![新高考數(shù)學(xué)二輪考點培優(yōu)專題(精講+精練)5 嵌套函數(shù)的零點問題(含解析)_第1頁](http://file4.renrendoc.com/view14/M01/21/38/wKhkGWa6GIKAHLRGAAG2bXlWNrM201.jpg)
![新高考數(shù)學(xué)二輪考點培優(yōu)專題(精講+精練)5 嵌套函數(shù)的零點問題(含解析)_第2頁](http://file4.renrendoc.com/view14/M01/21/38/wKhkGWa6GIKAHLRGAAG2bXlWNrM2012.jpg)
![新高考數(shù)學(xué)二輪考點培優(yōu)專題(精講+精練)5 嵌套函數(shù)的零點問題(含解析)_第3頁](http://file4.renrendoc.com/view14/M01/21/38/wKhkGWa6GIKAHLRGAAG2bXlWNrM2013.jpg)
![新高考數(shù)學(xué)二輪考點培優(yōu)專題(精講+精練)5 嵌套函數(shù)的零點問題(含解析)_第4頁](http://file4.renrendoc.com/view14/M01/21/38/wKhkGWa6GIKAHLRGAAG2bXlWNrM2014.jpg)
![新高考數(shù)學(xué)二輪考點培優(yōu)專題(精講+精練)5 嵌套函數(shù)的零點問題(含解析)_第5頁](http://file4.renrendoc.com/view14/M01/21/38/wKhkGWa6GIKAHLRGAAG2bXlWNrM2015.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
素養(yǎng)拓展05嵌套函數(shù)的零點問題(精講+精練)一、知識點梳理一、知識點梳理1.嵌套函數(shù)形式:形如f2.解決嵌套函數(shù)零點個數(shù)的一般步驟(1)換元解套,轉(zhuǎn)化為t=g(x)與y=f(t)的零點.(2)依次解方程,令f(t)=0,求t,代入t=g(x)求出x的值或判斷圖象交點個數(shù).注:抓住兩點:(1)轉(zhuǎn)化換元;(2)充分利用函數(shù)的圖象與性質(zhì).二、題型精講精練二、題型精講精練【典例1】已知函數(shù)SKIPIF1<0,則函數(shù)SKIPIF1<0的零點個數(shù)是(
)A.4 B.5 C.6 D.7分析:令SKIPIF1<0→SKIPIF1<0→作函數(shù)SKIPIF1<0與SKIPIF1<0圖象→兩個交點的橫坐標(biāo)為SKIPIF1<0→SKIPIF1<0、SKIPIF1<0判斷SKIPIF1<0的零點個數(shù).【解析】令SKIPIF1<0,則SKIPIF1<0,作出SKIPIF1<0的圖象和直線SKIPIF1<0,由圖象可得有兩個交點,設(shè)橫坐標(biāo)為SKIPIF1<0,∴SKIPIF1<0.當(dāng)SKIPIF1<0時,有SKIPIF1<0,即有一解;當(dāng)SKIPIF1<0時,有三個解∴綜上,SKIPIF1<0共有4個解,即有4個零點,故選A【題型訓(xùn)練】一、單選題1.(2023春·高三平湖市當(dāng)湖高級中學(xué)校聯(lián)考期中)已知函數(shù)SKIPIF1<0,則函數(shù)SKIPIF1<0零點個數(shù)最多是(
)A.10 B.12 C.14 D.16【答案】B【分析】畫出SKIPIF1<0的圖像,設(shè)SKIPIF1<0,首先討論SKIPIF1<0的根的情況,再分析SKIPIF1<0根的情況即可分析出SKIPIF1<0根的情況,即可得出答案.【詳解】畫出SKIPIF1<0的圖像,如圖所示,由SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,設(shè)SKIPIF1<0,由圖像可知SKIPIF1<0,則SKIPIF1<0,得SKIPIF1<0的圖像,如圖所示,由圖像可知,SKIPIF1<0,①當(dāng)SKIPIF1<0時,即SKIPIF1<0,沒有根;②當(dāng)SKIPIF1<0時,即SKIPIF1<0,此時有3個根SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時,即SKIPIF1<0,有3個根,當(dāng)SKIPIF1<0時,即SKIPIF1<0,有4個根,當(dāng)SKIPIF1<0時,即SKIPIF1<0,有4個根,故SKIPIF1<0時,SKIPIF1<0有11個根;③當(dāng)SKIPIF1<0時,SKIPIF1<0,此時有三個根,SKIPIF1<0,當(dāng)SKIPIF1<0時,即SKIPIF1<0,有4個根,當(dāng)SKIPIF1<0時,即SKIPIF1<0,有4個根,當(dāng)SKIPIF1<0時,即SKIPIF1<0,有4個根,故SKIPIF1<0時,SKIPIF1<0有12個根;綜上所述,SKIPIF1<0最多有12個根,故選:B.2.(2023春·廣東揭陽·高三校聯(lián)考階段練習(xí))函數(shù)SKIPIF1<0,則函數(shù)SKIPIF1<0的零點個數(shù)為(
)A.2 B.3 C.4 D.5【答案】A【分析】令SKIPIF1<0,結(jié)合題意得到SKIPIF1<0的兩根為SKIPIF1<0,SKIPIF1<0,然后根據(jù)函數(shù)SKIPIF1<0的單調(diào)性和最值進(jìn)而求解.【詳解】令SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時,由SKIPIF1<0可得SKIPIF1<0或SKIPIF1<0(舍去);當(dāng)SKIPIF1<0時,由SKIPIF1<0可得SKIPIF1<0,所以SKIPIF1<0的兩根為SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0或SKIPIF1<0,因為SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,若SKIPIF1<0,易知方程無解,若SKIPIF1<0,當(dāng)SKIPIF1<0時,由SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0(舍去),此時方程有唯一的解;當(dāng)SKIPIF1<0時,由SKIPIF1<0,得SKIPIF1<0,此時方程有唯一的解,綜上所述可知函數(shù)SKIPIF1<0的零點個數(shù)為SKIPIF1<0個,故選:A.3.(2023秋·福建廈門·高三統(tǒng)考期末)已知函數(shù)SKIPIF1<0,則方程SKIPIF1<0的實數(shù)解的個數(shù)至多是(
)A.5 B.6 C.7 D.8【答案】B【分析】根據(jù)復(fù)合方程問題,換元SKIPIF1<0,作函數(shù)圖象分別看內(nèi)外層分別討論方程SKIPIF1<0根的個數(shù)情況,即可得答案.【詳解】設(shè)SKIPIF1<0,則SKIPIF1<0化為SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,如圖為函數(shù)SKIPIF1<0的大致圖象:
由圖可得,當(dāng)SKIPIF1<0時,SKIPIF1<0有兩個根SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0,此時方程SKIPIF1<0最多有5個根;當(dāng)SKIPIF1<0時,SKIPIF1<0有三個根SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0或SKIPIF1<0,此時方程SKIPIF1<0最多有6個根;當(dāng)SKIPIF1<0時,SKIPIF1<0有兩個根SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0,此時方程SKIPIF1<0有4個根;當(dāng)SKIPIF1<0時,SKIPIF1<0有一個根SKIPIF1<0,即SKIPIF1<0,此時方程SKIPIF1<0有2個根;綜上,方程SKIPIF1<0的實數(shù)解的個數(shù)至多是6個.故選:B.4.(2023·全國·高三期末)已知函數(shù)SKIPIF1<0,若方程SKIPIF1<0的所有實根之和為4,則實數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由題對SKIPIF1<0取特殊值,利用數(shù)形結(jié)合,排除不合題意的選項即得.【詳解】令SKIPIF1<0,當(dāng)SKIPIF1<0時,方程為SKIPIF1<0,即SKIPIF1<0,作出函數(shù)SKIPIF1<0及SKIPIF1<0的圖象,由圖象可知方程的根為SKIPIF1<0或SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0,作出函數(shù)SKIPIF1<0的圖象,結(jié)合圖象可得所有根的和為5,不合題意,故BD錯誤;當(dāng)SKIPIF1<0時,方程為SKIPIF1<0,即SKIPIF1<0,由圖象可知方程的根SKIPIF1<0,即SKIPIF1<0,結(jié)合函數(shù)SKIPIF1<0的圖象,可得方程有四個根,所有根的和為4,滿足題意,故A錯誤.故選:C.5.(2023秋·河南信陽·高三信陽高中??计谀┮阎瘮?shù)SKIPIF1<0,則函數(shù)SKIPIF1<0的零點個數(shù)是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】確定函數(shù)SKIPIF1<0的值域,利用換元法令SKIPIF1<0,則SKIPIF1<0,則將函數(shù)SKIPIF1<0的零點問題轉(zhuǎn)化為函數(shù)SKIPIF1<0的圖象的交點問題,作函數(shù)SKIPIF1<0圖象,確定其交點以及其橫坐標(biāo)范圍,再結(jié)合SKIPIF1<0的圖象,即可確定SKIPIF1<0的零點個數(shù).【詳解】已知SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,作出其圖象如圖示:可知SKIPIF1<0值域為SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,則函數(shù)SKIPIF1<0的零點問題即為函數(shù)SKIPIF1<0的圖象的交點問題,而SKIPIF1<0,作出函數(shù)SKIPIF1<0的圖象如圖示:可知:SKIPIF1<0的圖象有兩個交點,橫坐標(biāo)分別在SKIPIF1<0之間,不妨設(shè)交點橫坐標(biāo)為SKIPIF1<0,當(dāng)SKIPIF1<0時,由SKIPIF1<0圖象和直線SKIPIF1<0可知,二者有兩個交點,即此時SKIPIF1<0有兩個零點;當(dāng)SKIPIF1<0時,由SKIPIF1<0圖象和直線SKIPIF1<0可知,二者有3個交點,即此時SKIPIF1<0有3個零點,故函數(shù)SKIPIF1<0的零點個數(shù)是5,故選:B.【點睛】本題考查了復(fù)合函數(shù)的零點個數(shù)的確定問題,綜合性較強,涉及到函數(shù)的值域以及分段函數(shù)的性質(zhì)的應(yīng)用和數(shù)形結(jié)合的思想方法,解答的關(guān)鍵是采用換元法將函數(shù)的零點問題轉(zhuǎn)化為函數(shù)圖象的交點問題.6.(2023春·江西吉安·高三吉安一中??茧A段練習(xí))已知函數(shù)SKIPIF1<0,若函數(shù)SKIPIF1<0恰有兩個零點,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】設(shè)SKIPIF1<0,進(jìn)而考慮SKIPIF1<0與SKIPIF1<0的交點,分SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0五種情況討論求解即可.【詳解】設(shè)SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,我們先來考慮SKIPIF1<0與SKIPIF1<0的交點,令SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0與SKIPIF1<0只有1個交點,交點橫坐標(biāo)SKIPIF1<0,此時SKIPIF1<0有1個零點;當(dāng)SKIPIF1<0時,SKIPIF1<0與SKIPIF1<0只有2個交點,交點橫坐標(biāo)SKIPIF1<0,此時SKIPIF1<0有3個零點.當(dāng)SKIPIF1<0時,SKIPIF1<0與SKIPIF1<0只有3個交點,交點橫坐標(biāo)SKIPIF1<0,此時SKIPIF1<0有5個零點.若SKIPIF1<0與SKIPIF1<0相切時,設(shè)切點SKIPIF1<0,所以,切線斜率SKIPIF1<0,解得SKIPIF1<0,故當(dāng)SKIPIF1<0時,SKIPIF1<0與SKIPIF1<0沒有交點,SKIPIF1<0沒有零點.當(dāng)SKIPIF1<0時,SKIPIF1<0與SKIPIF1<0有2個交點,交點橫坐標(biāo)SKIPIF1<0,此時SKIPIF1<0有2個零點.故選:C【點睛】關(guān)鍵點點睛:本題解題的關(guān)鍵在于通過換元SKIPIF1<0,將問題轉(zhuǎn)化為直線SKIPIF1<0與SKIPIF1<0的交點個數(shù),進(jìn)而數(shù)形結(jié)合,分類討論求解即可.7.(2023春·安徽滁州·高一??奸_學(xué)考試)已知函數(shù)SKIPIF1<0,若函數(shù)SKIPIF1<0有兩個零點,則函數(shù)SKIPIF1<0的零點個數(shù)為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】作出函數(shù)SKIPIF1<0的圖象,根據(jù)題意利用圖象分析可得SKIPIF1<0,令SKIPIF1<0并將問題轉(zhuǎn)化為SKIPIF1<0與SKIPIF1<0交點橫坐標(biāo)t對應(yīng)x值的個數(shù),結(jié)合數(shù)形結(jié)合法求零點個數(shù)即可.【詳解】當(dāng)SKIPIF1<0時,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,則SKIPIF1<0;當(dāng)SKIPIF1<0時,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.作出函數(shù)SKIPIF1<0的圖象如圖所示,令SKIPIF1<0,則SKIPIF1<0,若函數(shù)SKIPIF1<0有兩個零點,則函數(shù)SKIPIF1<0的圖象與直線SKIPIF1<0有兩個交點,所以SKIPIF1<0,解得SKIPIF1<0,故SKIPIF1<0,令SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0或SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0,則SKIPIF1<0或SKIPIF1<0,由圖象可得SKIPIF1<0有SKIPIF1<0個實數(shù)根,SKIPIF1<0有SKIPIF1<0個實數(shù)根,故SKIPIF1<0的零點個數(shù)為SKIPIF1<0,故選:B.8.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0(SKIPIF1<0為自然對數(shù)的底數(shù)),則函數(shù)SKIPIF1<0的零點個數(shù)為(
)A.3 B.5 C.7 D.9【答案】C【分析】作出函數(shù)SKIPIF1<0的圖象,可設(shè)SKIPIF1<0,可得SKIPIF1<0,判斷SKIPIF1<0與SKIPIF1<0交點個數(shù),進(jìn)而將SKIPIF1<0的零點個數(shù)問題轉(zhuǎn)化為函數(shù)SKIPIF1<0的圖象交點個數(shù)問題,數(shù)形結(jié)合,可得答案.【詳解】設(shè)SKIPIF1<0,令SKIPIF1<0可得:SKIPIF1<0,對于SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0處切線的斜率值為SKIPIF1<0,設(shè)SKIPIF1<0與SKIPIF1<0相切于點SKIPIF1<0,SKIPIF1<0切線斜率SKIPIF1<0,則切線方程為:SKIPIF1<0,即SKIPIF1<0,解得:SKIPIF1<0;由于SKIPIF1<0,故作出SKIPIF1<0與SKIPIF1<0圖象如下圖所示,SKIPIF1<0與SKIPIF1<0有四個不同交點,即SKIPIF1<0與SKIPIF1<0有四個不同交點,設(shè)三個交點為SKIPIF1<0,由圖象可知:SKIPIF1<0,作出函數(shù)SKIPIF1<0的圖象如圖,由此可知SKIPIF1<0與SKIPIF1<0無交點,與SKIPIF1<0有三個不同交點,與SKIPIF1<0各有兩個不同交點,SKIPIF1<0的零點個數(shù)為7個,故選:C【點睛】方法點睛:解決此類復(fù)合函數(shù)的零點問題,常常采用換元的方法,將零點問題轉(zhuǎn)化為函數(shù)圖象的交點問題,數(shù)形結(jié)合,即可解決.9.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0,函數(shù)SKIPIF1<0恰有5個零點,則m的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由題意可先做出函數(shù)SKIPIF1<0的大致圖象,利用數(shù)形結(jié)合和分類討論,即可確定m的取值范圍.【詳解】當(dāng)SKIPIF1<0時,SKIPIF1<0.由SKIPIF1<0,得SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,故SKIPIF1<0的大致圖象如圖所示.設(shè)SKIPIF1<0,則SKIPIF1<0,由圖可知當(dāng)SKIPIF1<0時,SKIPIF1<0有且只有1個實根,則SKIPIF1<0最多有3個不同的實根,不符合題意.當(dāng)SKIPIF1<0時,SKIPIF1<0的解是SKIPIF1<0,SKIPIF1<0.SKIPIF1<0有2個不同的實根,SKIPIF1<0有2個不同的實根,則SKIPIF1<0有4個不同的實根,不符合題意.當(dāng)SKIPIF1<0時,SKIPIF1<0有3個不同的實根SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.SKIPIF1<0有2個不同的實根,SKIPIF1<0有2個不同的實根,SKIPIF1<0有3個不同的實根,則SKIPIF1<0有7個不同的實根,不符合題意.當(dāng)SKIPIF1<0時,SKIPIF1<0有2個不同的實根SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0.SKIPIF1<0有2個不同的實根,SKIPIF1<0有3個不同的實根,則SKIPIF1<0有5個不同的實根,符合題意.當(dāng)SKIPIF1<0時,SKIPIF1<0有2個不同的實根SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0有2個不同的實根,SKIPIF1<0,有2個不同的實根,則SKIPIF1<0有4個不同的實根,不符合題意.當(dāng)SKIPIF1<0時,SKIPIF1<0有且只有1個實根,則SKIPIF1<0最多有3個不同的實根,不符合題意,綜上,m的取值范圍是SKIPIF1<0.故選:C.【點睛】方法點睛:對于函數(shù)零點問題,若能夠畫圖時可作出函數(shù)圖像,利用數(shù)形結(jié)合與分類討論思想,即可求解.本題中,由圖看出,m的討論應(yīng)有SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0這幾種情況,也是解題關(guān)鍵.二、填空題10.(2023秋·貴州畢節(jié)·高三統(tǒng)考期末)已知函數(shù)SKIPIF1<0,則函數(shù)SKIPIF1<0的所有零點之和為___________.【答案】SKIPIF1<0【分析】利用分段函數(shù),分類討論,即可求出函數(shù)SKIPIF1<0的所有零點,從而得解.【詳解】設(shè)SKIPIF1<0,則SKIPIF1<0,①當(dāng)SKIPIF1<0時,SKIPIF1<0,得SKIPIF1<0;②當(dāng)SKIPIF1<0時,SKIPIF1<0,得SKIPIF1<0;綜上所述:若SKIPIF1<0,則SKIPIF1<0或SKIPIF1<0.故SKIPIF1<0或SKIPIF1<0,則有:①由SKIPIF1<0,可得SKIPIF1<0或SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0;②由SKIPIF1<0,可得SKIPIF1<0或SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0;綜上所述:函數(shù)SKIPIF1<0的所有零點為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,4.故所有零點的和為SKIPIF1<0.故答案為:SKIPIF1<0.【點睛】關(guān)鍵點點睛:根據(jù)題意分SKIPIF1<0和SKIPIF1<0兩種情況討論,運算求解,11.(2023·福建福州·高三福州三中??茧A段練習(xí))已知函數(shù)SKIPIF1<0則函數(shù)SKIPIF1<0的零點個數(shù)為___________.【答案】5【分析】方法一:令SKIPIF1<0,將問題轉(zhuǎn)化為SKIPIF1<0,根據(jù)圖象分析得SKIPIF1<0有兩個零點為SKIPIF1<0,SKIPIF1<0,從而考慮SKIPIF1<0與SKIPIF1<0根的個數(shù)即可求解;方法二:利用導(dǎo)函數(shù)以及零點的存在性定理討論SKIPIF1<0的根分別為SKIPIF1<0.SKIPIF1<0,從而用數(shù)形結(jié)合的方法確定SKIPIF1<0與SKIPIF1<0根的個數(shù)即可求解.【詳解】方法一:SKIPIF1<0大致圖象如下令SKIPIF1<0SKIPIF1<0所以SKIPIF1<0式方程的一個根SKIPIF1<0,再由圖可知SKIPIF1<0式方程的另一個根SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0與SKIPIF1<0的圖象有2個交點,所以SKIPIF1<0有2個實根,當(dāng)SKIPIF1<0時,SKIPIF1<0與SKIPIF1<0的圖象有3個交點,所以SKIPIF1<0有3個實根,SKIPIF1<0共有5個零點.方法二:令SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0單調(diào)遞減,SKIPIF1<0所以SKIPIF1<0在SKIPIF1<0有且僅有一個零點SKIPIF1<0,其中SKIPIF1<0,則SKIPIF1<0有且僅有一個零點SKIPIF1<0,其中SKIPIF1<0.SKIPIF1<0時,SKIPIF1<0時,SKIPIF1<0SKIPIF1<0在SKIPIF1<0單調(diào)遞增,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0有且僅有一個零點SKIPIF1<0,SKIPIF1<0,SKIPIF1<0時,結(jié)合函數(shù)圖象可知SKIPIF1<0無解,SKIPIF1<0有兩個根SKIPIF1<0因為SKIPIF1<0,所以由圖象可得SKIPIF1<0與SKIPIF1<0的圖象有2個交點,所以SKIPIF1<0有2個實根,當(dāng)SKIPIF1<0時,SKIPIF1<0與SKIPIF1<0的圖象有3個交點,所以SKIPIF1<0有3個實根,SKIPIF1<0共有5個零點.故答案為:5.12.(2023秋·廣東深圳·高三深圳市高級中學(xué)??茧A段練習(xí))已知SKIPIF1<0,SKIPIF1<0為三次函數(shù),其圖象如圖所示.若SKIPIF1<0有9個零點,則SKIPIF1<0的取值范圍是___________.【答案】SKIPIF1<0【分析】根據(jù)SKIPIF1<0的圖象判斷與SKIPIF1<0在不同m取值范圍下的交點個數(shù),并確定交點橫坐標(biāo)的范圍,結(jié)合SKIPIF1<0解析式求橫坐標(biāo)關(guān)于m的表達(dá)式,結(jié)合題圖及SKIPIF1<0有9個零點,列不等式組求m范圍.【詳解】由題設(shè)SKIPIF1<0,其圖象如下,當(dāng)SKIPIF1<0,SKIPIF1<0與SKIPIF1<0只有一個交點且SKIPIF1<0;當(dāng)SKIPIF1<0,SKIPIF1<0與SKIPIF1<0有兩個交點且SKIPIF1<0或SKIPIF1<0;當(dāng)SKIPIF1<0,SKIPIF1<0與SKIPIF1<0有三個交點且SKIPIF1<0;當(dāng)SKIPIF1<0,SKIPIF1<0與SKIPIF1<0有兩個交點且SKIPIF1<0;由題圖,要使SKIPIF1<0,SKIPIF1<0有9個零點,則SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0有SKIPIF1<0,根據(jù)SKIPIF1<0解析式:SKIPIF1<0,綜上,SKIPIF1<0,可得SKIPIF1<0,故SKIPIF1<0.故答案為:SKIPIF1<0【點睛】關(guān)鍵點點睛:根據(jù)SKIPIF1<0、SKIPIF1<0的圖象及SKIPIF1<0零點個數(shù),確定SKIPIF1<0時函數(shù)SKIPIF1<0對應(yīng)零點的范圍,進(jìn)而求各零點關(guān)于m的表達(dá)式,列不等式求參數(shù)范圍.13.(2023秋·江蘇泰州·高三統(tǒng)考期末)已知函數(shù)SKIPIF1<0,若關(guān)于SKIPIF1<0的方程SKIPIF1<0恰有三個實數(shù)解,則實數(shù)SKIPIF1<0的取值集合為______.【答案】SKIPIF1<0【分析】當(dāng)SKIPIF1<0時,易知SKIPIF1<0無解;當(dāng)SKIPIF1<0時,設(shè)SKIPIF1<0,采用數(shù)形結(jié)合的方式可知SKIPIF1<0,可知SKIPIF1<0無解;當(dāng)SKIPIF1<0時,設(shè)SKIPIF1<0,采用數(shù)形結(jié)合的方式可知SKIPIF1<0,通過討論SKIPIF1<0的范圍可確定SKIPIF1<0或SKIPIF1<0的取值,由此可構(gòu)造方程求得SKIPIF1<0的值.【詳解】SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0,此時SKIPIF1<0無解,不合題意;當(dāng)SKIPIF1<0時,設(shè)SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0的大致圖象如下圖所示,則SKIPIF1<0對應(yīng)的兩根為SKIPIF1<0,此時SKIPIF1<0與SKIPIF1<0無解,即方程SKIPIF1<0無解,不合題意;當(dāng)SKIPIF1<0時,設(shè)SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0的大致圖象如下圖所示,則SKIPIF1<0對應(yīng)的兩根為SKIPIF1<0,若SKIPIF1<0恰有三個實數(shù)解,則SKIPIF1<0和SKIPIF1<0與SKIPIF1<0共有SKIPIF1<0個不同的交點,①當(dāng)SKIPIF1<0時,SKIPIF1<0與SKIPIF1<0有兩個不同交點,如圖所示,SKIPIF1<0與SKIPIF1<0有且僅有一個交點,則SKIPIF1<0,SKIPIF1<0,解得:SKIPIF1<0;②當(dāng)SKIPIF1<0時,SKIPIF1<0與SKIPIF1<0有兩個不同交點,SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 現(xiàn)代農(nóng)場的土地治理策略
- 機械制造行業(yè)技術(shù)創(chuàng)新與發(fā)展趨勢
- 醫(yī)療護理醫(yī)學(xué)培訓(xùn) 針灸學(xué)(第七版)課件
- 構(gòu)建可持續(xù)的醫(yī)養(yǎng)結(jié)合服務(wù)體系
- 現(xiàn)代學(xué)徒制下師徒關(guān)系的培養(yǎng)策略與挑戰(zhàn)
- 游戲化思維在教育與培訓(xùn)中的應(yīng)用探索
- 特殊食材針對胃腸健康的個性化食物建議
- 環(huán)保產(chǎn)業(yè)教育與培訓(xùn)培養(yǎng)綠色人才的新模式
- 現(xiàn)代鐵路貨運系統(tǒng)的安全性技術(shù)
- 環(huán)境保護與大數(shù)據(jù)跨界融合的實踐
- 帶看協(xié)議書范本(2篇)
- 2025-2030年中國科教玩具行業(yè)發(fā)展動態(tài)及前景趨勢分析報告新版
- 馬匹寄養(yǎng)協(xié)議書
- 股權(quán)投資項目建議書
- 2025年北京廣播電視臺招聘(140人)歷年高頻重點提升(共500題)附帶答案詳解
- 2024復(fù)工復(fù)產(chǎn)安全培訓(xùn)
- 中學(xué)生宿舍日常與管理
- 2025中國南光集團限公司校園招聘高頻重點提升(共500題)附帶答案詳解
- 江蘇省蘇州市2024-2025學(xué)年第一學(xué)期八年級數(shù)學(xué)期末模擬卷(一)(無答案)
- 【歷史】秦漢時期:統(tǒng)一多民族國家的建立和鞏固復(fù)習(xí)課件-2024-2025學(xué)年統(tǒng)編版七年級歷史上冊
- 社區(qū)中心及衛(wèi)生院65歲及以上老年人健康體檢分析報告模板
評論
0/150
提交評論