新高考數(shù)學(xué)二輪復(fù)習(xí)熱點(diǎn)2-2 函數(shù)的最值(值域)及應(yīng)用(8題型+滿分技巧+限時(shí)檢測(cè))(解析版)_第1頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)熱點(diǎn)2-2 函數(shù)的最值(值域)及應(yīng)用(8題型+滿分技巧+限時(shí)檢測(cè))(解析版)_第2頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)熱點(diǎn)2-2 函數(shù)的最值(值域)及應(yīng)用(8題型+滿分技巧+限時(shí)檢測(cè))(解析版)_第3頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)熱點(diǎn)2-2 函數(shù)的最值(值域)及應(yīng)用(8題型+滿分技巧+限時(shí)檢測(cè))(解析版)_第4頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)熱點(diǎn)2-2 函數(shù)的最值(值域)及應(yīng)用(8題型+滿分技巧+限時(shí)檢測(cè))(解析版)_第5頁(yè)
已閱讀5頁(yè),還剩19頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

熱點(diǎn)2-3函數(shù)的最值(值域)及應(yīng)用函數(shù)的值域是函數(shù)概念中三要素之一,是高考中的必考內(nèi)容,具有較強(qiáng)的綜合性,貫穿整個(gè)高中數(shù)學(xué)的始終。在高考試卷中的形式千變?nèi)f化,但萬變不離其宗,真正實(shí)現(xiàn)了常考常新的考試要求,考生在復(fù)習(xí)過程中首先要掌握一些簡(jiǎn)單函數(shù)的值域求解的基本方法,其次要多看多練在其他板塊中涉及值域類型的內(nèi)容?!绢}型1單調(diào)性法求函數(shù)的最值(值域)】滿分技巧函數(shù)單調(diào)性法:確定函數(shù)在定義域上的單調(diào)性,根據(jù)函數(shù)單調(diào)性求出函數(shù)值域(或最值)(1)基本初等函數(shù)如一次函數(shù)、二次函數(shù)、反比例函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù)可直接判斷函數(shù)的單調(diào)性,從而求得值域;(2)可根據(jù)單調(diào)性的運(yùn)算性質(zhì)判斷函數(shù)的單調(diào)性。(3)對(duì)于復(fù)合函數(shù),可根據(jù)“同增異減”判斷函數(shù)的單調(diào)性?!纠?】(2023·寧夏固原·高三??茧A段練習(xí))函數(shù)SKIPIF1<0的值域是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】B【解析】函數(shù)SKIPIF1<0的圖象是一條開口向下的拋物線,對(duì)稱軸為SKIPIF1<0,所以該函數(shù)在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,即函數(shù)的值域?yàn)镾KIPIF1<0.故選:B.【變式1-1】(2023·廣東中山·高三??茧A段練習(xí))函數(shù)SKIPIF1<0,SKIPIF1<0的值域?yàn)椤敬鸢浮縎KIPIF1<0【解析】因?yàn)镾KIPIF1<0和SKIPIF1<0在SKIPIF1<0上均為減函數(shù),所以SKIPIF1<0在SKIPIF1<0上為減函數(shù),所以SKIPIF1<0,即SKIPIF1<0,所以值域?yàn)镾KIPIF1<0.【變式1-2】(2023·廣東深圳·高三珠海市第一中學(xué)校聯(lián)考階段練習(xí))已知函數(shù)SKIPIF1<0,則SKIPIF1<0的最大值為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】B【解析】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,此時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,此時(shí),SKIPIF1<0,綜上可知,SKIPIF1<0的最大值為SKIPIF1<0.故選:B.【變式1-3】(2023·河南焦作·高三博愛縣第一中學(xué)校考階段練習(xí))已知函數(shù)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最大值為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.1【答案】A【解析】由“對(duì)勾函數(shù)”的性質(zhì)可得SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,故選:A.【變式1-4】(2023·海南??凇ずD先A僑中學(xué)??级#┮阎瘮?shù)SKIPIF1<0是SKIPIF1<0上的單調(diào)函數(shù),且SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上的值域?yàn)椋ǎ〢.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】D【解析】因?yàn)镾KIPIF1<0是SKIPIF1<0上的單調(diào)函數(shù),所以存在唯一的SKIPIF1<0,使得SKIPIF1<0,則SKIPIF1<0.因?yàn)镾KIPIF1<0為SKIPIF1<0上的增函數(shù),且SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.因?yàn)镾KIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,得SKIPIF1<0.故選:D.【題型2圖象法求函數(shù)的最值(值域)】滿分技巧畫出函數(shù)的圖象,根據(jù)圖象確定函數(shù)的最大值與最小值,常見于含絕對(duì)值的函數(shù)?!纠?】(2023·全國(guó)·模擬預(yù)測(cè))已知函數(shù)SKIPIF1<0.(1)畫出SKIPIF1<0的圖像,并直接寫出SKIPIF1<0的值域;(2)若不等式SKIPIF1<0恒成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.【答案】(1)圖象見解析,函數(shù)SKIPIF1<0的值域是SKIPIF1<0;(2)SKIPIF1<0或SKIPIF1<0.【解析】(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0的圖象如圖:由圖可知,函數(shù)SKIPIF1<0的值域是SKIPIF1<0.(2)若不等式SKIPIF1<0恒成立,則SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0.【變式2-1】(2023·河南新鄉(xiāng)·高三校考階段練習(xí))對(duì)SKIPIF1<0,用SKIPIF1<0表示SKIPIF1<0,SKIPIF1<0中的較大者,記為SKIPIF1<0,若函數(shù)SKIPIF1<0,則SKIPIF1<0的最小值為.【答案】SKIPIF1<0【解析】當(dāng)SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,函數(shù)圖象如圖所示:由圖可得,函數(shù)SKIPIF1<0在SKIPIF1<0,SKIPIF1<0上遞減,在SKIPIF1<0上遞增,所以SKIPIF1<0.【變式2-2】(2023·重慶渝中·高三重慶巴蜀中學(xué)??茧A段練習(xí))定義在SKIPIF1<0上的函數(shù)SKIPIF1<0滿足SKIPIF1<0,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的值域?yàn)椋ǎ〢.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】B【解析】由函數(shù)SKIPIF1<0滿足SKIPIF1<0,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0當(dāng)SKIPIF1<0時(shí),可得SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),可得SKIPIF1<0,所以在區(qū)間SKIPIF1<0上,可得SKIPIF1<0,作函數(shù)SKIPIF1<0的圖象,如圖所示,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故選:B.【變式2-3】(2023·北京·高三北京四中??计谥校┮阎猄KIPIF1<0,若實(shí)數(shù)SKIPIF1<0,則SKIPIF1<0在區(qū)間SKIPIF1<0上的最大值的取值范圍是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】C【解析】作出函數(shù)SKIPIF1<0的圖象如圖:因?yàn)镾KIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0表示函數(shù)SKIPIF1<0上的點(diǎn)到直線SKIPIF1<0的距離,由圖可知,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最大值,最大值為SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,結(jié)合圖象可知,在區(qū)間SKIPIF1<0上總有SKIPIF1<0,所以,此時(shí)SKIPIF1<0的最大值為SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),由圖可知,SKIPIF1<0,且SKIPIF1<0.綜上,SKIPIF1<0在區(qū)間SKIPIF1<0上的最大值的取值范圍為SKIPIF1<0.故選:C【題型3換元法求函數(shù)的最值(值域)】滿分技巧換元法:利用換元法將函數(shù)轉(zhuǎn)化為易求值域的函數(shù),常用的換元有(1)SKIPIF1<0或SKIPIF1<0的結(jié)構(gòu),可用“SKIPIF1<0”換元;(2)SKIPIF1<0(SKIPIF1<0均為常數(shù),SKIPIF1<0),可用“SKIPIF1<0”換元;(3)SKIPIF1<0型的函數(shù),可用“SKIPIF1<0”或“SKIPIF1<0”換元;【例3】(2023·廣東河源·高三校聯(lián)考開學(xué)考試)函數(shù)SKIPIF1<0的最大值為.【答案】SKIPIF1<0【解析】令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,由二次函數(shù)的性質(zhì)知,對(duì)稱軸為SKIPIF1<0,開口向下,所以函數(shù)SKIPIF1<0在SKIPIF1<0單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減.所以當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0取得最大值為SKIPIF1<0.【變式3-1】(2023·山西呂梁·高三統(tǒng)考階段練習(xí))函數(shù)SKIPIF1<0的最大值為()A.4B.2C.SKIPIF1<0D.SKIPIF1<0【答案】C【解析】由解析式易知SKIPIF1<0的定義域?yàn)镾KIPIF1<0,令SKIPIF1<0(SKIPIF1<0),所以SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0可知,SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0(SKIPIF1<0),則SKIPIF1<0,所以SKIPIF1<0的最大值為SKIPIF1<0.故選:C.【變式3-2】(2023·全國(guó)·高三專題練習(xí))求函數(shù)SKIPIF1<0的值域.【答案】SKIPIF1<0【解析】由SKIPIF1<0,可令SKIPIF1<0原函數(shù)可整理為:SKIPIF1<0因?yàn)镾KIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0;當(dāng)SKIPIF1<0,所以函數(shù)SKIPIF1<0的值域?yàn)镾KIPIF1<0.【變式3-3】(2023·全國(guó)·高三專題練習(xí))求函數(shù)SKIPIF1<0的值域.【答案】SKIPIF1<0【解析】因?yàn)楹瘮?shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,即SKIPIF1<0,設(shè)SKIPIF1<0,原函數(shù)轉(zhuǎn)化為:SKIPIF1<0因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0所以函數(shù)SKIPIF1<0的值域?yàn)镾KIPIF1<0.【題型4分離常數(shù)法求函數(shù)的最值(值域)】滿分技巧分離常數(shù)法:(1)形如SKIPIF1<0的函數(shù),可分離為SKIPIF1<0,然后求值域;(2)形如SKIPIF1<0,將分子配成分母的一元二次,分子分母同時(shí)除以分母,分離為SKIPIF1<0;(3)形如SKIPIF1<0,將分母配成分子的一元二次,分子分母同時(shí)除以分母,分離為SKIPIF1<0【例4】(2023·全國(guó)·高三專題練習(xí))函數(shù)SKIPIF1<0的值域()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】D【解析】依題意,SKIPIF1<0,其中SKIPIF1<0的值域?yàn)镾KIPIF1<0,故函數(shù)SKIPIF1<0的值域?yàn)镾KIPIF1<0,故選D.【變式4-1】(2023·全國(guó)·高三專題練習(xí))求函數(shù)SKIPIF1<0的值域.【答案】SKIPIF1<0【解析】SKIPIF1<0SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,由對(duì)勾函數(shù)的值域可知,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.綜上所述,函數(shù)SKIPIF1<0的值域?yàn)镾KIPIF1<0.【變式4-2】(2023·江蘇鎮(zhèn)江·高三呂叔湘中學(xué)校考階段練習(xí))若SKIPIF1<0,則函數(shù)SKIPIF1<0的值域是.【答案】SKIPIF1<0【解析】∵SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)取等號(hào);故函數(shù)的值域?yàn)镾KIPIF1<0.【變式4-3】(2023·全國(guó)·高三對(duì)口高考)函數(shù)SKIPIF1<0的值域是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】C【解析】由SKIPIF1<0可得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),故SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立,而SKIPIF1<0恒成立,故SKIPIF1<0,故SKIPIF1<0的值域?yàn)镾KIPIF1<0,故選:C【題型5判別式法求函數(shù)的最值(值域)】滿分技巧形如SKIPIF1<0或SKIPIF1<0的函數(shù)求值域,可將函數(shù)轉(zhuǎn)化為關(guān)于SKIPIF1<0的方程SKIPIF1<0,利用二次項(xiàng)系數(shù)不為0,判別式SKIPIF1<0或二次項(xiàng)系數(shù)為0,一次方程有解得出函數(shù)的值域?!纠?】(2023·河南平頂山·高三階段練習(xí))若函數(shù)SKIPIF1<0的最大值為SKIPIF1<0,最小值為SKIPIF1<0,則SKIPIF1<0()A.4B.6C.7D.8【答案】B【解析】設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0時(shí),因?yàn)镾KIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0且SKIPIF1<0,綜上SKIPIF1<0,最大值是SKIPIF1<0,最小值是SKIPIF1<0,和為6.故選:B.【變式5-1】(2022·陜西·高三校聯(lián)考階段練習(xí))函數(shù)SKIPIF1<0的值域是.【答案】SKIPIF1<0【解析】由函數(shù)SKIPIF1<0可知SKIPIF1<0所以SKIPIF1<0,整理得:SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,符合;當(dāng)SKIPIF1<0時(shí),則關(guān)于SKIPIF1<0的一元二次方程在SKIPIF1<0有根所以SKIPIF1<0整理得:SKIPIF1<0且SKIPIF1<0,解得:SKIPIF1<0,綜上得:SKIPIF1<0.【變式5-2】(2022·全國(guó)·高三專題練習(xí))求函數(shù)SKIPIF1<0的值域.【答案】SKIPIF1<0【解析】因?yàn)镾KIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),原函數(shù)化為SKIPIF1<0,所以SKIPIF1<0,整理得SKIPIF1<0,解得即SKIPIF1<0或SKIPIF1<0,∴綜上,函數(shù)SKIPIF1<0的值域?yàn)镾KIPIF1<0.【變式5-3】(2023·廣東茂名·統(tǒng)考二模)已知實(shí)數(shù)a,b滿足SKIPIF1<0,則SKIPIF1<0的最小值是.【答案】SKIPIF1<0【解析】因?yàn)閷?shí)數(shù)a,b滿足SKIPIF1<0,所以SKIPIF1<0,且SKIPIF1<0.令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,代入SKIPIF1<0,則有SKIPIF1<0,所以關(guān)于b的一元二次方程SKIPIF1<0有正根,只需SKIPIF1<0,解得:SKIPIF1<0.此時(shí),關(guān)于b的一元二次方程SKIPIF1<0的兩根SKIPIF1<0,所以兩根同號(hào),只需SKIPIF1<0解得SKIPIF1<0.綜上所述:SKIPIF1<0.即SKIPIF1<0的最小值是SKIPIF1<0(此時(shí)SKIPIF1<0,解得:SKIPIF1<0).【題型6幾何法求函數(shù)的最值(值域)】滿分技巧分析代數(shù)式的結(jié)構(gòu),一般情況表示的斜率、截距、距離等幾何意義?!纠?】(2023·河北·校聯(lián)考三模)函數(shù)SKIPIF1<0的值域是.【答案】SKIPIF1<0【解析】函數(shù)SKIPIF1<0的幾何意義是在直角坐標(biāo)平面內(nèi)定點(diǎn)SKIPIF1<0與動(dòng)點(diǎn)SKIPIF1<0連線的斜率,易知?jiǎng)狱c(diǎn)SKIPIF1<0在以SKIPIF1<0為圓心,1為半徑的圓除SKIPIF1<0以外的點(diǎn)上,易知直線SKIPIF1<0的斜率存在,設(shè)為SKIPIF1<0,則直線SKIPIF1<0為SKIPIF1<0即SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,即值域?yàn)镾KIPIF1<0.【變式6-1】(2023·全國(guó)·高三專題練習(xí))函數(shù)SKIPIF1<0的值域?yàn)椤敬鸢浮縎KIPIF1<0【解析】SKIPIF1<0表示點(diǎn)SKIPIF1<0與點(diǎn)SKIPIF1<0連線的斜率,SKIPIF1<0的軌跡為圓SKIPIF1<0,SKIPIF1<0表示圓SKIPIF1<0上的點(diǎn)與點(diǎn)SKIPIF1<0連線的斜率,由圖象可知:過SKIPIF1<0作圓SKIPIF1<0的切線,斜率必然存在,則設(shè)過SKIPIF1<0的圓SKIPIF1<0的切線方程為SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0圓心SKIPIF1<0到切線的距離SKIPIF1<0,解得:SKIPIF1<0,結(jié)合圖象可知:圓SKIPIF1<0上的點(diǎn)與點(diǎn)SKIPIF1<0連線的斜率的取值范圍為SKIPIF1<0,即SKIPIF1<0的值域?yàn)镾KIPIF1<0.【變式6-2】(2023·全國(guó)·高三專題練習(xí))函數(shù)SKIPIF1<0的值域?yàn)?【答案】SKIPIF1<0【解析】由題設(shè)SKIPIF1<0,所以所求值域化為求SKIPIF1<0軸上點(diǎn)SKIPIF1<0到SKIPIF1<0與SKIPIF1<0距離差的范圍,如下圖示,由圖知:SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0三點(diǎn)共線且SKIPIF1<0在SKIPIF1<0之間時(shí),左側(cè)等號(hào)成立;當(dāng)SKIPIF1<0三點(diǎn)共線且SKIPIF1<0在SKIPIF1<0之間時(shí),右側(cè)等號(hào)成立,顯然不存在此情況;所以SKIPIF1<0,即SKIPIF1<0,所以函數(shù)值域?yàn)镾KIPIF1<0.【變式6-3】(2023·陜西銅川·??家荒#┤鬝KIPIF1<0,則函數(shù)SKIPIF1<0的值域是.【答案】SKIPIF1<0【解析】SKIPIF1<0SKIPIF1<0SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0.由于SKIPIF1<0,則SKIPIF1<0,且SKIPIF1<0.設(shè)SKIPIF1<0,由該式的幾何意義得下面圖形,SKIPIF1<0,其中直線SKIPIF1<0為圓的切線,由圖知SKIPIF1<0.由圖知SKIPIF1<0,在SKIPIF1<0中,有SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.所以,SKIPIF1<0,故所求值域?yàn)镾KIPIF1<0.【題型7導(dǎo)數(shù)法求函數(shù)的最值(值域)】滿分技巧對(duì)可導(dǎo)函數(shù)SKIPIF1<0求導(dǎo),令SKIPIF1<0,求出極值點(diǎn),判斷函數(shù)單調(diào)性;如果定義域是閉區(qū)間,則函數(shù)最值一定取在極值點(diǎn)處或區(qū)間端點(diǎn)處;如果定義域是開區(qū)間且函數(shù)存在最值,則函數(shù)最值一定取在極值點(diǎn)處?!纠?】(2023·全國(guó)·模擬預(yù)測(cè))已知函數(shù)SKIPIF1<0,則SKIPIF1<0的最小值為.【答案】SKIPIF1<0【解析】因?yàn)镾KIPIF1<0,可得SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,所以函數(shù)SKIPIF1<0,即函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,又因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,則SKIPIF1<0.【變式7-1】(2023·上海虹口·高三??计谥校┖瘮?shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的最大值是.【答案】SKIPIF1<0【解析】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0;令SKIPIF1<0,得SKIPIF1<0;故函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0.【變式7-2】(2023·河南·高三校聯(lián)考階段練習(xí))函數(shù)SKIPIF1<0的最小值為.【答案】SKIPIF1<0【解析】由函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,1.若SKIPIF1<0,函數(shù)SKIPIF1<0,此時(shí)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,此時(shí)函數(shù)的最小值為SKIPIF1<0;2.若SKIPIF1<0,函數(shù)SKIPIF1<0,可得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增;所以此時(shí)SKIPIF1<0的最小值為SKIPIF1<0;又由SKIPIF1<0,即SKIPIF1<0,所以函數(shù)的最小值為SKIPIF1<0.【變式7-3】(2023·廣西玉林·校聯(lián)考模擬預(yù)測(cè))已知正實(shí)數(shù)x,y滿足SKIPIF1<0,則SKIPIF1<0的最大值為()A.SKIPIF1<0B.0C.1D.2【答案】B【解析】因?yàn)檎龑?shí)數(shù)x,y滿足SKIPIF1<0,所以SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,由SKIPIF1<0得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,記SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,記SKIPIF1<0,則SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,且SKIPIF1<0,所以在SKIPIF1<0上,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0單調(diào)遞增,在SKIPIF1<0上,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0單調(diào)遞減,所以SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0的最大值為SKIPIF1<0.故選:B【題型8已知函數(shù)的最值(值域)求參數(shù)】滿分技巧已知函數(shù)的最值求參數(shù)范圍時(shí),要視參數(shù)為已知數(shù),結(jié)合函數(shù)值域(或最值)的求法,得到函數(shù)的最值(含有參數(shù)),再與給出的函數(shù)最值作比較,求出參數(shù)范圍。【例8】(2023·河北滄州·高三泊頭市第一中學(xué)校聯(lián)考階段練習(xí))已知函數(shù)SKIPIF1<0,若SKIPIF1<0的值域?yàn)镾KIPIF1<0,則實(shí)數(shù)SKIPIF1<0的取值范圍是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】A【解析】若函數(shù)SKIPIF1<0的值域?yàn)镾KIPIF1<0,則SKIPIF1<0要取遍所有的正數(shù).所以SKIPIF1<0或SKIPIF1<0,解得SKIPIF1<0,即實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故選:A.【變式8-1】(2023·上海青浦·統(tǒng)考一模)已知函數(shù)SKIPIF1<0的值域?yàn)镾KIPIF1<0,則實(shí)數(shù)SKIPIF1<0的取值范圍為.【答案】SKIPIF1<0【解析】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)SKIPIF1<0,當(dāng)SKIPIF1<0且SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)SKIPIF1<0,且SKIPIF1<0,所以不滿足;當(dāng)SKIPIF1<0且SKIPIF1<0時(shí),SKIPIF1<0,由對(duì)勾函數(shù)單調(diào)性可知SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,此時(shí)SKIPIF1<0,若要滿足SKIPIF1<0的值域?yàn)镾KIPIF1<0,只需要SKIPIF1<0,解得SKIPIF1<0;當(dāng)SKIPIF1<0且SKIPIF1<0時(shí),因?yàn)镾KIPIF1<0均在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,且SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,所以此時(shí)SKIPIF1<0,此時(shí)顯然能滿足SKIPIF1<0的值域?yàn)镾KIPIF1<0;綜上可知,SKIPIF1<0的取值范圍是SKIPIF1<0.【變式8-2】(2023·湖北武漢·統(tǒng)考一模)已知函數(shù)SKIPIF1<0若SKIPIF1<0的值域?yàn)镾KIPIF1<0,則實(shí)數(shù)SKIPIF1<0的取值范圍是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】B【解析】根據(jù)題意可得,在同一坐標(biāo)系下分別畫出函數(shù)SKIPIF1<0和SKIPIF1<0的圖象如下圖所示:由圖可知,當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),兩圖象相交,若SKIPIF1<0的值域是SKIPIF1<0,以實(shí)數(shù)SKIPIF1<0為分界點(diǎn),可進(jìn)行如下分類討論:當(dāng)SKIPIF1<0時(shí),顯然兩圖象之間不連續(xù),即值域不為SKIPIF1<0;同理當(dāng)SKIPIF1<0,值域也不是SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),兩圖象相接或者有重合的部分,此時(shí)值域是SKIPIF1<0;綜上可知,實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故選:B【變式8-3】(2022·河北衡水·高三校聯(lián)考階段練習(xí))已知SKIPIF1<0的最小值為2,則SKIPIF1<0的取值范圍為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】D【解析】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,又因?yàn)镾KIPIF1<0的最小值為2,所以需要當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立,所以SKIPIF1<0在SKIPIF1<0恒成立,所以SKIPIF1<0在SKIPIF1<0恒成立,即SKIPIF1<0在SKIPIF1<0恒成立,令SKIPIF1<0,則SKIPIF1<0,原式轉(zhuǎn)化為SKIPIF1<0在SKIPIF1<0恒成立,SKIPIF1<0是二次函數(shù),開口向下,對(duì)稱軸為直線SKIPIF1<0,所以在SKIPIF1<0上SKIPIF1<0最大值為SKIPIF1<0,所以SKIPIF1<0,故選:D.(建議用時(shí):80分鐘)1.(2023·河北·校聯(lián)考模擬預(yù)測(cè))已知SKIPIF1<0,則SKIPIF1<0的取值范圍為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】D【解析】∵SKIPIF1<0∴原式SKIPIF1<0令SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,又∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,∴當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,∴當(dāng)SKIPIF1<0,SKIPIF1<0的取值范圍是SKIPIF1<0.故選:D.2.(2023·廣西南寧·南寧三中??寄M預(yù)測(cè))已知函數(shù)SKIPIF1<0,若SKIPIF1<0的最小值為SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】C【解析】由SKIPIF1<0,得SKIPIF1<0,所以函數(shù)SKIPIF1<0定義域?yàn)镾KIPIF1<0,因?yàn)镾KIPIF1<0由外層函數(shù)SKIPIF1<0和內(nèi)層函數(shù)SKIPIF1<0復(fù)合而成,當(dāng)SKIPIF1<0時(shí),內(nèi)層函數(shù)單調(diào)遞增,外層函數(shù)單調(diào)遞減,所以SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時(shí),內(nèi)層函數(shù)單調(diào)遞減,外層函數(shù)單調(diào)遞減,所以SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0,所以SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0.故選:C3.(2023·全國(guó)·高三專題練習(xí))已知SKIPIF1<0,則SKIPIF1<0的最大值是()A.1B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】D【解析】因?yàn)镾KIPIF1<0,SKIPIF1<0,令SKIPIF1<0.所以SKIPIF1<0,因?yàn)楹瘮?shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,故SKIPIF1<0,即SKIPIF1<0的最大值為SKIPIF1<0,故選:D.4.(2023·全國(guó)·高三專題練習(xí))函數(shù)y=3SKIPIF1<0-4SKIPIF1<0的最小值為()A.-8B.8C.-10D.10【答案】A【解析】由SKIPIF1<0解得-2≤x≤2,所以函數(shù)的定義域?yàn)閇-2,2].因?yàn)镾KIPIF1<0,故可設(shè)SKIPIF1<0,則SKIPIF1<0,(其中有SKIPIF1<0).因?yàn)镾KIPIF1<0,所以SKIPIF1<0.所以當(dāng)θ=0時(shí),函數(shù)取得最小值10sin(-φ)=10×SKIPIF1<0=-8.故選:A5.(2023·全國(guó)·高三專題練習(xí))若函數(shù)SKIPIF1<0有最小值,則實(shí)數(shù)a的取值范圍是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】A【解析】依題意SKIPIF1<0且SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,綜上可得SKIPIF1<0,令SKIPIF1<0的根為SKIPIF1<0、SKIPIF1<0且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0在定義域上單調(diào)遞增,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,根據(jù)復(fù)合函數(shù)的單調(diào)性可知,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,函數(shù)不存在最小值,故舍去;若SKIPIF1<0,則SKIPIF1<0在定義域上單調(diào)遞減,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,根據(jù)復(fù)合函數(shù)的單調(diào)性可知,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,所以函數(shù)在SKIPIF1<0取得最小值,所以SKIPIF1<0;故選:A8.(2023·安徽·高三校聯(lián)考階段練習(xí))(多選)設(shè)函數(shù)SKIPIF1<0,若SKIPIF1<0表示不超過SKIPIF1<0的最大整數(shù),則SKIPIF1<0的函數(shù)值可能是()A.0B.SKIPIF1<0C.1D.2【答案】AB【解析】因?yàn)镾KIPIF1<0,則SKIPIF1<0,所以函數(shù)SKIPIF1<0的值域是SKIPIF1<0,則SKIPIF1<0的范圍是SKIPIF1<0,于是SKIPIF1<0的函數(shù)值可能是SKIPIF1<0或SKIPIF1<0,故選:SKIPIF1<0.8.(2023·黑龍江佳木斯·佳木斯一中??寄M預(yù)測(cè))(多選)已知函數(shù)f(x)的定義域?yàn)锳,若對(duì)任意SKIPIF1<0,都存在正數(shù)M使得SKIPIF1<0總成立,則稱函數(shù)SKIPIF1<0是定義在A上的“有界函數(shù)”.則下列函數(shù)是“有界函數(shù)”的是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】BC【解析】對(duì)于A:SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,不存在正數(shù)SKIPIF1<0,使得SKIPIF1<0總成立,SKIPIF1<0不是有界函數(shù);對(duì)于B:SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0存在SKIPIF1<0,使得SKIPIF1<0,SKIPIF1<0是有界函數(shù);對(duì)于C:SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0存在SKIPIF1<0,使得SKIPIF1<0,SKIPIF1<0是有界函數(shù);對(duì)于D:SKIPIF1<0,由于SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞增,此時(shí)SKIPIF1<0,故不存在正數(shù)SKIPIF1<0,使得SKIPIF1<0總成立,SKIPIF1<0不是有界函數(shù);故選:BC.8.(2023·全國(guó)·高三專題練習(xí))函數(shù)SKIPIF1<0的值域?yàn)椤敬鸢浮縎KIPIF1<0【解析】SKIPIF1<0為開口方向向上,對(duì)稱軸為SKIPIF1<0的拋物線,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0的值域?yàn)镾KIPIF1<0.9.(2023·全國(guó)·高三專題練習(xí))函數(shù)SKIPIF1<0在SKIPIF1<0上的最大值為.【答案】SKIPIF1<0【解析】SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0.10.(2023·全國(guó)·高三專題練習(xí))求函數(shù)SKIPIF1<0的值域?yàn)?【答案】SKIPIF1<0【解析】令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0容易看出,該函數(shù)轉(zhuǎn)化為一個(gè)開口向下的二次函數(shù),對(duì)稱軸為SKIPIF1<0,SKIPIF1<0,所以該函數(shù)在SKIPIF1<0時(shí)取到最大值SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),函數(shù)取得最小值SKIPIF1<0,所以函數(shù)SKIPIF1<0值域?yàn)镾KIPIF1<0.11.(2023下·重慶渝中·高三重慶巴蜀中學(xué)??茧A段練習(xí))函數(shù)SKIPIF1<0的最大值為.【答案】SKIPIF1<0【解析】因?yàn)镾KIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,因?yàn)楹瘮?shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,即函數(shù)SKIPIF1<0的最大值為SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào).12.(2023·河北·高三校聯(lián)考階段練習(xí))函數(shù)SKIPIF1<0的最小值為.【答案】SKIPIF1<0【解析】SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,最小值是SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減.綜上所述,SKIPIF1<0的最小值為SKIPIF1<0.13.(2023·全國(guó)·高三專題練習(xí))函數(shù)SKIPIF1<0的值域是.【答案】SKIPIF1<0【解析】由SKIPIF1<0,可得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)等式不成立,∴SKIPIF1<0,則有SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論