2025屆湖北省隨州市隨縣九年級數(shù)學(xué)第一學(xué)期期末聯(lián)考試題含解析_第1頁
2025屆湖北省隨州市隨縣九年級數(shù)學(xué)第一學(xué)期期末聯(lián)考試題含解析_第2頁
2025屆湖北省隨州市隨縣九年級數(shù)學(xué)第一學(xué)期期末聯(lián)考試題含解析_第3頁
2025屆湖北省隨州市隨縣九年級數(shù)學(xué)第一學(xué)期期末聯(lián)考試題含解析_第4頁
2025屆湖北省隨州市隨縣九年級數(shù)學(xué)第一學(xué)期期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆湖北省隨州市隨縣九年級數(shù)學(xué)第一學(xué)期期末聯(lián)考試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.在同一時刻,身高1.5米的小紅在陽光下的影長2米,則影長為6米的大樹的高是()A.4.5米 B.8米 C.5米 D.5.5米2.如圖,是的直徑,點、在上.若,則的度數(shù)為()A. B. C. D.3.4的平方根是()A.2 B.–2 C.±2 D.±4.如圖所示,在中,與相交于點,為的中點,連接并延長交于點,則與的面積比值為()A. B. C. D.5.如圖,在平面直角坐標(biāo)系中,菱形的邊在軸的正半軸上,反比例函數(shù)的圖象經(jīng)過對角線的中點和頂點.若菱形的面積為12,則的值為().A.6 B.5 C.4 D.36.受益于電子商務(wù)發(fā)展和法治環(huán)境改普等多重因素,“快遞業(yè)”成為我國經(jīng)濟(jì)發(fā)展的一匹“黑馬”,2018年我國快遞業(yè)務(wù)量為600億件,預(yù)計2020年快遞量將達(dá)到950億件,若設(shè)快遞平均每年增長率為x,則下列方程中,正確的是()A.600(1+x)=950 B.600(1+2x)=950C.600(1+x)2=950 D.950(1﹣x)2=6007.為了美化校園環(huán)境,加大校園綠化投資.某區(qū)前年用于綠化的投資為18萬元,今年用于綠化的投資為33萬元,設(shè)這兩年用于綠化投資的年平均增長率為x,則()A.18(1+2x)=33 B.18(1+x2)=33C.18(1+x)2=33 D.18(1+x)+18(1+x)2=338.如圖,AB是⊙O的直徑,AC,BC分別與⊙O交于點D,E,則下列說法一定正確的是()A.連接BD,可知BD是△ABC的中線 B.連接AE,可知AE是△ABC的高線C.連接DE,可知 D.連接DE,可知S△CDE:S△ABC=DE:AB9.某車的剎車距離y(m)與開始剎車時的速度x(m/s)之間滿足二次函數(shù)(x>0),若該車某次的剎車距離為5m,則開始剎車時的速度為()A.40m/s B.20m/sC.10m/s D.5m/s10.若雙曲線經(jīng)過第二、四象限,則直線經(jīng)過的象限是()A.第一、二、三象限 B.第一、二、四象限C.第一、三、四象限 D.第二、三、四象限二、填空題(每小題3分,共24分)11.如圖,一段拋物線記為,它與軸交于兩點、,將繞旋轉(zhuǎn)得到,交軸于,將繞旋轉(zhuǎn)得到,交軸于;如此進(jìn)行下去,直至得到,若點在第8段拋物線上,則等于__________12.如圖,直線與雙曲線(k≠0)相交于A(﹣1,)、B兩點,在y軸上找一點P,當(dāng)PA+PB的值最小時,點P的坐標(biāo)為_________.13.在半徑為3cm的圓中,長為cm的弧所對的圓心角的度數(shù)為____________.14.如圖,在⊙O中,∠AOB=60°,則∠ACB=____度.15.一支反比例函數(shù),若,則y的取值范圍是_____.16.二次函數(shù)的圖象經(jīng)過點(4,﹣3),且當(dāng)x=3時,有最大值﹣1,則該二次函數(shù)解析式為_____.17.如圖,在△ABC中,AC:BC:AB=3:4:5,⊙O沿著△ABC的內(nèi)部邊緣滾動一圈,若⊙O的半徑為1,且圓心O運動的路徑長為18,則△ABC的周長為_____.18.若拋物線y=x2﹣4x+m與直線y=kx﹣13(k≠0)交于點(2,﹣9),則關(guān)于x的方程x2﹣4x+m=k(x﹣1)﹣11的解為_____.三、解答題(共66分)19.(10分)為落實“垃圾分類”,環(huán)衛(wèi)部門要求垃圾要按A,B,C三類分別裝袋,投放,其中A類指廢電池,過期藥品等有毒垃圾,B類指剩余食品等廚余垃圾,C類指塑料,廢紙等可回收垃圾.甲投放了一袋垃圾,乙投放了兩袋垃圾,這兩袋垃圾不同類.(1)直接寫出甲投放的垃圾恰好是A類的概率;(2)求乙投放的垃圾恰有一袋與甲投放的垃圾是同類的概率.20.(6分)如圖,拋物線y=-x2+bx+c與x軸相交于A(-1,0),B(5,0)兩點.(1)求拋物線的解析式;(2)在第二象限內(nèi)取一點C,作CD垂直x軸于點D,鏈接AC,且AD=5,CD=8,將Rt△ACD沿x軸向右平移m個單位,當(dāng)點C落在拋物線上時,求m的值;(3)在(2)的條件下,當(dāng)點C第一次落在拋物線上記為點E,點P是拋物線對稱軸上一點.試探究:在拋物線上是否存在點Q,使以點B、E、P、Q為頂點的四邊形是平行四邊形?若存在,請出點Q的坐標(biāo);若不存在,請說明理由.21.(6分)網(wǎng)購已經(jīng)成為一種時尚,某網(wǎng)絡(luò)購物平臺“雙十一”全天交易額逐年增長,2017年交易額為500億元,2019年交易額為720億元,求2017年至2019年“雙十一”交易額的年平均增長率.22.(8分)解方程:(1);(2)23.(8分)如圖,點D,E分別是不等邊△ABC(即AB,BC,AC互不相等)的邊AB,AC的中點.點O是△ABC所在平面上的動點,連接OB,OC,點G,F(xiàn)分別是OB,OC的中點,順次連接點D,G,F(xiàn),E.(1)如圖,當(dāng)點O在△ABC的內(nèi)部時,求證:四邊形DGFE是平行四邊形;(2)若四邊形DGFE是菱形,則OA與BC應(yīng)滿足怎樣的數(shù)量關(guān)系?(直接寫出答案,不需要說明理由)24.(8分)新華商場銷售某種冰箱,每臺進(jìn)貨價為元,市場調(diào)研表明:當(dāng)銷售價為元時,平均每天能售出臺,而當(dāng)銷售價每降低元時,平均每天就能多售出臺.雙“十一”期間,商場為了減少庫存進(jìn)行降價促銷,如果在降價促銷的同時還要保證這種冰箱的銷售利潤平均每天達(dá)到元,這種冰箱每臺應(yīng)降價多少元?25.(10分)如圖,在中,,點為邊的中點,請按下列要求作圖,并解決問題:(1)作點關(guān)于的對稱點;(2)在(1)的條件下,將繞點順時針旋轉(zhuǎn),①面出旋轉(zhuǎn)后的(其中、、三點旋轉(zhuǎn)后的對應(yīng)點分別是點、、);②若,則________.(用含的式子表示)26.(10分)已知拋物線y=x2+bx+c經(jīng)過原點,對稱軸為直線x=1,求該拋物線的解析式.

參考答案一、選擇題(每小題3分,共30分)1、A【解析】根據(jù)同一時刻的兩個物體,影子,經(jīng)過物體頂部的太陽光線三者構(gòu)成的兩個直角三角形相似即可得.【詳解】如圖,由題意可得:由相似三角形的性質(zhì)得:,即解得:(米)故選:A.【點睛】本題考查了相似三角形的性質(zhì),理解題意,將問題轉(zhuǎn)化為利用相似三角形的性質(zhì)求解是解題關(guān)鍵.2、C【分析】根據(jù)圓周角定理計算即可.【詳解】解:∵,∴,∴,故選:C.【點睛】此題考查圓周角定理,解題的關(guān)鍵是熟練掌握基本知識,屬于中考常考題型.3、C【分析】根據(jù)正數(shù)的平方根的求解方法求解即可求得答案.【詳解】∵(±1)1=4,

∴4的平方根是±1.

故選:C.4、C【分析】根據(jù)平行四邊形的性質(zhì)得到OB=OD,利用點E是OD的中點,得到DE:BE=1:3,根據(jù)同高三角形面積比的關(guān)系得到S△ADE:S△ABE=1:3,利用平行四邊形的性質(zhì)得S平行四邊形ABCD=2S△ABD,由此即可得到與的面積比.【詳解】在中,OB=OD,∵為的中點,∴DE=OE,∴DE:BE=1:3,∴S△ADE:S△ABE=1:3,∴S△ABE:S△ABD=1:4,∵S平行四邊形ABCD=2S△ABD,∴與的面積比為3:8,故選:C.【點睛】此題考查平行四邊形的性質(zhì),同高三角形面積比,熟記平行四邊形的性質(zhì)并熟練運用解題是關(guān)鍵.5、C【解析】首先設(shè)出A、C點的坐標(biāo),再根據(jù)菱形的性質(zhì)可得D點坐標(biāo),再根據(jù)D點在反比例函數(shù)上,再結(jié)合面積等于12,解方程即可.【詳解】解:設(shè)點的坐標(biāo)為,點的坐標(biāo)為,則,點的坐標(biāo)為,∴,解得,,故選:C.【點睛】本題主要考查反比例函數(shù)和菱形的性質(zhì),關(guān)鍵在于菱形的對角線相互平分且垂直.6、C【分析】設(shè)快遞量平均每年增長率為,根據(jù)我國2018年及2020年的快遞業(yè)務(wù)量,即可得出關(guān)于的一元二次方程,此題得解.【詳解】設(shè)快遞量平均每年增長率為x,依題意,得:600(1+x)2=1.故選:C.【點睛】本題考查了由實際問題抽象出一元二次方程,找準(zhǔn)等量關(guān)系,正確列出一元二次方程是解題的關(guān)鍵.7、C【解析】根據(jù)題意可以列出相應(yīng)的一元二次方程,本題得以解決.【詳解】由題意可得,18(1+x)2=33,故選:C.【點睛】本題考查由實際問題抽象出一元二次方程,解答本題的關(guān)鍵是明確題意,列出相應(yīng)的一元二次方程,這是一道典型的增長率問題.8、B【分析】根據(jù)圓周角定理,相似三角形的判定和性質(zhì)一一判斷即可.【詳解】解:A、連接BD.∵AB是直徑,∴∠ADB=90°,∴BD是△ABC的高,故本選項不符合題意.B、連接AE.∵AB是直徑,∴∠AEB=90°,∴BE是△ABC的高,故本選項符合題意.C、連接DE.可證△CDE∽△CBA,可得,故本選項不符合題意.D、∵△CDE∽△CBA,可得S△CDE:S△ABC=DE2:AB2,故本選項不符合題意,故選:B.【點睛】本題考查了圓周角定理、相似三角形的判定以及性質(zhì),輔助線的作圖是解本題的關(guān)鍵9、C【解析】當(dāng)y=5時,則,解之得(負(fù)值舍去),故選C10、C【分析】根據(jù)反比例函數(shù)的性質(zhì)得出k﹣1<0,再由一次函數(shù)的性質(zhì)判斷函數(shù)所經(jīng)過的象限.【詳解】∵雙曲線y經(jīng)過第二、四象限,∴k﹣1<0,則直線y=2x+k﹣1一定經(jīng)過一、三、四象限.故選:C.【點睛】本題考查了一次函數(shù)和反比例函數(shù)的性質(zhì),屬于函數(shù)的基礎(chǔ)知識,難度不大.二、填空題(每小題3分,共24分)11、【分析】求出拋物線與x軸的交點坐標(biāo),觀察圖形可知第奇數(shù)號拋物線都在x軸上方、第偶數(shù)號拋物線都在x軸下方,再根據(jù)向右平移橫坐標(biāo)相加表示出拋物線的解析式,然后把點P的橫坐標(biāo)代入計算即可.【詳解】拋物線與x軸的交點為(0,0)、(2,0),將繞旋轉(zhuǎn)180°得到,則的解析式為,同理可得的解析式為,的解析式為的解析式為的解析式為的解析式為的解析式為∵點在拋物線上,∴故答案為【點睛】本題考查的是二次函數(shù)的圖像性質(zhì)與平移,能夠根據(jù)題意確定出的解析式是解題的關(guān)鍵.12、(0,).【解析】試題分析:把點A坐標(biāo)代入y=x+4得a=3,即A(﹣1,3),把點A坐標(biāo)代入雙曲線的解析式得3=﹣k,即k=﹣3,聯(lián)立兩函數(shù)解析式得:,解得:,,即點B坐標(biāo)為:(﹣3,1),作出點A關(guān)于y軸的對稱點C,連接BC,與y軸的交點即為點P,使得PA+PB的值最小,則點C坐標(biāo)為:(1,3),設(shè)直線BC的解析式為:y=ax+b,把B、C的坐標(biāo)代入得:,解得:,所以函數(shù)解析式為:y=x+,則與y軸的交點為:(0,).考點:反比例函數(shù)與一次函數(shù)的交點問題;軸對稱-最短路線問題.13、【分析】根據(jù)弧長公式求解即可.【詳解】故本題答案為:.【點睛】本題考查了圓的弧長公式,根據(jù)已知條件代入計算即可,熟記公式是解題的關(guān)鍵.14、1.【詳解】解:同弧所對圓心角是圓周角的2倍,所以∠ACB=∠AOB=1°.∵∠AOB=60°∴∠ACB=1°故答案為:1.【點睛】本題考查圓周角定理.15、y<-1【分析】根據(jù)函數(shù)解析式可知當(dāng)x>0時,y隨x的增大而增大,求出當(dāng)x=1時對應(yīng)的y值即可求出y的取值范圍.【詳解】解:∵反比例函數(shù),-4<0,∴當(dāng)x>0時,y隨x的增大而增大,當(dāng)x=1時,y=-1,∴當(dāng),則y的取值范圍是y<-1,故答案為:y<-1.【點睛】本題考查了根據(jù)反比例函數(shù)自變量的取值范圍,確定函數(shù)值的取值范圍,解題的關(guān)鍵是熟知反比例函數(shù)的增減性.16、y=﹣2(x﹣3)2﹣1【分析】根據(jù)題意設(shè)出函數(shù)的頂點式,代入點(4,﹣3),根據(jù)待定系數(shù)法即可求得.【詳解】∵當(dāng)x=3時,有最大值﹣1,∴設(shè)二次函數(shù)的解析式為y=a(x﹣3)2﹣1,把點(4,﹣3)代入得:﹣3=a(4﹣3)2﹣1,解得a=﹣2,∴y=﹣2(x﹣3)2﹣1.故答案為:y=﹣2(x﹣3)2﹣1.【點睛】本題考查了待定系數(shù)法求二次函數(shù)的解析式,熟練掌握待定系數(shù)法是解題的關(guān)鍵.17、4【分析】如圖,首先利用勾股定理判定△ABC是直角三角形,由題意得圓心O所能達(dá)到的區(qū)域是△DEG,且與△ABC三邊相切,設(shè)切點分別為G、H、P、Q、M、N,連接DH、DG、EP、EQ、FM、FN,根據(jù)切線性質(zhì)可得:AG=AH,PC=CQ,BN=BM,DG、EP分別垂直于AC,EQ、FN分別垂直于BC,F(xiàn)M、DH分別垂直于AB,繼而則有矩形DEPG、矩形EQNF、矩形DFMH,從而可知DE=GP,EF=QN,DF=HM,DE∥GP,DF∥HM,EF∥QN,∠PEF=90°,根據(jù)題意可知四邊形CPEQ是邊長為1的正方形,根據(jù)相似三角形的判定可得△DEF∽△ACB,根據(jù)相似三角形的性質(zhì)可知:DE∶EF∶FD=AC∶CB∶BA=3∶4∶1,進(jìn)而根據(jù)圓心O運動的路徑長列出方程,求解算出DE、EF、FD的長,根據(jù)矩形的性質(zhì)可得:GP、QN、MH的長,根據(jù)切線長定理可設(shè):AG=AH=x,BN=BM=y(tǒng),根據(jù)線段的和差表示出AC、BC、AB的長,進(jìn)而根據(jù)AC∶CB∶BA=3∶4∶1列出比例式,繼而求出x、y的值,進(jìn)而即可求解△ABC的周長.【詳解】∵AC∶CB∶BA=3∶4∶1,設(shè)AC=3a,CB=4a,BA=1a(a>0)∴∴△ABC是直角三角形,設(shè)⊙O沿著△ABC的內(nèi)部邊緣滾動一圈,如圖所示,連接DE、EF、DF,設(shè)切點分別為G、H、P、Q、M、N,連接DH、DG、EP、EQ、FM、FN,根據(jù)切線性質(zhì)可得:AG=AH,PC=CQ,BN=BMDG、EP分別垂直于AC,EQ、FN分別垂直于BC,F(xiàn)M、DH分別垂直于AB,∴DG∥EP,EQ∥FN,F(xiàn)M∥DH,∵⊙O的半徑為1∴DG=DH=PE=QE=FN=FM=1,則有矩形DEPG、矩形EQNF、矩形DFMH,∴DE=GP,EF=QN,DF=HM,DE∥GP,DF∥HM,EF∥QN,∠PEF=90°又∵∠CPE=∠CQE=90°,PE=QE=1∴四邊形CPEQ是正方形,∴PC=PE=EQ=CQ=1,∵⊙O的半徑為1,且圓心O運動的路徑長為18,∴DE+EF+DF=18,∵DE∥AC,DF∥AB,EF∥BC,∴∠DEF=∠ACB,∠DFE=∠ABC,∴△DEF∽△ABC,∴DE:EF:DF=AC:BC:AB=3:4:1,設(shè)DE=3k(k>0),則EF=4k,DF=1k,∵DE+EF+DF=18,∴3k+4k+1k=18,解得k=,∴DE=3k=,EF=4k=6,DF=1k=,根據(jù)切線長定理,設(shè)AG=AH=x,BN=BM=y(tǒng),則AC=AG+GP+CP=x++1=x+1.1,BC=CQ+QN+BN=1+6+y=y(tǒng)+2,AB=AH+HM+BM=x++y=x+y+2.1,∵AC:BC:AB=3:4:1,∴(x+1.1):(y+2):(x+y+2.1)=3:4:1,解得x=2,y=3,∴AC=2.1,BC=10,AB=3.1,∴AC+BC+AB=4.所以△ABC的周長為4.故答案為4.【點睛】本題是一道動圖形問題,考查切線的性質(zhì)定理、相似三角形的判定與性質(zhì)、矩形的判定與性質(zhì)、解直角三角形等知識點,解題的關(guān)鍵是確定圓心O的軌跡,學(xué)會作輔助線構(gòu)造相似三角形,綜合運用上述知識點.18、x1=2,x2=1【分析】根據(jù)拋物線y=x2﹣1x+m與直線y=kx﹣13(k≠0)交于點(2,﹣9),可以求得m和k的值,然后代入題目中的方程,即可解答本題.【詳解】解:∵拋物線y=x2﹣1x+m與直線y=kx﹣13(k≠0)交于點(2,﹣9),∴﹣9=22﹣1×2+m,﹣9=2k﹣13,解得,m=﹣5,k=2,∴拋物線為y=x2﹣1x﹣5,直線y=2x﹣13,∴所求方程為x2﹣1x﹣5=2(x﹣1)﹣11,解得,x1=2,x2=1,故答案為:x1=2,x2=1.【點睛】本題主要考查的是二次函數(shù)與一次函數(shù)的交點問題,交點既滿足二次函數(shù)也滿足一次函數(shù),帶入即可求解.三、解答題(共66分)19、(1)(2).【分析】(1)根據(jù)總共三種,A只有一種可直接求概率;(2)列出其樹狀圖,然后求出能出現(xiàn)的所有可能,及符合條件的可能,根據(jù)概率公式求解即可.【詳解】解:(1)甲投放的垃圾恰好是A類的概率是.(2)列出樹狀圖如圖所示:由圖可知,共有18種等可能結(jié)果,其中乙投放的垃圾恰有一袋與甲投放的垃圾是同類的結(jié)果有12種.所以,(乙投放的垃圾恰有一袋與甲投放的垃圾是同類).即,乙投放的垃圾恰有一袋與甲投放的垃圾是同類的概率是.20、(1)y=-x2+4x+5(2)m的值為7或9(3)Q點的坐標(biāo)為(﹣2,﹣7)或(6,﹣7)或(4,5)【分析】(1)由A、B的坐標(biāo),利用待定系數(shù)法可求得拋物線的解析式;(2)由題意可求得C點坐標(biāo),設(shè)平移后的點C的對應(yīng)點為C′,則C′點的縱坐標(biāo)為8,代入拋物線解析式可求得C′點的坐標(biāo),則可求得平移的單位,可求得m的值;(3)由(2)可求得E點坐標(biāo),連接BE交對稱軸于點M,過E作EF⊥x軸于點F,當(dāng)BE為平行四邊形的邊時,過Q作對稱軸的垂線,垂足為N,則可證得△PQN≌△EFB,可求得QN,即可求得Q到對稱軸的距離,則可求得Q點的橫坐標(biāo),代入拋物線解析式可求得Q點坐標(biāo);當(dāng)BE為對角線時,由B、E的坐標(biāo)可求得線段BE的中點坐標(biāo),設(shè)Q(x,y),由P點的橫坐標(biāo)則可求得Q點的橫坐標(biāo),代入拋物線解析式可求得Q點的坐標(biāo).【詳解】(1)∵拋物線y=﹣x2+bx+c與x軸分別交于A(﹣1,0),B(5,0)兩點,∴,解得,∴拋物線解析式為y=﹣x2+4x+5;(2)∵AD=5,且OA=1,∴OD=6,且CD=8,∴C(﹣6,8),設(shè)平移后的點C的對應(yīng)點為C′,則C′點的縱坐標(biāo)為8,代入拋物線解析式可得8=﹣x2+4x+5,解得x=1或x=3,∴C′點的坐標(biāo)為(1,8)或(3,8),∵C(﹣6,8),∴當(dāng)點C落在拋物線上時,向右平移了7或9個單位,∴m的值為7或9;(3)∵y=﹣x2+4x+5=﹣(x﹣2)2+9,∴拋物線對稱軸為x=2,∴可設(shè)P(2,t),由(2)可知E點坐標(biāo)為(1,8),①當(dāng)BE為平行四邊形的邊時,連接BE交對稱軸于點M,過E作EF⊥x軸于點F,當(dāng)BE為平行四邊形的邊時,過Q作對稱軸的垂線,垂足為N,如圖,則∠BEF=∠BMP=∠QPN,在△PQN和△EFB中∴△PQN≌△EFB(AAS),∴NQ=BF=OB﹣OF=5﹣1=4,設(shè)Q(x,y),則QN=|x﹣2|,∴|x﹣2|=4,解得x=﹣2或x=6,當(dāng)x=﹣2或x=6時,代入拋物線解析式可求得y=﹣7,∴Q點坐標(biāo)為(﹣2,﹣7)或(6,﹣7);②當(dāng)BE為對角線時,∵B(5,0),E(1,8),∴線段BE的中點坐標(biāo)為(3,4),則線段PQ的中點坐標(biāo)為(3,4),設(shè)Q(x,y),且P(2,t),∴x+2=3×2,解得x=4,把x=4代入拋物線解析式可求得y=5,∴Q(4,5);綜上可知Q點的坐標(biāo)為(﹣2,﹣7)或(6,﹣7)或(4,5).考點:二次函數(shù)綜合題.21、2017年至2019年“雙十一”交易額的年平均增長率為20%.【分析】設(shè)2017年至2019年“雙十一”交易額的年平均增長率為x,根據(jù)該平臺2017年及2019年的交易額,即可得出關(guān)于x的一元二次方程,解之取其正值即可得出結(jié)論.【詳解】解:設(shè)2017年至2019年“雙十一”交易額的年平均增長率為x,根據(jù)題意得:,解得:,(舍去).答:2017年至2019年“雙十一”交易額的年平均增長率為20%.【點睛】本題考查了一元二次方程的實際應(yīng)用,掌握解一元二次方程的方法是解題的關(guān)鍵.22、(1),;(2),.【分析】(1)運用公式法解方程即可;(2)運用因式分解法解方程即可.【詳解】(1)∵,∴,∴,;(2)移項,得:,提公因式得:,∴或,∴,;【點睛】本題主要考查解一元二次方程-公式法和因式分解法,能把一元二次方程轉(zhuǎn)化成一元一次方程是解此題的關(guān)鍵.23、(1)見詳解;(2)點O的位置滿足兩個要求:AO=BC,且點O不在射線CD、射線BE上.理由見詳解【分析】(1)根據(jù)三角形的中位線定理可證得DE∥GF,DE=GF,即可證得結(jié)論;(2)根據(jù)三角形的中位線定理結(jié)合菱形的判定方法分析即可.【詳解】(1)∵D、E分別是邊AB、AC的中點.∴DE∥BC,DE=BC.同理,GF∥BC,GF=BC.∴DE∥GF,DE=GF.∴四邊形DEFG是平行四邊形;(2)點O的位置滿足兩個要求:AO=BC,且點O不在射線CD、射線BE上.連接AO,由(1)得四邊形DEFG是平行四邊形,∵

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論