【數(shù)學(xué)】3.1-回歸分析的基本思想及其初步應(yīng)用-課件(人教A版選修2-3)_第1頁
【數(shù)學(xué)】3.1-回歸分析的基本思想及其初步應(yīng)用-課件(人教A版選修2-3)_第2頁
【數(shù)學(xué)】3.1-回歸分析的基本思想及其初步應(yīng)用-課件(人教A版選修2-3)_第3頁
【數(shù)學(xué)】3.1-回歸分析的基本思想及其初步應(yīng)用-課件(人教A版選修2-3)_第4頁
【數(shù)學(xué)】3.1-回歸分析的基本思想及其初步應(yīng)用-課件(人教A版選修2-3)_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

3.1回歸分析的基本思想及其初步應(yīng)用比《數(shù)學(xué)3》中“回歸”增加的內(nèi)容數(shù)學(xué)3——統(tǒng)計畫散點圖了解最小二乘法的思想求回歸直線方程y=bx+a用回歸直線方程解決應(yīng)用問題選修2-3——統(tǒng)計案例引入線性回歸模型y=bx+a+e了解模型中隨機(jī)誤差項e產(chǎn)生的原因了解殘差圖的作用了解相關(guān)指數(shù)R2

和模型擬合的效果之間的關(guān)系利用線性回歸模型解決一類非線性回歸問題正確理解分析方法與結(jié)果最小二乘法:稱為樣本點的中心。回歸直線過樣本點中心例1從某大學(xué)中隨機(jī)選取8名女大學(xué)生,其身高和體重數(shù)據(jù)如表1-1所示。編號12345678身高/cm165165157170175165155170體重/kg4857505464614359求根據(jù)一名女大學(xué)生的身高預(yù)報她的體重的回歸方程,并預(yù)報一名身高為172cm的女大學(xué)生的體重。案例1:女大學(xué)生的身高與體重解:1、選取身高為自變量x,體重為因變量y,作散點圖:2、由散點圖知道身高和體重有比較好的線性相關(guān)關(guān)系,因此可以用線性回歸方程刻畫它們之間的關(guān)系。分析:由于問題中要求根據(jù)身高預(yù)報體重,因此選取身高為自變量,體重為因變量.2.回歸方程:1.散點圖;探究:身高為172cm的女大學(xué)生的體重一定是60.316kg嗎?如果不是,你能解析一下原因嗎?答:身高為172cm的女大學(xué)生的體重不一定是60.316kg,但一般可以認(rèn)為她的體重接近于60.316kg。即,用這個回歸方程不能給出每個身高為172cm的女大學(xué)生的體重的預(yù)測值,只能給出她們平均體重的值。我們可以用下面的線性回歸模型來表示:y=bx+a+e,

(3)其中a和b為模型的未知參數(shù),e稱為隨機(jī)誤差。y=bx+a+e,E(e)=0,D(e)=

(4)

在線性回歸模型(4)中,隨機(jī)誤差e的方差越小,通過回歸直線(5)預(yù)報真實值y的精度越高。隨機(jī)誤差是引起預(yù)報值與真實值y之間的誤差的原因之一,其大小取決于隨機(jī)誤差的方差。另一方面,由于公式(1)和(2)中和為截距和斜率的估計值,它們與真實值a和b之間也存在誤差,這種誤差是引起預(yù)報值與真實值y之間誤差的另一個原因。思考:產(chǎn)生隨機(jī)誤差項e的原因是什么?隨機(jī)誤差e的來源(可以推廣到一般):1、用線性回歸模型近似真實模型所引起的誤差;2、忽略了其它因素的影響:影響身高y的因素不只是體重x,可能還包括遺傳基因、飲食習(xí)慣、生長環(huán)境等因素;3、身高y的觀測誤差。

以上三項誤差越小,說明我們的回歸模型的擬合效果越好。探究:e

用預(yù)報真實值Y的隨機(jī)誤差,它是一個不可觀測的量,那么怎樣研究隨機(jī)誤差呢?回歸模型:其估計值為而言,它們的隨機(jī)誤差對于樣本點顯然,R2的值越大,說明殘差平方和越小,也就是說模型擬合效果越好。在線性回歸模型中,R2表示解析變量對預(yù)報變量變化的貢獻(xiàn)率。

R2越接近1,表示回歸的效果越好(因為R2越接近1,表示解析變量和預(yù)報變量的線性相關(guān)性越強(qiáng))。

如果某組數(shù)據(jù)可能采取幾種不同回歸方程進(jìn)行回歸分析,則可以通過比較R2的值來做出選擇,即選取R2較大的模型作為這組數(shù)據(jù)的模型??偟膩碚f:相關(guān)指數(shù)R2是度量模型擬合效果的一種指標(biāo)。在線性模型中,它代表自變量刻畫預(yù)報變量的能力。我們可以用相關(guān)指數(shù)R2來刻畫回歸的效果,其計算公式是1354總計0.36128.361殘差變量0.64225.639隨機(jī)誤差比例平方和來源表1-3從表3-1中可以看出,解析變量對總效應(yīng)約貢獻(xiàn)了64%,即R20.64,可以敘述為“身高解析了64%的體重變化”,而隨機(jī)誤差貢獻(xiàn)了剩余的36%。所以,身高對體重的效應(yīng)比隨機(jī)誤差的效應(yīng)大得多。我們可以用相關(guān)指數(shù)R2來刻畫回歸的效果,其計算公式是一般地,建立回歸模型的基本步驟為:(1)確定研究對象,明確哪個變量是解析變量,哪個變量是預(yù)報變量。(2)畫出確定好的解析變量和預(yù)報變量的散點圖,觀察它們之間的關(guān)系(如是否存在線性關(guān)系等)。(3)由經(jīng)驗確定回歸方程的類型(如我們觀察到數(shù)據(jù)呈線性關(guān)系,則選用線性回歸方程y=bx+a).(4)按一定規(guī)則估計回歸方程中的參數(shù)(如最小二乘法)。(5)得出結(jié)果后分析殘差圖是否有異常(個別數(shù)據(jù)對應(yīng)殘差過大,或殘差呈現(xiàn)不隨機(jī)的規(guī)律性,等等),過存在異常,則檢查數(shù)據(jù)是否有誤,或模型是否合適等。相關(guān)系數(shù)

1.計算公式2.相關(guān)系數(shù)的性質(zhì)(1)|r|≤1.(2)|r|越接近于1,相關(guān)程度越大;|r|越接近于0,相關(guān)程度越?。畣栴}:達(dá)到怎樣程度,x、y線性相關(guān)呢?它們的相關(guān)程度怎樣呢?相關(guān)系數(shù)r>0正相關(guān);r<0負(fù)相關(guān).通常,r∈[-1,-0.75]--負(fù)相關(guān)很強(qiáng);

r∈[0.75,1]—正相關(guān)很強(qiáng);

r∈[-0.75,-0.3]--負(fù)相關(guān)一般;r∈[0.3,0.75]—正相關(guān)一般;r∈[-0.25,0.25]--相關(guān)性較弱;例2:一只紅鈴蟲的產(chǎn)卵數(shù)y與溫度x有關(guān),現(xiàn)收集了7組觀測數(shù)據(jù),試建立y與x之間的回歸方程解:1)作散點圖;從散點圖中可以看出產(chǎn)卵數(shù)和溫度之間的關(guān)系并不能用線性回歸模型來很好地近似。這些散點更像是集中在一條指數(shù)曲線或二次曲線的附近。解:令則z=bx+a,(a=lnc1,b=c2),列出變換后數(shù)據(jù)表并畫出x與z的散點圖x和z之間的關(guān)系可以用線性回歸模型來擬合x21232527293235z1.9462.3983.0453.1784.194.7455.7842)用y=c3x2+c4模型,令,則y=c3t+c4,列出變換后數(shù)據(jù)表并畫出t與y的散點圖散點并不集中在一條直線的附近,因此用線性回歸模型擬合他們的效果不是最好的。t44152962572984110241225y711212466115325殘差表編號1234567x21232527293235y711212466115325e(1)0.52-0.1671.76-9.1498.889-14.15332.928e(2)47.719.397-5.835-41.003-40.107-58.26877.965非線性回歸方程二次回歸方程殘差公式在此處可以引導(dǎo)學(xué)生體會應(yīng)用統(tǒng)計方法

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論