版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年江蘇省沭陽縣中考數(shù)學(xué)考試模擬沖刺卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,五邊形ABCDE中,AB∥CD,∠1、∠2、∠3分別是∠BAE、∠AED、∠EDC的外角,則∠1+∠2+∠3等于A.90° B.180° C.210° D.270°2.⊙O是一個正n邊形的外接圓,若⊙O的半徑與這個正n邊形的邊長相等,則n的值為()A.3 B.4 C.6 D.83.如圖,PA切⊙O于點A,PO交⊙O于點B,點C是⊙O優(yōu)弧弧AB上一點,連接AC、BC,如果∠P=∠C,⊙O的半徑為1,則劣弧弧AB的長為()A.π B.π C.π D.π4.直線y=x+4與x軸、y軸分別交于點A和點B,點C,D分別為線段AB,OB的中點,點P為OA上一動點,PC+PD值最小時點P的坐標(biāo)為()A.(-3,0) B.(-6,0) C.(-,0) D.(-,0)5.為了解某校初三學(xué)生的體重情況,從中隨機抽取了80名初三學(xué)生的體重進(jìn)行統(tǒng)計分析,在此問題中,樣本是指()A.80 B.被抽取的80名初三學(xué)生C.被抽取的80名初三學(xué)生的體重 D.該校初三學(xué)生的體重6.下列計算錯誤的是()A.a(chǎn)?a=a2 B.2a+a=3a C.(a3)2=a5 D.a(chǎn)3÷a﹣1=a47.二次函數(shù)y=ax2+bx+c(a≠0)和正比例函數(shù)y=﹣x的圖象如圖所示,則方程ax2+(b+)x+c=0(a≠0)的兩根之和()A.大于0 B.等于0 C.小于0 D.不能確定8.在Rt△ABC中,∠C=90°,AC=5,AB=13,則sinA的值為()A.512 B.513 C.129.直線AB、CD相交于點O,射線OM平分∠AOD,點P在射線OM上(點P與點O不重合),如果以點P為圓心的圓與直線AB相離,那么圓P與直線CD的位置關(guān)系是()A.相離 B.相切 C.相交 D.不確定10.已知點,與點關(guān)于軸對稱的點的坐標(biāo)是()A. B. C. D.11.下面運算結(jié)果為的是A. B. C. D.12.關(guān)于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一個根為0,則a值為()A.1 B.﹣1 C.±1 D.0二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,中,,,,,平分,與相交于點,則的長等于_____.14.若n邊形的內(nèi)角和是它的外角和的2倍,則n=.15.計算:________.16.?dāng)?shù)據(jù):2,5,4,2,2的中位數(shù)是_____,眾數(shù)是_____,方差是_____.17.為了求1+2+22+23+…+22016+22017的值,可令S=1+2+22+23+…+22016+22017,則2S=2+22+23+24+…+22017+22018,因此2S﹣S=22018﹣1,所以1+22+23+…+22017=22018﹣1.請你仿照以上方法計算1+5+52+53+…+52017的值是_____.18.化簡的結(jié)果為_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,四邊形ABCD,AD∥BC,DC⊥BC于C點,AE⊥BD于E,且DB=DA.求證:AE=CD.20.(6分)如圖所示,一艘輪船位于燈塔P的北偏東方向與燈塔Р的距離為80海里的A處,它沿正南方向航行一段時間后,到達(dá)位于燈塔P的南偏東方向上的B處.求此時輪船所在的B處與燈塔Р的距離.(結(jié)果保留根號)21.(6分)在“打造青山綠山,建設(shè)美麗中國”的活動中,某學(xué)校計劃組織全校1441名師生到相關(guān)部門規(guī)劃的林區(qū)植樹,經(jīng)過研究,決定租用當(dāng)?shù)刈廛嚬疽还?2輛A、B兩種型號客車作為交通工具,下表是租車公司提供給學(xué)校有關(guān)兩種型號客車的載客量和租金信息:型號載客量租金單價A30人/輛380元/輛B20人/輛280元/輛注:載客量指的是每輛客車最多可載該校師生的人數(shù).(1)設(shè)租用A型號客車x輛,租車總費用為y元,求y與x的函數(shù)解析式。(2)若要使租車總費用不超過19720元,一共有幾種租車方案?那種租車方案最省錢?22.(8分)如圖,Rt△ABC中,∠ABC=90°,點D,F(xiàn)分別是AC,AB的中點,CE∥DB,BE∥DC.(1)求證:四邊形DBEC是菱形;(2)若AD=3,DF=1,求四邊形DBEC面積.23.(8分)如圖所示,小王在校園上的A處正面觀測一座教學(xué)樓墻上的大型標(biāo)牌,測得標(biāo)牌下端D處的仰角為30°,然后他正對大樓方向前進(jìn)5m到達(dá)B處,又測得該標(biāo)牌上端C處的仰角為45°.若該樓高為16.65m,小王的眼睛離地面1.65m,大型標(biāo)牌的上端與樓房的頂端平齊.求此標(biāo)牌上端與下端之間的距離(≈1.732,結(jié)果精確到0.1m).24.(10分)如圖,在Rt△ABC中,,過點C的直線MN∥AB,D為AB邊上一點,過點D作DE⊥BC,交直線MN于E,垂足為F,連接CD、BE.求證:CE=AD;當(dāng)D在AB中點時,四邊形BECD是什么特殊四邊形?說明理由;若D為AB中點,則當(dāng)=______時,四邊形BECD是正方形.25.(10分)如圖1,拋物線y=ax2+bx+4過A(2,0)、B(4,0)兩點,交y軸于點C,過點C作x軸的平行線與拋物線上的另一個交點為D,連接AC、BC.點P是該拋物線上一動點,設(shè)點P的橫坐標(biāo)為m(m>4).(1)求該拋物線的表達(dá)式和∠ACB的正切值;(2)如圖2,若∠ACP=45°,求m的值;(3)如圖3,過點A、P的直線與y軸于點N,過點P作PM⊥CD,垂足為M,直線MN與x軸交于點Q,試判斷四邊形ADMQ的形狀,并說明理由.26.(12分)為了了解某校學(xué)生對以下四個電視節(jié)目:A《最強大腦》,B《中國詩詞大會》,C《朗讀者》,D《出彩中國人》的喜愛情況,隨機抽取了部分學(xué)生進(jìn)行調(diào)查,要求每名學(xué)生選出并且只能選出一個自己最喜愛的節(jié)目,根據(jù)調(diào)查結(jié)果,繪制了如下兩幅不完整的統(tǒng)計圖.請你根據(jù)圖中所提供的信息,完成下列問題:本次調(diào)查的學(xué)生人數(shù)為________;在扇形統(tǒng)計圖中,A部分所占圓心角的度數(shù)為________;請將條形統(tǒng)計圖補充完整:若該校共有3000名學(xué)生,估計該校最喜愛《中國詩詞大會》的學(xué)生有多少名?27.(12分)某校團(tuán)委為研究該校學(xué)生的課余活動情況,采取抽樣調(diào)查的方法,從閱讀、運動、娛樂、其他等四個方面調(diào)查了若干名學(xué)生的興趣愛好,并將調(diào)查的結(jié)果繪制了如下的兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息解答下列各題:(1)在這次研究中,一共調(diào)查了多少名學(xué)生?(2)“其他”在扇形統(tǒng)計圖中所占的圓心角是多少度?(3)補全頻數(shù)分布直方圖;(4)該校共有3200名學(xué)生,請你估計一下全校大約有多少學(xué)生課余愛好是閱讀.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】
試題分析:如圖,如圖,過點E作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠1=∠4,∠3=∠5,∴∠1+∠2+∠3=∠2+∠4+∠5=180°,故選B2、C【解析】
根據(jù)題意可以求出這個正n邊形的中心角是60°,即可求出邊數(shù).【詳解】⊙O是一個正n邊形的外接圓,若⊙O的半徑與這個正n邊形的邊長相等,則這個正n邊形的中心角是60°,n的值為6,故選:C【點睛】考查正多邊形和圓,求出這個正多邊形的中心角度數(shù)是解題的關(guān)鍵.3、A【解析】
利用切線的性質(zhì)得∠OAP=90°,再利用圓周角定理得到∠C=∠O,加上∠P=∠C可計算寫出∠O=60°,然后根據(jù)弧長公式計算劣弧的長.【詳解】解:∵PA切⊙O于點A,∴OA⊥PA,∴∠OAP=90°,∵∠C=∠O,∠P=∠C,∴∠O=2∠P,而∠O+∠P=90°,∴∠O=60°,∴劣弧AB的長=.故選:A.【點睛】本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點的半徑.也考查了圓周角定理和弧長公式.4、C【解析】
作點D關(guān)于x軸的對稱點D′,連接CD′交x軸于點P,此時PC+PD值最小,如圖所示.直線y=x+4與x軸、y軸的交點坐標(biāo)為A(﹣6,0)和點B(0,4),因點C、D分別為線段AB、OB的中點,可得點C(﹣3,1),點D(0,1).再由點D′和點D關(guān)于x軸對稱,可知點D′的坐標(biāo)為(0,﹣1).設(shè)直線CD′的解析式為y=kx+b,直線CD′過點C(﹣3,1),D′(0,﹣1),所以,解得:,即可得直線CD′的解析式為y=﹣x﹣1.令y=﹣x﹣1中y=0,則0=﹣x﹣1,解得:x=﹣,所以點P的坐標(biāo)為(﹣,0).故答案選C.考點:一次函數(shù)圖象上點的坐標(biāo)特征;軸對稱-最短路線問題.5、C【解析】
總體是指考查的對象的全體,個體是總體中的每一個考查的對象,樣本是總體中所抽取的一部分個體,而樣本容量則是指樣本中個體的數(shù)目.我們在區(qū)分總體、個體、樣本、樣本容量,這四個概念時,首先找出考查的對象.從而找出總體、個體.再根據(jù)被收集數(shù)據(jù)的這一部分對象找出樣本,最后再根據(jù)樣本確定出樣本容量.【詳解】樣本是被抽取的80名初三學(xué)生的體重,
故選C.【點睛】此題考查了總體、個體、樣本、樣本容量,解題要分清具體問題中的總體、個體與樣本,關(guān)鍵是明確考查的對象.總體、個體與樣本的考查對象是相同的,所不同的是范圍的大小.樣本容量是樣本中包含的個體的數(shù)目,不能帶單位.6、C【解析】
解:A、a?a=a2,正確,不合題意;B、2a+a=3a,正確,不合題意;C、(a3)2=a6,故此選項錯誤,符合題意;D、a3÷a﹣1=a4,正確,不合題意;故選C.【點睛】本題考查冪的乘方與積的乘方;合并同類項;同底數(shù)冪的乘法;負(fù)整數(shù)指數(shù)冪.7、C【解析】
設(shè)的兩根為x1,x2,由二次函數(shù)的圖象可知,;設(shè)方程的兩根為m,n,再根據(jù)根與系數(shù)的關(guān)系即可得出結(jié)論.【詳解】解:設(shè)的兩根為x1,x2,∵由二次函數(shù)的圖象可知,,.設(shè)方程的兩根為m,n,則.故選C.【點睛】本題考查的是拋物線與x軸的交點,熟知拋物線與x軸的交點與一元二次方程根的關(guān)系是解答此題的關(guān)鍵.8、C【解析】
先根據(jù)勾股定理求出BC得長,再根據(jù)銳角三角函數(shù)正弦的定義解答即可.【詳解】如圖,根據(jù)勾股定理得,BC=AB∴sinA=BCAB故選C.【點睛】本題考查了銳角三角函數(shù)的定義及勾股定理,熟知銳角三角函數(shù)正弦的定義是解決問題的關(guān)鍵.9、A【解析】
根據(jù)角平分線的性質(zhì)和點與直線的位置關(guān)系解答即可.【詳解】解:如圖所示;∵OM平分∠AOD,以點P為圓心的圓與直線AB相離,∴以點P為圓心的圓與直線CD相離,故選:A.【點睛】此題考查直線與圓的位置關(guān)系,關(guān)鍵是根據(jù)角平分線的性質(zhì)解答.10、C【解析】
根據(jù)關(guān)于y軸對稱的點,縱坐標(biāo)相同,橫坐標(biāo)互為相反數(shù),可得答案.【詳解】解:點,與點關(guān)于軸對稱的點的坐標(biāo)是,
故選:C.【點睛】本題考查了關(guān)于y軸對稱的點的坐標(biāo),解決本題的關(guān)鍵是掌握好對稱點的坐標(biāo)規(guī)律:關(guān)于x軸對稱的點,橫坐標(biāo)相同,縱坐標(biāo)互為相反數(shù);關(guān)于y軸對稱的點,縱坐標(biāo)相同,橫坐標(biāo)互為相反數(shù);關(guān)于原點對稱的點,橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù).11、B【解析】
根據(jù)合并同類項法則、同底數(shù)冪的除法、同底數(shù)冪的乘法及冪的乘方逐一計算即可判斷.【詳解】.,此選項不符合題意;.,此選項符合題意;.,此選項不符合題意;.,此選項不符合題意;故選:.【點睛】本題考查了整式的運算,解題的關(guān)鍵是掌握合并同類項法則、同底數(shù)冪的除法、同底數(shù)冪的乘法及冪的乘方.12、B【解析】
根據(jù)一元二次方程的定義和一元二次方程的解的定義得出:a﹣1≠0,a2﹣1=0,求出a的值即可.【詳解】解:把x=0代入方程得:a2﹣1=0,解得:a=±1,∵(a﹣1)x2+x+a2﹣1=0是關(guān)于x的一元二次方程,∴a﹣1≠0,即a≠1,∴a的值是﹣1.故選:B.【點睛】本題考查了對一元二次方程的定義,一元二次方程的解等知識點的理解和運用,注意根據(jù)已知得出a﹣1≠0,a2﹣1=0,不要漏掉對一元二次方程二次項系數(shù)不為0的考慮.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、3【解析】
如圖,延長CE、DE,分別交AB于G、H,由∠BAD=∠ADE=60°可得三角形ADH是等邊三角形,根據(jù)等腰直角三角形的性質(zhì)可知CG⊥AB,可求出AG的長,進(jìn)而可得GH的長,根據(jù)含30°角的直角三角形的性質(zhì)可求出EH的長,根據(jù)DE=DH-EH即可得答案.【詳解】如圖,延長CE、DE,分別交AB于G、H,∵∠BAD=∠ADE=60°,∴△ADH是等邊三角形,∴DH=AD=AH=5,∠DHA=60°,∵AC=BC,CE平分∠ACB,∠ACB=90°,∴AB==8,AG=AB=4,CG⊥AB,∴GH=AH=AG=5-4=1,∵∠DHA=60°,∴∠GEH=30°,∴EH=2GH=2∴DE=DH-EH=5=2=3.故答案為:3【點睛】本題考查等邊三角形的判定及性質(zhì)、等腰直角三角形的性質(zhì)及含30°角的直角三角形的性質(zhì),熟記30°角所對的直角邊等于斜邊的一半的性質(zhì)并正確作出輔助線是解題關(guān)鍵.14、6【解析】此題涉及多邊形內(nèi)角和和外角和定理多邊形內(nèi)角和=180(n-2),外角和=360o所以,由題意可得180(n-2)=2×360o解得:n=615、【解析】
根據(jù)二次根式的運算法則先算乘法,再將分母有理化,然后相加即可.【詳解】解:原式==【點睛】本題考查了二次根式的混合運算:先把各二次根式化簡為最簡二次根式,然后進(jìn)行二次根式的乘除運算,再合并即可.在二次根式的混合運算中,如能結(jié)合題目特點,靈活運用二次根式的性質(zhì),選擇恰當(dāng)?shù)慕忸}途徑,往往能事半功倍.16、221.1.【解析】
先將這組數(shù)據(jù)從小到大排列,再找出最中間的數(shù),即可得出中位數(shù);找出這組數(shù)據(jù)中最多的數(shù)則是眾數(shù);先求出這組數(shù)據(jù)的平均數(shù),再根據(jù)方差公式S2=[(x1-)2+(x2-)2+…+(xn-)2]進(jìn)行計算即可.【詳解】解:把這組數(shù)據(jù)從小到大排列為:2,2,2,4,5,最中間的數(shù)是2,則中位數(shù)是2;眾數(shù)為2;∵這組數(shù)據(jù)的平均數(shù)是(2+2+2+4+5)÷5=3,∴方差是:[(2?3)2+(2?3)2+(2?3)2+(4?3)2+(5?3)2]=1.1.故答案為2,2,1.1.【點睛】本題考查了中位數(shù)、眾數(shù)與方差的定義,解題的關(guān)鍵是熟練的掌握中位數(shù)、眾數(shù)與方差的定義.17、【解析】
根據(jù)上面的方法,可以令S=1+5+52+53+…+52017,則5S=5+52+53+…+52012+52018,再相減算出S的值即可.【詳解】解:令S=1+5+52+53+…+52017,則5S=5+52+53+…+52012+52018,5S﹣S=﹣1+52018,4S=52018﹣1,則S=,故答案為:.【點睛】此題參照例子,采用類比的方法就可以解決,注意這里由于都是5的次方,所以要用5S來達(dá)到抵消的目的.18、+1【解析】
利用積的乘方得到原式=[(﹣1)(+1)]2017?(+1),然后利用平方差公式計算.【詳解】原式=[(﹣1)(+1)]2017?(+1)=(2﹣1)2017?(+1)=+1.故答案為:+1.【點睛】本題考查了二次根式的混合運算,在二次根式的混合運算中,如能結(jié)合題目特點,靈活運用二次根式的性質(zhì),選擇恰當(dāng)?shù)慕忸}途徑,往往能事半功倍.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、證明見解析.【解析】
由AD∥BC得∠ADB=∠DBC,根據(jù)已知證明△AED≌△DCB(AAS),即可解題.【詳解】解:∵AD∥BC∴∠ADB=∠DBC∵DC⊥BC于點C,AE⊥BD于點E∴∠C=∠AED=90°又∵DB=DA∴△AED≌△DCB(AAS)∴AE=CD【點睛】本題考查了三角形全等的判定和性質(zhì),屬于簡單題,證明三角形全等是解題關(guān)鍵.20、海里【解析】
過點P作,則在Rt△APC中易得PC的長,再在直角△BPC中求出PB.【詳解】解:如圖,過點P作,垂足為點C.∴,,海里.在中,,∴(海里).在中,,∴(海里).∴此時輪船所在的B處與燈塔P的距離是海里.【點睛】解一般三角形,求三角形的邊或高的問題一般可以轉(zhuǎn)化為解直角三角形的問題,解決的方法就是作高線.21、(1)y=100x+17360;(2)3種方案:A型車21輛,B型車41輛最省錢.【解析】
(1)根據(jù)租車總費用=A、B兩種車的費用之和,列出函數(shù)關(guān)系式即可;
(2)列出不等式,求出自變量x的取值范圍,利用函數(shù)的性質(zhì)即可解決問題.【詳解】(1)由題意:y=380x+280(62-x)=100x+17360,∵30x+20(62-x)≥1441,∴x≥20.1,又∵x為整數(shù),∴x的取值范圍為21≤x≤62的整數(shù);(2)由題意100x+17360≤19720,∴x≤23.6,∴21≤x≤23,∴共有3種租車方案,x=21時,y有最小值=1.即租租A型車21輛,B型車41輛最省錢.【點睛】本題考查一次函數(shù)的應(yīng)用、一元一次不等式的應(yīng)用等知識,解題的關(guān)鍵是理解題意,學(xué)會利用函數(shù)的性質(zhì)解決最值問題.22、(1)見解析;(1)4【解析】
(1)根據(jù)平行四邊形的判定定理首先推知四邊形DBEC為平行四邊形,然后由直角三角形斜邊上的中線等于斜邊的一半得到其鄰邊相等:CD=BD,得證;(1)由三角形中位線定理和勾股定理求得AB邊的長度,然后根據(jù)菱形的性質(zhì)和三角形的面積公式進(jìn)行解答.【詳解】(1)證明:∵CE∥DB,BE∥DC,∴四邊形DBEC為平行四邊形.又∵Rt△ABC中,∠ABC=90°,點D是AC的中點,∴CD=BD=AC,∴平行四邊形DBEC是菱形;(1)∵點D,F(xiàn)分別是AC,AB的中點,AD=3,DF=1,∴DF是△ABC的中位線,AC=1AD=6,S△BCD=S△ABC∴BC=1DF=1.又∵∠ABC=90°,∴AB===4.∵平行四邊形DBEC是菱形,∴S四邊形DBEC=1S△BCD=S△ABC=AB?BC=×4×1=4.點睛:本題考查了菱形的判定與性質(zhì),直角三角形斜邊上的中線等于斜邊的一半,三角形中位線定理.由點D是AC的中點,得到CD=BD是解答(1)的關(guān)鍵,由菱形的性質(zhì)和三角形的面積公式得到S四邊形DBEC=S△ABC是解(1)的關(guān)鍵.23、大型標(biāo)牌上端與下端之間的距離約為3.5m.【解析】試題分析:將題目中的仰俯角轉(zhuǎn)化為直角三角形的內(nèi)角的度數(shù),分別求得CE和BE的長,然后求得DE的長,用CE的長減去DE的長即可得到上端和下端之間的距離.試題解析:設(shè)AB,CD的延長線相交于點E,∵∠CBE=45°,CE⊥AE,∴CE=BE,∵CE=16.65﹣1.65=15,∴BE=15,而AE=AB+BE=1.∵∠DAE=30°,∴DE==11.54,∴CD=CE﹣DE=15﹣11.54≈3.5(m),答:大型標(biāo)牌上端與下端之間的距離約為3.5m.24、(1)詳見解析;(2)菱形;(3)當(dāng)∠A=45°,四邊形BECD是正方形.【解析】
(1)先求出四邊形ADEC是平行四邊形,根據(jù)平行四邊形的性質(zhì)推出即可;(2)求出四邊形BECD是平行四邊形,求出CD=BD,根據(jù)菱形的判定推出即可;(3)求出∠CDB=90°,再根據(jù)正方形的判定推出即可.【詳解】(1)∵DE⊥BC,∴∠DFP=90°,∵∠ACB=90°,∴∠DFB=∠ACB,∴DE//AC,∵M(jìn)N//AB,∴四邊形ADEC為平行四邊形,∴CE=AD;(2)菱形,理由如下:在直角三角形ABC中,∵D為AB中點,∴BD=AD,∵CE=AD,∴BD=CE,∴MN//AB,∴BECD是平行四邊形,∵∠ACB=90°,D是AB中點,∴BD=CD,(斜邊中線等于斜邊一半)∴四邊形BECD是菱形;(3)若D為AB中點,則當(dāng)∠A=45°時,四邊形BECD是正方形,理由:∵∠A=45°,∠ACB=90°,∴∠ABC=45°,∵四邊形BECD是菱形,∴DC=DB,∴∠DBC=∠DCB=45°,∴∠CDB=90°,∵四邊形BECD是菱形,∴四邊形BECD是正方形,故答案為45°.【點睛】本題考查了平行四邊形的判定與性質(zhì),菱形的判定、正方形的判定,直角三角形斜邊中線的性質(zhì)等,綜合性較強,熟練掌握和靈活運用相關(guān)知識是解題的關(guān)鍵.25、(1)y=x2﹣3x+1;tan∠ACB=;(2)m=;(3)四邊形ADMQ是平行四邊形;理由見解析.【解析】
(1)由點A、B坐標(biāo)利用待定系數(shù)法求解可得拋物線解析式為y=x2-3x+1,作BG⊥CA,交CA的延長線于點G,證△GAB∽△OAC得=,據(jù)此知BG=2AG.在Rt△ABG中根據(jù)BG2+AG2=AB2,可求得AG=.繼而可得BG=,CG=AC+AG=,根據(jù)正切函數(shù)定義可得答案;(2)作BH⊥CD于點H,交CP于點K,連接AK,易得四邊形OBHC是正方形,應(yīng)用“全角夾半角”可得AK=OA+HK,設(shè)K(1,h),則BK=h,HK=HB-KB=1-h,AK=OA+HK=2+(1-h)=6-h.在Rt△ABK中,由勾股定理求得h=,據(jù)此求得點K(1,).待定系數(shù)法求出直線CK的解析式為y=-x+1.設(shè)點P的坐標(biāo)為(x,y)知x是方程x2-3x+1=-x+1的一個解.解之求得x的值即可得出答案;(3)先求出點D坐標(biāo)為(6,1),設(shè)P(m,m2-3m+1)知M(m,1),H(m,0).及PH=m2-3m+1),OH=m,AH=m-2,MH=1.①當(dāng)1<m<6時,由△OAN∽△HAP知=.據(jù)此得ON=m-1.再證△ONQ∽△HMQ得=.據(jù)此求得OQ=m-1.從而得出AQ=DM=6-m.結(jié)合AQ∥DM可得答案.②當(dāng)m>6時,同理可得.【詳解】解:(1)將點A(2,0)和點B(1,0)分別代入y=ax2+bx+1,得,解得:;∴該拋物線的解析式為y=x2﹣3x+1,過點B作BG⊥CA,交CA的延長線于點G(如圖1所示),則∠G=90°.∵∠COA=∠G=90°,∠CAO=∠BAG,∴△GAB∽△OAC.∴=2.∴BG=2AG,在Rt△ABG中,∵BG2+AG2=AB2,∴(2AG)2+AG2=22,解得:AG=.∴BG=,CG=AC+AG=2+=.在Rt△BCG中,tan∠ACB═.(2)如圖2,過點B作BH⊥CD于點H,交CP于點K,連接AK.易得四邊形OBHC是正方形.應(yīng)用“全角夾半角”可得AK=OA+HK,設(shè)K(1,h),則BK=h,HK=HB﹣KB=1﹣h,AK=OA+HK=2+(1﹣h)=6﹣h,在Rt△ABK中,由勾股定理,得AB2+BK2=AK2,∴22+h2=(6﹣h)2.解得h=,∴點K(1,),設(shè)直線CK的解析式為y=hx+1,將點K(1,)代入上式,得=1h+1.解得h=﹣,∴直線CK的解析式為y=﹣x+1,設(shè)點P的坐標(biāo)為(x,y),則x是方程x2﹣3x+1=﹣x+1的一個解,將方程整理,得3x2﹣16x=0,解得x1=,x2=0(不合題意,舍去)將x1=代入y=﹣x+1,得y=,∴點P的坐標(biāo)為(,),∴m=;(3)四邊形ADMQ是平行四邊形.理由如下:∵CD∥x軸,∴yC=yD=1,將y=1代入y=x2﹣3x+1,得1=x2﹣3x+1,解得x1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 眉山藥科職業(yè)學(xué)院《軟件工程與》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年度校園食堂承包與食品安全監(jiān)管合同3篇
- 2024年度汽車貸款信用保證保險合同3篇
- 2024年標(biāo)準(zhǔn)版房地產(chǎn)項目資本金監(jiān)管協(xié)議版B版
- 2024年版:教育貸款申請合同3篇
- 影調(diào)的造型作用
- 呂梁師范高等專科學(xué)校《中國城市發(fā)展史》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024全新指紋鎖智能家居控制系統(tǒng)集成合同2篇
- 2024年特色手工藝品買賣合同詳細(xì)
- 2024年標(biāo)準(zhǔn)膩子施工勞務(wù)分包合同樣本版B版
- 警察職業(yè)介紹(課堂PPT)
- HACCP案例分析
- 二次精裝修施工方案及技術(shù)措施
- 7、太平人壽《基本法
- 寶龍地產(chǎn)商管公司各級員工薪酬
- 兒童哮喘診療指南
- 飲水機濾芯更換記錄表
- 空氣站質(zhì)量控制措施之運行維護(hù)
- 方解石礦產(chǎn)地質(zhì)工作指引
- 水土保持遙感監(jiān)測技術(shù)規(guī)范
- 藍(lán)色簡約公安警察工作匯報PPT模板
評論
0/150
提交評論