新高考一輪復(fù)習(xí)核心考點(diǎn)講與練考點(diǎn)20 橢圓原卷版_第1頁(yè)
新高考一輪復(fù)習(xí)核心考點(diǎn)講與練考點(diǎn)20 橢圓原卷版_第2頁(yè)
新高考一輪復(fù)習(xí)核心考點(diǎn)講與練考點(diǎn)20 橢圓原卷版_第3頁(yè)
新高考一輪復(fù)習(xí)核心考點(diǎn)講與練考點(diǎn)20 橢圓原卷版_第4頁(yè)
新高考一輪復(fù)習(xí)核心考點(diǎn)講與練考點(diǎn)20 橢圓原卷版_第5頁(yè)
已閱讀5頁(yè),還剩9頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

考點(diǎn)20橢圓(核心考點(diǎn)講與練)1.橢圓的定義平面內(nèi)與兩定點(diǎn)F1,F(xiàn)2的距離的和等于常數(shù)(大于|F1F2|)的點(diǎn)的軌跡(或集合)叫做橢圓.這兩定點(diǎn)叫做橢圓的焦點(diǎn),兩焦點(diǎn)間的距離叫做橢圓的焦距.其數(shù)學(xué)表達(dá)式:集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c為常數(shù):(1)若a>c,則集合P為橢圓;(2)若a=c,則集合P為線段;(3)若a<c,則集合P為空集.2.橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì)標(biāo)準(zhǔn)方程eq\f(x2,a2)+eq\f(y2,b2)=1(a>b>0)eq\f(y2,a2)+eq\f(x2,b2)=1(a>b>0)圖形性質(zhì)范圍-a≤x≤a-b≤y≤b-b≤x≤b-a≤y≤a對(duì)稱性對(duì)稱軸:坐標(biāo)軸;對(duì)稱中心:原點(diǎn)頂點(diǎn)A1(-a,0),A2(a,0),B1(0,-b),B2(0,b)A1(0,-a),A2(0,a),B1(-b,0),B2(b,0)軸長(zhǎng)軸A1A2的長(zhǎng)為2a;短軸B1B2的長(zhǎng)為2b焦距|F1F2|=2c離心率e=eq\f(c,a)∈(0,1)a,b,c的關(guān)系c2=a2-b21.橢圓的定義揭示了橢圓的本質(zhì)屬性,正確理解、掌握定義是關(guān)鍵,應(yīng)注意定義中的常數(shù)大于|F1F2|,避免了動(dòng)點(diǎn)軌跡是線段或不存在的情況.2.求橢圓的標(biāo)準(zhǔn)方程,常采用“先定位,后定量”的方法(待定系數(shù)法).先“定位”,就是先確定橢圓和坐標(biāo)系的相對(duì)位置,以橢圓的中心為原點(diǎn)的前提下,看焦點(diǎn)在哪條坐標(biāo)軸上,確定標(biāo)準(zhǔn)方程的形式;再“定量”,就是根據(jù)已知條件,通過(guò)解方程(組)等手段,確定a2,b2的值,代入所設(shè)的方程,即可求出橢圓的標(biāo)準(zhǔn)方程.若不能確定焦點(diǎn)的位置,這時(shí)的標(biāo)準(zhǔn)方程??稍O(shè)為mx2+ny2=1(m>0,n>0且m≠n)3.解決中點(diǎn)弦、弦長(zhǎng)及最值與范圍問(wèn)題一般利用“設(shè)而不求”的思想,通過(guò)根與系數(shù)的關(guān)系構(gòu)建方程求解參數(shù)、計(jì)算弦長(zhǎng)、表達(dá)函數(shù).4.求橢圓離心率的3種方法(1)直接求出a,c來(lái)求解e.通過(guò)已知條件列方程組,解出a,c的值.(2)構(gòu)造a,c的齊次式,解出e.由已知條件得出關(guān)于a,c的二元齊次方程,然后轉(zhuǎn)化為關(guān)于離心率e的一元二次方程求解.(3)通過(guò)取特殊值或特殊位置,求出離心率.橢圓的定義一、單選題1.(2022·內(nèi)蒙古通遼·二模(理))橢圓SKIPIF1<0的左?右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為橢圓SKIPIF1<0上一點(diǎn),若SKIPIF1<0的周長(zhǎng)為SKIPIF1<0,則橢圓SKIPIF1<0的離心率為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2022·天津市第四十七中學(xué)模擬預(yù)測(cè))已知SKIPIF1<0分別是橢圓SKIPIF1<0和雙曲線SKIPIF1<0的公共的左右焦點(diǎn),SKIPIF1<0是SKIPIF1<0的離心率,若SKIPIF1<0在第一象限內(nèi)的交點(diǎn)為SKIPIF1<0,且滿足SKIPIF1<0,則SKIPIF1<0的關(guān)系是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2021廣東省深圳市高級(jí)中學(xué)等九校聯(lián)考)已知橢圓SKIPIF1<0的左、右焦點(diǎn)分別是SKIPIF1<0、SKIPIF1<0,離心率為SKIPIF1<0,點(diǎn)A是橢圓上位于x軸上方的一點(diǎn),且SKIPIF1<0,則直線SKIPIF1<0的斜率為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.1二、多選題4.(2022·山東淄博·模擬預(yù)測(cè))已知橢圓SKIPIF1<0的左右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,左右頂點(diǎn)分別為SKIPIF1<0,SKIPIF1<0.P是橢圓上異于SKIPIF1<0,SKIPIF1<0的點(diǎn),則下列說(shuō)法正確的是(

)A.SKIPIF1<0周長(zhǎng)為4 B.SKIPIF1<0面積的最大值為SKIPIF1<0C.SKIPIF1<0的最小值為SKIPIF1<0 D.若SKIPIF1<0面積為2,則點(diǎn)P橫坐標(biāo)為SKIPIF1<05.(2022·山東濟(jì)寧·二模)設(shè)橢圓C:SKIPIF1<0的左?右焦點(diǎn)分別為SKIPIF1<0?SKIPIF1<0,上?下頂點(diǎn)分別為SKIPIF1<0?SKIPIF1<0,點(diǎn)P是C上異于SKIPIF1<0?SKIPIF1<0的一點(diǎn),則下列結(jié)論正確的是(

)A.若C的離心率為SKIPIF1<0,則直線SKIPIF1<0與SKIPIF1<0的斜率之積為SKIPIF1<0B.若SKIPIF1<0,則SKIPIF1<0的面積為SKIPIF1<0C.若C上存在四個(gè)點(diǎn)P使得SKIPIF1<0,則C的離心率的范圍是SKIPIF1<0D.若SKIPIF1<0恒成立,則C的離心率的范圍是SKIPIF1<0三、填空題6.(2022·寧夏·銀川一中二模(文))已知橢圓C:SKIPIF1<0的左焦點(diǎn)為SKIPIF1<0,SKIPIF1<0為橢圓C上任意一點(diǎn),則SKIPIF1<0的最小值為______.四、解答題7.(2022·江西景德鎮(zhèn)·三模(文))SKIPIF1<0是橢圓SKIPIF1<0的右焦點(diǎn),其中SKIPIF1<0.點(diǎn)SKIPIF1<0、SKIPIF1<0分別為橢圓SKIPIF1<0的左、右頂點(diǎn),圓SKIPIF1<0過(guò)點(diǎn)SKIPIF1<0與坐標(biāo)原點(diǎn)SKIPIF1<0,SKIPIF1<0是橢圓上異于SKIPIF1<0、SKIPIF1<0的動(dòng)點(diǎn),且SKIPIF1<0的周長(zhǎng)小于SKIPIF1<0.(1)求SKIPIF1<0的標(biāo)準(zhǔn)方程;(2)連接SKIPIF1<0與圓SKIPIF1<0交于點(diǎn)SKIPIF1<0,若SKIPIF1<0與SKIPIF1<0交于點(diǎn)SKIPIF1<0,求SKIPIF1<0的取值范圍.橢圓的標(biāo)準(zhǔn)方程一、單選題1.(2022·全國(guó)·模擬預(yù)測(cè)(文))已知橢圓C:SKIPIF1<0的右焦點(diǎn)為SKIPIF1<0,右頂點(diǎn)為A,O為坐標(biāo)原點(diǎn),過(guò)OA的中點(diǎn)且與坐標(biāo)軸垂直的直線交橢圓C于M,N兩點(diǎn),若四邊形OMAN是正方形,則C的方程為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2021福建省莆田市第十五中學(xué)二模)阿基米德(公元前SKIPIF1<0年—公元前SKIPIF1<0年)不僅是著名的物理學(xué)家,也是著名的數(shù)學(xué)家,他利用“通近法”得到橢圓的面積除以圓周率等于橢圓的長(zhǎng)半軸長(zhǎng)與短半軸長(zhǎng)的乘積.若橢圓SKIPIF1<0的對(duì)稱軸為坐標(biāo)軸,焦點(diǎn)在SKIPIF1<0軸上,且橢圓SKIPIF1<0的離心率為SKIPIF1<0,面積為SKIPIF1<0則橢圓SKIPIF1<0的方程為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0二、多選題3.(2022·遼寧·模擬預(yù)測(cè))已知橢圓SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0(如圖),離心率為SKIPIF1<0,過(guò)SKIPIF1<0的直線SKIPIF1<0垂直于x軸,且在第二象限中交E于點(diǎn)A,直線SKIPIF1<0交E于點(diǎn)B(異于點(diǎn)A),則下列說(shuō)法正確的是(

)A.若橢圓E的焦距為2,則短軸長(zhǎng)為SKIPIF1<0B.SKIPIF1<0的周長(zhǎng)為4aC.若SKIPIF1<0的面積為12,則橢圓E的方程為SKIPIF1<0D.SKIPIF1<0與SKIPIF1<0的面積的比值為SKIPIF1<04.(2022·重慶八中模擬預(yù)測(cè))如圖所示,用一個(gè)與圓柱底面成SKIPIF1<0角的平面截圓柱,截面是一個(gè)橢圓.若圓柱的底面圓半徑為2,SKIPIF1<0,則(

)A.橢圓的長(zhǎng)軸長(zhǎng)等于4B.橢圓的離心率為SKIPIF1<0C.橢圓的標(biāo)準(zhǔn)方程可以是SKIPIF1<0D.橢圓上的點(diǎn)到一個(gè)焦點(diǎn)的距離的最小值為SKIPIF1<05.(2022·全國(guó)·模擬預(yù)測(cè))已知O為坐標(biāo)原點(diǎn),橢圓E的方程為SKIPIF1<0,離心率為SKIPIF1<0,SKIPIF1<0為E上一點(diǎn),過(guò)點(diǎn)A作兩條直線分別與E交于B,C兩點(diǎn),且直線AB與直線AC的傾斜角互補(bǔ),則下列結(jié)論正確的是(

)A.橢圓E的長(zhǎng)軸長(zhǎng)為SKIPIF1<0B.直線BC的斜率為定值C.點(diǎn)O到直線BC的距離為定值D.若SKIPIF1<0,則直線BC的方程為SKIPIF1<0三、填空題6.(2022·遼寧鞍山·二模)在平面直角坐標(biāo)系中,△ABC滿足A(-1,0),B(1,0),SKIPIF1<0,SKIPIF1<0,∠ACB的平分線與點(diǎn)P的軌跡相交于點(diǎn)I,存在非零實(shí)數(shù)SKIPIF1<0,使得SKIPIF1<0,則頂點(diǎn)C的軌跡方程為________.四、解答題7.(2022·山東泰安·二模)已知橢圓C:SKIPIF1<0過(guò)點(diǎn)SKIPIF1<0,過(guò)其右焦點(diǎn)SKIPIF1<0且垂直于x軸的直線交橢圓C于A,B兩點(diǎn),且SKIPIF1<0.(1)求橢圓C的方程;(2)若直線l:SKIPIF1<0與橢圓C交于E,F(xiàn)兩點(diǎn),線段EF的中點(diǎn)為Q,在y軸上是否存在定點(diǎn)P,使得∠EQP=2∠EFP恒成立?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.8.(2022·天津市濱海新區(qū)塘沽第一中學(xué)模擬預(yù)測(cè))已知橢圓SKIPIF1<0的離心率SKIPIF1<0,且點(diǎn)SKIPIF1<0,SKIPIF1<0在橢圓SKIPIF1<0上.(1)求橢圓SKIPIF1<0的方程;(2)若橢圓SKIPIF1<0的左焦點(diǎn)為SKIPIF1<0,右頂點(diǎn)為SKIPIF1<0,點(diǎn)SKIPIF1<0在橢圓SKIPIF1<0上,且在橢圓位于x軸上方的部分,直線SKIPIF1<0與SKIPIF1<0軸交于點(diǎn)SKIPIF1<0,點(diǎn)SKIPIF1<0是SKIPIF1<0軸上一點(diǎn),SKIPIF1<0,直線SKIPIF1<0與橢圓SKIPIF1<0交于點(diǎn)SKIPIF1<0,若SKIPIF1<0的面積為SKIPIF1<0,求直線SKIPIF1<0的方程.橢圓的幾何性質(zhì)1.(2021天津市第二中學(xué)高三上學(xué)期期中)已知橢圓SKIPIF1<0的左右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,過(guò)SKIPIF1<0的直線與橢圓交于A,B兩點(diǎn),若SKIPIF1<0,則橢圓離心率e的取值范圍為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0直線與橢圓的位置關(guān)系1.(2022北京市一六一中學(xué)高三上學(xué)期期中)已知橢圓SKIPIF1<0的左?右頂點(diǎn)分別為A,B,右焦點(diǎn)為F,直線SKIPIF1<0.(1)若橢圓W的左頂點(diǎn)A關(guān)于直線SKIPIF1<0的對(duì)稱點(diǎn)在直線SKIPIF1<0上,求m的值;(2)過(guò)F的直線SKIPIF1<0與橢圓W相交于不同的兩點(diǎn)C,D(不與點(diǎn)A,B重合),直線SKIPIF1<0與直線SKIPIF1<0相交于點(diǎn)M,求證:A,D,M三點(diǎn)共線.2.(2021四川省成都市嘉祥外國(guó)語(yǔ)高級(jí)中學(xué)高三上學(xué)期期中)已知橢圓C:SKIPIF1<0(a>b>0)的左頂點(diǎn)為A,右焦點(diǎn)為F,過(guò)點(diǎn)A作斜率為SKIPIF1<0的直線與橢圓C相交于A,B兩點(diǎn),且AB⊥OB,O為坐標(biāo)原點(diǎn).(1)求橢圓的離心率e;(2)若b=1,過(guò)點(diǎn)F作與直線AB平行的直線l,l與橢圓C相交于P,Q兩點(diǎn),①求直線OP的斜率與直線OQ的斜率乘積;②點(diǎn)M滿足2SKIPIF1<0=SKIPIF1<0,直線MQ與橢圓的另一個(gè)交點(diǎn)為N,求SKIPIF1<0的值.1.(2021年全國(guó)高考乙卷)設(shè)B是橢圓SKIPIF1<0的上頂點(diǎn),點(diǎn)P在C上,則SKIPIF1<0的最大值為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.22.(2021年全國(guó)高考乙卷)設(shè)SKIPIF1<0是橢圓SKIPIF1<0的上頂點(diǎn),若SKIPIF1<0上的任意一點(diǎn)SKIPIF1<0都滿足SKIPIF1<0,則SKIPIF1<0的離心率的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2021年全國(guó)新高考Ⅰ卷)已知SKIPIF1<0,SKIPIF1<0是橢圓SKIPIF1<0:SKIPIF1<0的兩個(gè)焦點(diǎn),點(diǎn)SKIPIF1<0在SKIPIF1<0上,則SKIPIF1<0的最大值為()A.13 B.12 C.9 D.64.(2021年全國(guó)高考甲卷)已知SKIPIF1<0為橢圓C:SKIPIF1<0的兩個(gè)焦點(diǎn),P,Q為C上關(guān)于坐標(biāo)原點(diǎn)對(duì)稱的兩點(diǎn),且SKIPIF1<0,則四邊形SKIPIF1<0的面積為________.一、單選題1.(2022·安徽·模擬預(yù)測(cè)(理))SKIPIF1<0?SKIPIF1<0是橢圓SKIPIF1<0的左?右焦點(diǎn),點(diǎn)SKIPIF1<0為橢圓SKIPIF1<0上一點(diǎn),點(diǎn)SKIPIF1<0在SKIPIF1<0軸上,滿足SKIPIF1<0,若SKIPIF1<0,則橢圓SKIPIF1<0的離心率為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2022·湖北武漢·二模)若橢圓SKIPIF1<0的離心率為SKIPIF1<0,則SKIPIF1<0的值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0或SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<03.(2022·遼寧·建平縣實(shí)驗(yàn)中學(xué)模擬預(yù)測(cè))下列與橢圓SKIPIF1<0焦點(diǎn)相同的橢圓是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.(2022·廣東汕頭·二模)已知橢圓C的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,直線AB過(guò)SKIPIF1<0與該橢圓交于A,B兩點(diǎn),當(dāng)SKIPIF1<0為正三角形時(shí),該橢圓的離心率為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.(2022·江蘇泰州·模擬預(yù)測(cè))我國(guó)自主研發(fā)的“嫦娥四號(hào)”探測(cè)器成功著陸月球,并通過(guò)“鵲橋”中繼星傳回了月球背面影像圖.假設(shè)“嫦娥四號(hào)”在月球附近一點(diǎn)P變軌進(jìn)入以月球球心F為一個(gè)焦點(diǎn)的橢圓軌道繞月飛行,其軌道的離心率為e,設(shè)月球的半徑為R,“嫦娥四號(hào)”到月球表面最近的距離為r,則“嫦娥四號(hào)”到月球表面最遠(yuǎn)的距離為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0二、多選題6.(2022·湖南·雅禮中學(xué)二模)已知曲線SKIPIF1<0:SKIPIF1<0,焦點(diǎn)為SKIPIF1<0?SKIPIF1<0,SKIPIF1<0,過(guò)SKIPIF1<0的直線SKIPIF1<0與SKIPIF1<0交于SKIPIF1<0兩點(diǎn),則下列說(shuō)法正確的有(

)A.SKIPIF1<0是SKIPIF1<0的一條對(duì)稱軸B.SKIPIF1<0的離心率為SKIPIF1<0C.對(duì)C上任意一點(diǎn)P皆有SKIPIF1<0D.SKIPIF1<0最大值為SKIPIF1<07.(2022·重慶·模擬預(yù)測(cè))“出租車幾何”或“曼哈頓距離”(ManhattanDistance)是由十九世紀(jì)的赫爾曼·閔可夫斯基所創(chuàng)詞匯,是種被使用在幾何度量空間的幾何學(xué)用語(yǔ).在平面直角坐標(biāo)系SKIPIF1<0內(nèi),對(duì)于任意兩點(diǎn)SKIPIF1<0、SKIPIF1<0,定義它們之間的“歐幾里得距離”SKIPIF1<0,“曼哈頓距離”為SKIPIF1<0,則下列說(shuō)法正確的是(

)A.若點(diǎn)SKIPIF1<0為線段SKIPIF1<0上任意一點(diǎn),則SKIPIF1<0為定值B.對(duì)于平面上任意一點(diǎn)SKIPIF1<0,若SKIPIF1<0,則動(dòng)點(diǎn)SKIPIF1<0的軌跡長(zhǎng)度為SKIPIF1<0C.對(duì)于平面上任意三點(diǎn)SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,都有SKIPIF1<0D.若SKIPIF1<0、SKIPIF1<0為橢圓SKIPIF1<0上的兩個(gè)動(dòng)點(diǎn),則SKIPIF1<0最大值為SKIPIF1<08.(2022·重慶·模擬預(yù)測(cè))已知橢圓的離心率為SKIPIF1<0,短軸長(zhǎng)為SKIPIF1<0,兩個(gè)焦點(diǎn)為SKIPIF1<0,點(diǎn)SKIPIF1<0為橢圓上一點(diǎn),記SKIPIF1<0,則下列結(jié)論中正確的是(

)A.SKIPIF1<0的周長(zhǎng)與點(diǎn)SKIPIF1<0的位置無(wú)關(guān)B.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的面積取到最大值C.SKIPIF1<0的外接圓半徑最小為SKIPIF1<0D.SKIPIF1<0的內(nèi)切圓半徑最大為SKIPIF1<09.(2022·全國(guó)·模擬預(yù)測(cè))雙曲線SKIPIF1<0的左,右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,點(diǎn)P在C上.若SKIPIF1<0是直角三角形,則SKIPIF1<0的面積為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.4 D.2三、填空題10.(2022·全國(guó)·模擬預(yù)測(cè))已知O為坐標(biāo)原點(diǎn),橢圓SKIPIF1<0的左焦點(diǎn)為F,A為C上一點(diǎn),AF與x軸垂直.若SKIPIF1<0的面積為SKIPIF1<0,則C的離心率為__________.11.(2022·湖南衡陽(yáng)·二模)已知橢圓SKIPIF1<0與雙曲線SKIPIF1<0有相同的焦點(diǎn)SKIPIF1<0,橢圓SKIPIF1<0的離心率為SKIPIF1<0,雙曲線SKIPIF1<0的離心率為SKIPIF1<0,點(diǎn)SKIPIF1<0為橢圓SKIPIF1<0與雙曲線SKIPIF1<0的第一象限的交點(diǎn),且SKIPIF1<0,則SKIPIF1<0的取值范圍是___________.12.(2022·江蘇·南京市第一中學(xué)三模)橢圓SKIPIF1<0:SKIPIF1<0的左、下頂點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,右焦點(diǎn)為SKIPIF1<0,SKIPIF1<0中點(diǎn)為SKIPIF1<0,SKIPIF1<0為坐標(biāo)原點(diǎn),SKIPIF1<0交SKIPIF1<0于點(diǎn)SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0三點(diǎn)共線,則SKIPIF1<0的離心率為____________.13.(2022·江蘇·海安高級(jí)中學(xué)二模)如圖,F(xiàn)1,F(xiàn)2是平面上兩點(diǎn),|F1F2|=10,圖中的一系列圓是圓心分別為F1,F(xiàn)2的兩組同心圓,每組同心圓的半徑依次是1,2,3,…,點(diǎn)A,B,C分別是其中兩圓的公共點(diǎn).請(qǐng)寫出一個(gè)圓錐曲線的離心率的值為_____________,使得此圓錐曲線可以同時(shí)滿足:①以F1,F(xiàn)2為焦點(diǎn);②恰經(jīng)過(guò)A,B,C中的兩點(diǎn).14.(2022·天津市第四中學(xué)模擬預(yù)測(cè))設(shè)橢圓SKIPIF1<0的左焦點(diǎn)為F,下頂點(diǎn)為A,上頂點(diǎn)為B,SKIPIF1<0是等邊三角形.(1)橢圓的離心率為___________;(2)設(shè)直線SKIPIF1<0:SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0且斜率為SKIPIF1<0的直線與橢圓交于點(diǎn)SKIPIF1<0(SKIPIF1<0異于點(diǎn)SKIPIF1<0),線段SKIPIF1<0的垂直平分線與直線SKIPIF1<0交于點(diǎn)SKIPIF1<0,與直線SKIPIF1<0交于點(diǎn)SKIPIF1<0,若SKIPIF1<0.(i)SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論