![四川省巴中學市恩陽區(qū)第二中學2022年數(shù)學九上期末綜合測試模擬試題含解析_第1頁](http://file4.renrendoc.com/view14/M05/08/02/wKhkGWae846AcxTaAAHqtd5B3Bw187.jpg)
![四川省巴中學市恩陽區(qū)第二中學2022年數(shù)學九上期末綜合測試模擬試題含解析_第2頁](http://file4.renrendoc.com/view14/M05/08/02/wKhkGWae846AcxTaAAHqtd5B3Bw1872.jpg)
![四川省巴中學市恩陽區(qū)第二中學2022年數(shù)學九上期末綜合測試模擬試題含解析_第3頁](http://file4.renrendoc.com/view14/M05/08/02/wKhkGWae846AcxTaAAHqtd5B3Bw1873.jpg)
![四川省巴中學市恩陽區(qū)第二中學2022年數(shù)學九上期末綜合測試模擬試題含解析_第4頁](http://file4.renrendoc.com/view14/M05/08/02/wKhkGWae846AcxTaAAHqtd5B3Bw1874.jpg)
![四川省巴中學市恩陽區(qū)第二中學2022年數(shù)學九上期末綜合測試模擬試題含解析_第5頁](http://file4.renrendoc.com/view14/M05/08/02/wKhkGWae846AcxTaAAHqtd5B3Bw1875.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.某校辦工廠生產的某種產品,今年產量為200件,計劃通過改革技術,使今后兩年的產量都比前一年增長一個相同的百分數(shù),使得三年的總產量達到1400件.若設這個百分數(shù)為,則可列方程()A. B.C. D.2.如圖,⊙O是△ABC的外接圓,已知AD平分∠BAC交⊙O于點D,AD=5,BD=2,則DE的長為()A. B. C. D.3.關于二次函數(shù)y=x2+4x﹣5,下列說法正確的是()A.圖象與y軸的交點坐標為(0,5) B.圖象的對稱軸在y軸的右側C.當x<﹣2時,y的值隨x值的增大而減小 D.圖象與x軸的兩個交點之間的距離為54.把邊長相等的正六邊形ABCDEF和正五邊形GHCDL的CD邊重合,按照如圖所示的方式疊放在一起,延長LG交AF于點P,則∠APG=()A.141° B.144° C.147° D.150°5.如圖,△ABC中,DE∥BC,BE與CD交于點O,AO與DE,BC交于點N、M,則下列式子中錯誤的是()A. B. C. D.6.如圖,在四邊形中,,點分別是邊上的點,與交于點,,則與的面積之比為()A. B. C.2 D.47.下列一元二次方程中,兩個實數(shù)根之和為2的是()A.2x2+x﹣2=0 B.x2+2x﹣2=0 C.2x2﹣x﹣1=0 D.x2﹣2x﹣2=08.如圖,點是內一點,,,點、、、分別是、、、的中點,則四邊形的周長是()A.24 B.21 C.18 D.149.的值等于()A. B. C.1 D.10.如圖,四邊形ABCD內接于⊙O,若四邊形ABCO是平行四邊形,則∠ADC的大小為()A. B. C. D.二、填空題(每小題3分,共24分)11.如圖,已知在矩形ABCD中,AB=2,BC=3,P是線段AD上的一動點,連接PC,過點P作PE⊥PC交AB于點E.以CE為直徑作⊙O,當點P從點A移動到點D時,對應點O也隨之運動,則點O運動的路程長度為_____.12.如圖,從一塊直徑為的圓形紙片上剪出一個圓心角為的扇形,使點在圓周上.將剪下的扇形作為一個圓錐的側面,則這個圓錐的底面圓的半徑是________.13.如圖,在Rt△ABC中,∠BAC=90°,AB=1,tanC=,以點A為圓心,AB長為半徑作弧交AC于D,分別以B、D為圓心,以大于BD長為半徑作弧,兩弧交于點E,射線AE與BC于F,過點F作FG⊥AC于G,則FG的長為______.14.如圖,矩形中,,,以為圓心,為半徑畫弧,交于點,則圖中陰影部分的面積是_______.15.如圖,與正五邊形ABCDE的邊AB、DE分別相切于點B、D,則劣弧所對的圓心角的大小為_____度.16.三角形的兩邊長分別為3和6,第三邊的長是方程x2﹣6x+8=0的解,則此三角形的周長是_____.17.如圖,正五邊形ABCDE的邊長為2,分別以點C、D為圓心,CD長為半徑畫弧,兩弧交于點F,則的長為_____.18.如圖,圓錐的表面展開圖由一扇形和一個圓組成,已知圓的面積為100π,扇形的圓心角為120°,這個扇形的面積為.三、解答題(共66分)19.(10分)已知在矩形中,,.是對角線上的一個動點(點不與點,重合),過點作,交射線于點.聯(lián)結,畫,交于點.設,.(1)當點,,在一條直線上時,求的面積;(2)如圖1所示,當點在邊上時,求關于的函數(shù)解析式,并寫出函數(shù)定義域;(3)聯(lián)結,若,請直接寫出的長.20.(6分)請回答下列問題.(1)計算:(2)解方程:21.(6分)解方程:2(x-3)=3x(x-3).22.(8分)如圖,點A、B、C、D、E都在⊙O上,AC平分∠BAD,且AB∥CE,求證:.23.(8分)如圖,△ABC是一塊銳角三角形余料,邊BC=120mm,高AD=80mm,要把它加工成矩形零件PQMN,使矩形PQMN的邊QM在BC上,其余兩個項點P,N分別在AB,AC上.(1)當矩形的邊PN=PQ時,求此時矩形零件PQMN的面積;(2)求這個矩形零件PQMN面積S的最大值.24.(8分)某公司銷售一種新型節(jié)能產品,現(xiàn)準備從國內和國外兩種銷售方案中選擇一種進行銷售.若只在國內銷售,銷售價格y(元/件)與月銷量x(件)的函數(shù)關系式為y=x+150,成本為20元/件,無論銷售多少,每月還需支出廣告費62500元,設月利潤為w內(元)(利潤=銷售額-成本-廣告費).若只在國外銷售,銷售價格為150元/件,受各種不確定因素影響,成本為a元/件(a為常數(shù),10≤a≤40),當月銷量為x(件)時,每月還需繳納x2元的附加費,設月利潤為w外(元)(利潤=銷售額-成本-附加費).(1)當x=1000時,y=元/件,w內=元;(2)分別求出w內,w外與x間的函數(shù)關系式(不必寫x的取值范圍);(3)當x為何值時,在國內銷售的月利潤最大?若在國外銷售月利潤的最大值與在國內銷售月利潤的最大值相同,求a的值;(4)如果某月要將5000件產品全部銷售完,請你通過分析幫公司決策,選擇在國內還是在國外銷售才能使所獲月利潤較大?參考公式:拋物線的頂點坐標是.25.(10分)已知二次函數(shù)y=x2+2mx+(m2﹣1)(m是常數(shù)).(1)若它的圖象與x軸交于兩點A,B,求線段AB的長;(2)若它的圖象的頂點在直線y=x+3上,求m的值.26.(10分)已知二次函數(shù)y=ax2+bx-4(a,b是常數(shù).且a0)的圖象過點(3,-1).(1)試判斷點(2,2-2a)是否也在該函數(shù)的圖象上,并說明理由.(2)若該二次函數(shù)的圖象與x軸只有一個交點,求該函數(shù)表達式.(3)已知二次函數(shù)的圖像過(,)和(,)兩點,且當<時,始終都有>,求a的取值范圍.
參考答案一、選擇題(每小題3分,共30分)1、B【分析】根據(jù)題意:第一年的產量+第二年的產量+第三年的產量=1且今后兩年的產量都比前一年增長一個相同的百分數(shù)x.【詳解】解:已設這個百分數(shù)為x.200+200(1+x)+200(1+x)2=1.故選B.【點睛】本題考查對增長率問題的掌握情況,理解題意后以三年的總產量做等量關系可列出方程.2、D【分析】根據(jù)AD平分∠BAC,可得∠BAD=∠DAC,再利用同弧所對的圓周角相等,求證△ABD△BED,利用其對應邊成比例可得,然后將已知數(shù)值代入即可求出DE的長.【詳解】解:∵AD平分∠BAC,∴∠BAD=∠DAC,∵∠DBC=∠DAC(同弧所對的圓周角相等),∴∠DBC=∠BAD,∴△ABD△BED,∴,∴DE=故選D.【點睛】本題考查圓周角定理以及相似三角形的判定與性質,根據(jù)其定理進行分析.3、C【分析】通過計算自變量為0的函數(shù)值可對A進行判斷;利用對稱軸方程可對B進行判斷;根據(jù)二次函數(shù)的性質對C進行判斷;通過解x2+4x﹣5=0得拋物線與x軸的交點坐標,則可對D進行判斷.【詳解】A、當x=0時,y=x2+4x﹣5=﹣5,所以拋物線與y軸的交點坐標為(0,﹣5),所以A選項錯誤;B、拋物線的對稱軸為直線x=﹣=﹣2,所以拋物線的對稱軸在y軸的左側,所以B選項錯誤;C、拋物線開口向上,當x<﹣2時,y的值隨x值的增大而減小,所以C選項正確;D、當y=0時,x2+4x﹣5=0,解得x1=﹣5,x2=1,拋物線與x軸的交點坐標為(﹣5,0),(1,0),兩交點間的距離為1+5=6,所以D選項錯誤.故選:C.【點睛】本題考查了拋物線與x軸的交點:把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點坐標問題轉化為解關于x的一元二次方程.也考查了二次函數(shù)的性質.4、B【解析】先根據(jù)多邊形的內角和公式分別求得正六邊形和正五邊形的每一個內角的度數(shù),再根據(jù)多邊形的內角和公式求得∠APG的度數(shù).【詳解】(6﹣2)×180°÷6=120°,(5﹣2)×180°÷5=108°,∠APG=(6﹣2)×180°﹣120°×3﹣108°×2=720°﹣360°﹣216°=144°,故選B.【點睛】本題考查了多邊形內角與外角,關鍵是熟悉多邊形內角和定理:(n﹣2)?180(n≥3)且n為整數(shù)).5、D【解析】試題分析:∵DE∥BC,∴△ADN∽△ABM,△ADE∽△ABC,△DOE∽△COB,∴,,,所以A、B、C正確;∵DE∥BC,∴△AEN∽△ACM,∴,∴,所以D錯誤.故選D.點睛:本題考查了相似三角形的判定與性質.注意平行于三角形的一邊的直線與其他兩邊相交,所構成的三角形與原三角形相似;相似三角形對應邊成比例.注意數(shù)形結合思想的應用.6、D【分析】由AD∥BC,可得出△AOE∽△FOB,再利用相似三角形的性質即可得出△AOE與△BOF的面積之比.【詳解】:∵AD∥BC,
∴∠OAE=∠OFB,∠OEA=∠OBF,
∴,∴所以相似比為,∴.故選:D.【點睛】本題考查了相似三角形的判定與性質,牢記相似三角形的面積比等于相似比的平方是解題的關鍵.7、D【分析】利用根與系數(shù)的關系進行判斷即可.【詳解】方程1x1+x﹣1=0的兩個實數(shù)根之和為;方程x1+1x﹣1=0的兩個實數(shù)根之和為﹣1;方程1x1﹣x﹣1=0的兩個實數(shù)根之和為;方程x1﹣1x﹣1=0的兩個實數(shù)根之和為1.故選D.【點睛】本題考查了根與系數(shù)的關系:若x1,x1是一元二次方程ax1+bx+c=0(a≠0)的兩根時,x1+x1,x1x1.8、B【分析】根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半,求出,然后代入數(shù)據(jù)進行計算即可得解.【詳解】∵E、F、G、H分別是AB、AC、CD、BD的中點,
∴,∴四邊形EFGH的周長,
又∵AD=11,BC=10,
∴四邊形EFGH的周長=11+10=1.
故選:B.【點睛】本題考查了三角形的中位線定理,熟記三角形的中位線平行于第三邊并且等于第三邊的一半是解題的關鍵.9、A【分析】根據(jù)特殊角的三角函數(shù)值,即可得解.【詳解】.故選:A.【點睛】此題屬于容易題,主要考查特殊角的三角函數(shù)值.失分的原因是沒有掌握特殊角的三角函數(shù)值.10、C【分析】根據(jù)平行四邊形的性質和圓周角定理可得出答案.【詳解】根據(jù)平行四邊形的性質可知∠B=∠AOC,根據(jù)圓內接四邊形的對角互補可知∠B+∠D=180°,根據(jù)圓周角定理可知∠D=∠AOC,因此∠B+∠D=∠AOC+∠AOC=180°,解得∠AOC=120°,因此∠ADC=60°.故選C【點睛】該題主要考查了圓周角定理及其應用問題;應牢固掌握該定理并能靈活運用.二、填空題(每小題3分,共24分)11、.【分析】連接AC,取AC的中點K,連接OK.設AP=x,AE=y(tǒng),求出AE的最大值,求出OK的最大值,由題意點O的運動路徑的長為2OK,由此即可解決問題.【詳解】解:連接AC,取AC的中點K,連接OK.設AP=x,AE=y(tǒng),∵PE⊥CP∴∠APE+∠CPD=90°,且∠AEP+∠APE=90°∴∠AEP=∠CPD,且∠EAP=∠CDP=90°∵△APE∽△DCP∴,即x(3﹣x)=2y,∴y=x(3﹣x)=﹣x2+x=﹣GXdjs4436236(x﹣)2+,∴當x=時,y的最大值為,∴AE的最大值=,∵AK=KC,EO=OC,∴OK=AE=,∴OK的最大值為,由題意點O的運動路徑的長為2OK=,故答案為:.【點睛】考查了軌跡、矩形的性質、三角形的中位線定理和二次函數(shù)的應用等知識,解題的關鍵是學會構建二次函數(shù)解決最值問題.12、【分析】連接BC,根據(jù)圓周角定理求出BC是⊙O的直徑,BC=12cm,根據(jù)勾股定理求出AB,再根據(jù)弧長公式求出半徑r.【詳解】連接BC,由題意知∠BAC=90°,∴BC是⊙O的直徑,BC=12cm,∵AB=AC,∴,∴(cm),設這個圓錐的底面圓的半徑是rcm,∵,∴,∴r=(cm),故答案為:.【點睛】此題考查圓周角定理,弧長公式,勾股定理,連接BC得到BC是圓的直徑是解題的關鍵.13、.【分析】過點F作FH⊥AB于點H,證四邊形AGFH是正方形,設AG=x,表示出CG,再證△CFG∽△CBA,根據(jù)相似比求出x即可.【詳解】如圖過點F作FH⊥AB于點H,由作圖知AD=AB=1,AE平分∠BAC,∴FG=FH,又∵∠BAC=∠AGF=90°,∴四邊形AGFH是正方形,設AG=x,則AH=FH=GF=x,∵tan∠C=,∴AC==,則CG=-x,∵∠CGF=∠CAB=90°,∴FG∥BA,∴△CFG∽△CBA,∴,即,解得x=,∴FG=,故答案為:.【點睛】本題是對幾何知識的綜合考查,熟練掌握三角函數(shù)及相似知識是解決本題的關鍵.14、【分析】陰影面積=矩形面積-三角形面積-扇形面積.【詳解】作EFBC于F,如圖所示:在Rt中,∴=2,∴,在Rt中,,∴,==故答案是:.【點睛】本題主要是利用扇形面積和三角形面積公式計算陰影部分的面積,解題關鍵是找到所求的量的等量關系.15、1【分析】根據(jù)正多邊形內角和公式可求出、,根據(jù)切線的性質可求出、,從而可求出,然后根據(jù)圓弧長公式即可解決問題.【詳解】解:五邊形ABCDE是正五邊形,.AB、DE與相切,,,故答案為1.【點睛】本題主要考查了切線的性質、正五邊形的性質、多邊形的內角和公式、熟練掌握切線的性質是解決本題的關鍵.16、1【分析】先求出方程的兩根,然后根據(jù)三角形的三邊關系,得到合題意的邊,進而求得三角形周長即可.【詳解】解:x2﹣6x+8=0,(x﹣2)(x﹣4)=0,x﹣2=0,x﹣4=0,x1=2,x2=4,當x=2時,2+3<6,不符合三角形的三邊關系定理,所以x=2舍去,當x=4時,符合三角形的三邊關系定理,三角形的周長是3+6+4=1,故答案為:1.【點睛】本題考查了因式分解法解一元二次方程以及三角形的三邊關系,不能盲目地將三邊長相加起來,而應養(yǎng)成檢驗三邊長能否成三角形的好習慣,熟練掌握一元二次方程的解法是解法本題的關鍵.17、【解析】試題解析:連接CF,DF,則△CFD是等邊三角形,∴∠FCD=60°,∵在正五邊形ABCDE中,∠BCD=108°,∴∠BCF=48°,∴的長=,故答案為.18、300π【解析】試題分析:首先根據(jù)底面圓的面積求得底面的半徑,然后結合弧長公式求得扇形的半徑,然后利用扇形的面積公式求得側面積即可.∵底面圓的面積為100π,∴底面圓的半徑為10,∴扇形的弧長等于圓的周長為20π,設扇形的母線長為r,則=20π,解得:母線長為30,∴扇形的面積為πrl=π×10×30=300π考點:(1)、圓錐的計算;(2)、扇形面積的計算三、解答題(共66分)19、(1);(2);(3)或.【分析】(1)首先證明,由推出,求出,再利用即可求解;(2)首先證明,可得,再由,推出,即,可得,代入比例式即可解決問題;(3)若,分兩種情況:當點P在線段BC上時和當點F在線段BC的延長線上時,分情況運用相似三角形的性質進行討論即可.【詳解】(1)四邊形是矩形,,,,,在一條直線上,且,,,,,,,.(2),,,,,,又,,.,,,即,,,,.(3)①當點P在線段BC上時,如圖設整理得解得②當點F在線段BC的延長線上時,作PH⊥AD于點H,連接DF由,可得解得或(舍去)綜上所述,PD的長為或.【點睛】本題主要考查相似三角形的判定及性質,掌握相似三角形的判定方法及性質和分情況討論是解題的關鍵.20、(1)-4;(2),.【分析】(1)先把特殊角的三角函數(shù)值代入,再計算乘方,再進行二次根式的運算即可;(2)用公式法解方程即可.【詳解】解:(1)原式===-4;(2)=17∴,,【點睛】本題考查了特殊角的三角函數(shù)值及二次根式的混合運算、一元二次方程的解法,牢記特殊角的三角函數(shù)值是解題的關鍵.21、.【分析】先進行移項,在利用因式分解法即可求出答案.【詳解】,移項得:,整理得:,或,解得:或.【點睛】本題考查了解一元一次方程-因式分解,熟練掌握因式分解的技巧是本題解題的關鍵.22、見解析.【分析】根據(jù)角平分線的定義,可得∠BAC=∠DAC,然后根據(jù)平行線的性質,可得∠BAC=∠ACE,從而求出∠DAC=∠ACE,最后根據(jù)在同圓或等圓中,相等的圓周角所對的弧也相等即可證出結論.【詳解】證明:∵AC平分∠BAD,∴∠BAC=∠DAC,∵AB∥CE,∴∠BAC=∠ACE,∴∠DAC=∠ACE,∴.【點睛】此題考查的是角平分線的定義、平行線的性質和圓的基本性質,掌握在同圓或等圓中,相等的圓周角所對的弧也相等是解決此題的關鍵.23、(1)矩形零件PQMN的面積為2304mm2;(2)這個矩形零件PQMN面積S的最大值是2400mm2.【分析】(1)設PQ=xmm,則AE=AD-ED=80-x,再證明△APN∽△ABC,利用相似比可表示出,根據(jù)正方形的性質得到(80-x)=x,求出x的值,然后結合正方形的面積公式進行解答即可.
(2)由(1)可得,求此二次函數(shù)的最大值即可.【詳解】解:(1)設PQ=xmm,
易得四邊形PQDE為矩形,則ED=PQ=x,
∴AE=AD-ED=80-x,
∵PN∥BC,
∴△APN∽△ABC,,即,,∵PN=PQ,,解得x=1.
故正方形零件PQMN面積S=1×1=2304(mm2).(2)當時,S有最大值==2400(mm2).所以這個矩形零件PQMN面積S的最大值是2400mm2.【點睛】本題考查綜合考查相似三角形性質的應用以及二次函數(shù)的最大值的求法.24、(1)1401;(2)w外=x2+(130-a)x;(3)a=2;(4)見解析【分析】(1)將x=1000代入函數(shù)關系式求得y,根據(jù)等量關系“利潤=銷售額-成本-廣告費”求得w內;
(2)根據(jù)等量關系“利潤=銷售額-成本-廣告費”,“利潤=銷售額-成本-附加費”列出兩個函數(shù)關系式;
(3)對w內函數(shù)的函數(shù)關系式求得最大值,再求出w外的最大值并令二者相等求得a值;
(4)根據(jù)x=3000,即可求得w內的值和w外關于a的一次函數(shù)式,即可解題.【詳解】解:(1))∵銷售價格y(元/件)與月銷量x(件)的函數(shù)關系式為y=x+130,∴當x=1000時,y=-10+130=140,w內=x(y-20)-62300=1000×120-62300=1,
故答案為:140,1.(2)w內=x(y-20)-62300=x2+12x,w外=x2+(130)x.(3)當x==6300時,w內最大;分由題意得,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025嶺南文化創(chuàng)意產業(yè)園項目啟動儀式籌辦服務合同協(xié)議書
- 2025含破碎錘挖掘機買賣合同書
- 2025咖啡粉批發(fā)合同
- 2025金屬制品委托加工合同
- 2023三年級英語上冊 Unit 5 Let's eat The first period第一課時說課稿 人教PEP
- 5 應對自然災害(說課稿)2023-2024學年統(tǒng)編版道德與法治六年級下冊
- 保母阿姨合同范例
- 人用工合同范例
- 上海檢測合同范例
- 金屬防水材料施工方案
- 新人教版高中數(shù)學必修第二冊第六章平面向量及其應用教案 (一)
- 湖南省長沙市一中2024-2025學年高一生物上學期期末考試試題含解析
- 碳纖維增強復合材料在海洋工程中的應用情況
- 公司市場分析管理制度
- 焊接材料制造工-國家職業(yè)標準(2024版)
- 江西省2024年中考數(shù)學試卷(含答案)
- 2024年200MW-400MWh電化學儲能電站設計方案
- 余土外運施工方案
- 中考英語1600詞匯對照表-(帶音標)
- 虛擬化與云計算技術應用實踐項目化教程 課件全套 陳寶文 項目1-8 虛擬化與云計算導論- 騰訊云服務
- JJG 705-2014液相色譜儀行業(yè)標準
評論
0/150
提交評論