,AC∥y軸,△ABC的面積是4,則k的值是()A.-2 B.±4 C.2 D.±23.x1,x2是關(guān)于x的一元二次方程x2-mx+m-2=0的兩個實數(shù)根,是否存在實數(shù)m使=0成立?則正確的結(jié)論是()A.m=0時成立 B.m=2時成立 C.m=0或2時成立 D.不存在4.若關(guān)于x的一元二次方程x2﹣2x+m=0沒有實數(shù)根,則實數(shù)m的取值是()A.m<1 B.m>﹣1 C.m>1 D.m<﹣15.函數(shù)y=與y=-kx2+k(k≠0)在同一直角坐標(biāo)系中的圖象可能是(

)A. B. C. D.6.一元二次方程的根的情況為()A.有兩個相等的實數(shù)根 B.有兩個不相等的實數(shù)根C.只有一個實數(shù)根 D.沒有實數(shù)根7.如圖所示,某賓館大廳要鋪圓環(huán)形的地毯,工人師傅只測量了與小圓相切的大圓的弦AB的長,就計算出了圓環(huán)的面積,若測量得AB的長為20米,則圓環(huán)的面積為()A.10平方米 B.10π平方米 C.100平方米 D.100π平方米8.下列事件中,是必然事件的是()A.從裝有10個黑球的不透明袋子中摸出一個球,恰好是紅球B.拋擲一枚普通正方體骰子,所得點數(shù)小于7C.拋擲一枚一元硬幣,正面朝上D.從一副沒有大小王的撲克牌中抽出一張,恰好是方塊9.某班同學(xué)畢業(yè)時都將自己的照片向全班其他同學(xué)各送一張表示留念,全班共送1035張照片,如果全班有x名同學(xué),根據(jù)題意,列出方程為()A.x(x+1)=1035 B.x(x-1)=1035 C.x(x+1)=1035 D.x(x-1)=103510.若關(guān)于x的一元二次方程有實數(shù)根,則k的取值范圍是()A. B. C.且 D.且11.如圖,分別以等邊三角形ABC的三個頂點為圓心,以邊長為半徑畫弧,得到的封閉圖形是萊洛三角形,若AB=2,則萊洛三角形的面積(即陰影部分面積)為()A. B. C.2 D.212.如圖,在?ABCD中,F(xiàn)為BC的中點,延長AD至E,使DE:AD=1:3,連接FF交DC于點G,則DG:CG=()A.1:2 B.2:3 C.3:4 D.2:5二、填空題(每題4分,共24分)13.在Rt△ABC中,∠C=90°,如果AC=9,cosA=,那么AB=________.14.△ABC中,∠A=90°,AB=AC,以A為圓心的圓切BC于點D,若BC=12cm,則⊙A的半徑為_____cm.15.如圖,RtΔABC繞直角頂點C順時針旋轉(zhuǎn)90°,得到ΔDEC,連接AD,若∠BAC=25°,則∠ADE=_________16.四邊形ABCD內(nèi)接于⊙O,∠A=125°,則∠C的度數(shù)為_____°.17.如圖,△ABC是等腰直角三角形,BC是斜邊,將△ABP繞點A逆時針旋轉(zhuǎn)后,能與△ACP′重合,如果AP=3,那么PP′=______.18.已知A(﹣4,y1),B(﹣1,y2)是反比例函數(shù)y=-(k>0)圖象上的兩個點,則y1與y2的大小關(guān)系為_____.三、解答題(共78分)19.(8分)(1)x2﹣2x﹣3=0(2)cos45°?tan45°+tan30°﹣2cos60°2sin45°20.(8分)如圖,在鈍角中,點為上的一個動點,連接,將射線繞點逆時針旋轉(zhuǎn),交線段于點.已知∠C=30°,CA=2cm,BC=7cm,設(shè)B,P兩點間的距離為xcm,A,D兩點間的距離ycm.小牧根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)隨自變量的變化而變化的規(guī)律進(jìn)行了探究.下面是小牧探究的過程,請補充完整:(1)根據(jù)圖形.可以判斷此函數(shù)自變量X的取值范圍是;(2)通過取點、畫圖、測量,得到了與的幾組值,如下表:0.511.021.913.4734.164.473.973.222.421.66a2.022.50通過測量??梢缘玫絘的值為;(3)在平而直角坐標(biāo)系xOy中.描出上表中以各對對應(yīng)值為坐標(biāo)的點,畫出該函數(shù)的圖象;(4)結(jié)合畫出的函數(shù)圖象,解決問題:當(dāng)AD=3.5cm時,BP的長度約為cm.21.(8分)已知一個二次函數(shù)圖象上部分點的橫坐標(biāo)與縱坐標(biāo)的對應(yīng)值如下表所示:............(1)求這個二次函數(shù)的表達(dá)式;(2)在給定的平面直角坐標(biāo)系中畫出這個二次函數(shù)的圖象;(3)結(jié)合圖像,直接寫出當(dāng)時,的取值范圍.22.(10分)已知:如圖,在半徑為的中,、是兩條直徑,為的中點,的延長線交于點,且,連接。.(1)求證:;(2)求的長.23.(10分)在△ABC中,∠C=90°.(1)已知∠A=30°,BC=2,求AC、AB的長;(2)己知tanA=,AB=6,求AC、BC的長.24.(10分)如圖,拋物線經(jīng)過A(﹣1,0),B(3,0)兩點,交y軸于點C,點D為拋物線的頂點,連接BD,點H為BD的中點.請解答下列問題:(1)求拋物線的解析式及頂點D的坐標(biāo);(2)在y軸上找一點P,使PD+PH的值最小,則PD+PH的最小值為25.(12分)如圖1,拋物線與x軸交于A,B兩點(點A位于點B的左側(cè)),與y軸負(fù)半軸交于點C,若AB=1.(1)求拋物線的解析式;(2)如圖2,E是第三象限內(nèi)拋物線上的動點,過點E作EF∥AC交拋物線于點F,過E作EG⊥x軸交AC于點M,過F作FH⊥x軸交AC于點N,當(dāng)四邊形EMNF的周長最大值時,求點E的橫坐標(biāo);(3)在x軸下方的拋物線上是否存在一點Q,使得以Q、C、B、O為頂點的四邊形被對角線分成面積相等的兩部分?如果存在,求點Q的坐標(biāo);如果不存在,請說明理由.26.如圖,小明同學(xué)用自制的直角三角形紙板DEF測量樹的高度AB,他調(diào)整自己的位置,設(shè)法使斜邊DF保持水平,并且邊DE與點B在同一直線上.已知紙板的兩條直角邊DE=40cm,EF=20cm,測得邊DF離地面的高度AC=1.5m,CD=10m,求樹高AB.

參考答案一、選擇題(每題4分,共48分)1、A【解析】根據(jù)一元二次方程的定義:含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式是一元二次方程.然后對每個方程作出準(zhǔn)確的判斷.【詳解】解:①符合一元二次方程的定義,故正確;②方程二次項系數(shù)可能為0,故錯誤;③整理后不含二次項,故錯誤;④不是整式,故錯誤,故選:A.【點睛】本題考查的是一元二次方程的定義,根據(jù)定義對每個方程進(jìn)行分析,然后作出準(zhǔn)確的判斷.2、C【詳解】解:∵反比例函數(shù)的圖象在一、三象限,∴k>0,∵BC∥x軸,AC∥y軸,∴S△AOD=S△BOE=k,∵反比例函數(shù)及正比例函數(shù)的圖象關(guān)于原點對稱,∴A、B兩點關(guān)于原點對稱,∴S矩形OECD=1△AOD=k,∴S△ABC=S△AOD+S△BOE+S矩形OECD=1k=4,解得k=1.故選C.【點睛】本題考查反比例函數(shù)的性質(zhì).3、A【解析】∵x1,x2是關(guān)于x的一元二次方程x2-bx+b-2=0的兩個實數(shù)根∴Δ=(b-2)2+4>0x1+x2=b,x1×x2=b-2∴使+=0,則故滿足條件的b的值為0故選A.4、C【解析】試題解析:關(guān)于的一元二次方程沒有實數(shù)根,,解得:故選C.5、B【分析】先由反比例函數(shù)的圖象得到字母系數(shù)的正負(fù),再與二次函數(shù)的圖象相比較看是否一致,由此即可解答.【詳解】由解析式y(tǒng)=-kx2+k可得:拋物線對稱軸x=0;選項A,由雙曲線的兩支分別位于二、四象限,可得k<0,則-k>0,拋物線開口方向向上、拋物線與y軸的交點為y軸的負(fù)半軸上;本圖象與k的取值相矛盾,選項A錯誤;選項B,由雙曲線的兩支分別位于一、三象限,可得k>0,則-k<0,拋物線開口方向向下、拋物線與y軸的交點在y軸的正半軸上,本圖象符合題意,選項B正確;選項C,由雙曲線的兩支分別位于一、三象限,可得k>0,則-k<0,拋物線開口方向向下、拋物線與y軸的交點在y軸的正半軸上,本圖象與k的取值相矛盾,選項C錯誤;選項D,由雙曲線的兩支分別位于一、三象限,可得k>0,則-k<0,拋物線開口方向向下、拋物線與y軸的交點在y軸的正半軸上,本圖象與k的取值相矛盾,選項D錯誤.故選B.【點睛】本題主要考查了二次函數(shù)及反比例函數(shù)和圖象,解決此類問題步驟一般為:(1)先根據(jù)圖象的特點判斷k取值是否矛盾;(2)根據(jù)二次函數(shù)圖象判斷拋物線與y軸的交點是否符合要求.6、D【分析】先根據(jù)計算判別式的值,然后根據(jù)判別式的意義判斷方程根的情況.【詳解】因為△=,所以方程無實數(shù)根.故選:D.【點睛】本題考查了根的判別式:一元二次方程的根與有如下關(guān)系:當(dāng)△>0時,方程有兩個不相等的實數(shù)根;當(dāng)△=0時,方程有兩個相等的實數(shù)根;當(dāng)△<0時,方程無實數(shù)根.7、D【解析】過O作OC⊥AB于C,連OA,根據(jù)垂徑定理得到AC=BC=10,再根據(jù)切線的性質(zhì)得到AB為小圓的切線,于是有圓環(huán)的面積=π?OA2-π?OC2=π(OA2-OC2)=π?AC2,即可圓環(huán)的面積.【詳解】過O作OC⊥AB于C,連OA,如圖,∴AC=BC,而AB=20,∴AC=10,∵AB與小圓相切,∴OC為小圓的半徑,∴圓環(huán)的面積=π?OA2-π?OC2=π(OA2-OC2)=π?AC2=100π(平方米).故選D.【點睛】本題考查了垂徑定理:垂直于弦的直徑平分弦,并且平分弦所對的弧.也考查了切線的性質(zhì)定理以及勾股定理.8、B【解析】根據(jù)事件發(fā)生的可能性大小即可判斷.【詳解】A.從裝有10個黑球的不透明袋子中摸出一個球,恰好是紅球的概率為0,故錯誤;B.拋擲一枚普通正方體骰子,所得點數(shù)小于7的概率為1,故為必然事件,正確;C.拋擲一枚一元硬幣,正面朝上的概率為50%,為隨機(jī)事件,故錯誤;D.從一副沒有大小王的撲克牌中抽出一張,恰好是方塊,為隨機(jī)事件,故錯誤;故選B.【點睛】此題主要考查事件發(fā)生的可能性,解題的關(guān)鍵是熟知概率的定義.9、B【解析】試題分析:如果全班有x名同學(xué),那么每名同學(xué)要送出(x-1)張,共有x名學(xué)生,那么總共送的張數(shù)應(yīng)該是x(x-1)張,即可列出方程.∵全班有x名同學(xué),∴每名同學(xué)要送出(x-1)張;又∵是互送照片,∴總共送的張數(shù)應(yīng)該是x(x-1)=1.故選B考點:由實際問題抽象出一元二次方程.10、C【分析】一元二次方程有實數(shù)根,則根的判別式≥1,且k≠1,據(jù)此列不等式求解.【詳解】根據(jù)題意,得:=1-16≥1且≠1,解得:且≠1.故選:C.【點睛】本題考查一元二次方程根的判別式與實數(shù)根的情況,注意≠1.11、D【解析】萊洛三角形的面積是由三塊相同的扇形疊加而成,其面積=三塊扇形的面積相加,再減去兩個等邊三角形的面積,分別求出即可.【詳解】過A作AD⊥BC于D,∵△ABC是等邊三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1,AD=BD=,∴△ABC的面積為BC?AD==,S扇形BAC==,∴萊洛三角形的面積S=3×﹣2×=2π﹣2,故選D.【點睛】本題考查了等邊三角形的性質(zhì)和扇形的面積計算,能根據(jù)圖形得出萊洛三角形的面積=三塊扇形的面積相加、再減去兩個等邊三角形的面積是解此題的關(guān)鍵.12、B【分析】由平行四邊形的性質(zhì)可得AD=BC,AD∥BC,可證△DEG∽△CFG,可得=.【詳解】∵四邊形ABCD是平行四邊形,∴AD=BC,AD∥BC,∵F為BC的中點,∴CF=BF=BC=AD,∵DE:AD=1:3,∴DE:CF=2:3,∵AD∥BC,∴△DEG∽△CFG,∴=.故選:B.【點睛】此題主要考查相似三角形的判定與性質(zhì),解題的關(guān)鍵是熟知平行四邊形的性質(zhì)及相似三角形的判定與性質(zhì).二、填空題(每題4分,共24分)13、27【解析】試題解析:解得:故答案為14、1.【分析】由切線性質(zhì)知AD⊥BC,根據(jù)AB=AC可得BD=CD=AD=BC=1.【詳解】解:如圖,連接AD,則AD⊥BC,∵AB=AC,∴BD=CD=AD=BC=1,故答案為:1.【點睛】本題考查了圓的切線性質(zhì),解題的關(guān)鍵在于掌握圓的切線性質(zhì).15、20°【分析】由題意根據(jù)旋轉(zhuǎn)的性質(zhì)可得AC=CD,∠CDE=∠BAC,再判斷出△ACD是等腰直角三角形,然后根據(jù)等腰直角三角形的性質(zhì)求出∠CAD=45°,根據(jù)∠ADE=∠CED-∠CAD.【詳解】解:∵Rt△ABC繞其直角頂點C按順時針方向旋轉(zhuǎn)90°后得到△DEC,∴AC=CD,∠CDE=∠BAC=25°,∴△ACD是等腰直角三角形,∴∠CAD=45°,∴∠ADE=∠CED-∠CAD=45°-25°=20°.故答案為:20°.【點睛】本題考查旋轉(zhuǎn)的性質(zhì),等腰直角三角形的判定與性質(zhì),三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和的性質(zhì),熟記各性質(zhì)并準(zhǔn)確掌握理解圖示是解題的關(guān)鍵.16、1.【分析】根據(jù)圓內(nèi)接四邊形的對角互補的性質(zhì)進(jìn)行計算即可.【詳解】解:∵四邊形ABCD內(nèi)接于⊙O,∴∠A+∠C=180°,∵∠A=125°,∴∠C=1°,故答案為:1.【點睛】本題考查了圓內(nèi)接四邊形的性質(zhì),理解圓內(nèi)接四邊形的對角互補的性質(zhì)是解答本題的關(guān)鍵.17、3【分析】根據(jù)旋轉(zhuǎn)的性質(zhì),可得∠BAC=∠PAP′=90°,AP=AP′,故△APP′是等腰直角三角形,由勾股定理得PP′的大?。驹斀狻拷猓焊鶕?jù)旋轉(zhuǎn)的性質(zhì),可得∠BAC=∠PAP′=90°,AP=AP′,∴△APP′是等腰直角三角形,由勾股定理得PP′=.故答案為.【點睛】本題考查了圖形的旋轉(zhuǎn)變化,旋轉(zhuǎn)得到的圖形與原圖形全等,解答時要分清旋轉(zhuǎn)角和對應(yīng)線段.18、y1<y1【分析】根據(jù)雙曲線所在的象限,得出y隨x的增大而增大,即可判斷.【詳解】解:∵k>0,∴﹣k<0,因此在每個象限內(nèi),y隨x的增大而增大,∵﹣4<﹣1,∴y1<y1,故答案為:y1<y1.【點睛】此題主要考查反比例函數(shù)的圖像與性質(zhì),解題的關(guān)鍵是熟知反比例函數(shù)在各象限的增減性.三、解答題(共78分)19、(1)x1=3,x2=﹣1;(2)1﹣【分析】(1)利用因式分解法解方程即可;(2)根據(jù)特殊角的三角函數(shù)值計算即可.【詳解】解:(1)∵x2﹣2x﹣3=0,∴(x﹣3)(x+1)=0,解得x1=3,x2=﹣1.(2)原式=×1+×﹣2××2×=+1﹣=1﹣【點睛】此題考查的是解一元二次方程和特殊角的銳角三角函數(shù)值,掌握用因式分解法解一元二次方程和各個特殊角的銳角三角函數(shù)值是解決此題的關(guān)鍵.20、(1)0≤x≤5;(2)1.74;(3)見解析;(4)0.8或者4.8.【分析】(1)考慮點P的臨界位置∠APB=60°時,D與B重合,計算出此時的PB長,即可知x的取值范圍;(2)根據(jù)圖形測量即可;(3)描點連線即可;(4)畫直線y=3.5與圖象的交點即可觀察出x的值.【詳解】(1)如圖1,當(dāng)∠APB=60°時,D與B重合,作PE⊥AC于E,∵∠C=30°,∠APB=60°,∴∠CAP=30°,∴PC=AP,∴CE=AE=,∴PC=2,∴PB=5,∴0≤x≤5;(2)測量得a=1.74;(3)如下圖所示,(4觀察圖象可知,當(dāng)y=3.5時x=0.8或者4.8.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì)、等腰三角形的性質(zhì)以及描點法畫函數(shù)圖象,利用圖象求近似值,體現(xiàn)了特殊到一般,再由一般到特殊的思想方法.21、(1)或;(2)畫圖見解析;(3).【分析】(1)利用表中數(shù)據(jù)和拋物線的對稱性可得到二次函數(shù)的頂點坐標(biāo)為(1,4),則可設(shè)頂點式y(tǒng)=a(x-1)2+4,然后把點(0,3)代入求出a即可;

(2)利用描點法畫二次函數(shù)圖象;

(3)根據(jù)x=、3時的函數(shù)值即可寫出y的取值范圍.【詳解】解:根據(jù)題意可知,二次函數(shù)的頂點坐標(biāo)為(1,4),∴設(shè)二次函數(shù)的解析式為:,把代入得:;∴;∴解析式為:或.(2)如圖所示:(3)當(dāng)時,;當(dāng)時,;∵拋物線的對稱軸為:,此時y有最大值4;∴當(dāng)時,的取值范圍為:.【點睛】本題考查了用待定系數(shù)法求二次函數(shù)的解析式:在利用待定系數(shù)法求二次函數(shù)關(guān)系式時,要根據(jù)題目給定的條件,選擇恰當(dāng)?shù)姆椒ㄔO(shè)出關(guān)系式,從而代入數(shù)值求解.也考查了二次函數(shù)的圖象與性質(zhì).22、(1)證明見解析;(1)EM=4.【解析】(1)連接A、C,E、B點,那么只需要求出△AMC和△EMB相似,即可求出結(jié)論,根據(jù)圓周角定理可推出它們的對應(yīng)角相等,即可得△AMC∽△EMB;(1)根據(jù)圓周角定理,結(jié)合勾股定理,可以推出EC的長度,根據(jù)已知條件推出AM、BM的長度,然后結(jié)合(1)的結(jié)論,很容易就可求出EM的長度.【詳解】(1)連接AC、EB.∵∠A=∠BEC,∠B=∠ACM,∴△AMC∽△EMB,∴,∴AM?BM=EM?CM;(1)∵DC是⊙O的直徑,∴∠DEC=90°,∴DE1+EC1=DC1.∵DE,CD=8,且EC為正數(shù),∴EC=2.∵M(jìn)為OB的中點,∴BM=1,AM=3.∵AM?BM=EM?CM=EM?(EC﹣EM)=EM?(2﹣EM)=11,且EM>MC,∴EM=4.【點睛】本題考查了相似三角形的判定和性質(zhì)、圓周角定理、勾股定理的知識點,解答本題的關(guān)鍵是根據(jù)已知條件和圖形作輔助線.23、(1)AB=4,AC=2;(2)BC=2,AC=1.【分析】(1)根據(jù)含30°角的直角三角形的性質(zhì)即可得到結(jié)論;(2)解直角三角形即可得到結(jié)論.【詳解】(1)在△ABC中,∠C=90°,∠A=30°,BC=2,∴AB=2BC=4,AC=BC=2;(2)在△ABC中,∠C=90°,tanA=,AB=6,∴=,∴設(shè)BC=k,AC=4k,∴AB==3k=6,∴k=2,∴BC=k=2,AC=4k=1.【點睛】本題考查了含30°角的直角三角形,解直角三角形,正確的理解題意是解題的關(guān)鍵.24、(1)

,D(1,4);(2)PD+PH最小值【分析】(1)根據(jù)題意把已知兩點的坐標(biāo)代入,求出b、c的值,就可以確定拋物線的解析式,配方或用公式求出頂點坐標(biāo);(2)由題意根據(jù)B、D兩點的坐標(biāo)確定中點H的坐標(biāo),作出H點關(guān)于y軸的對稱點點H′,連接H′D與y軸交點即為P,求出H′D即可.【詳解】解:(1)∵拋物線過點A(-1,0),B(3,0),∴,解得,∴所求函數(shù)的解析式為:,化為頂點式為:=-(x-1)2+4,∴頂點D(1,4);(2)∵B(3,0),D(1,4),∴中點H的坐標(biāo)為(2,2)其關(guān)于y軸的對稱點H′坐標(biāo)為(-2,2),連接H′D與y軸交于點P,則PD+PH最小且最小值為:.【點睛】本題考

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論