2024屆紹興市六所名校中考押題數學預測卷含解析_第1頁
2024屆紹興市六所名校中考押題數學預測卷含解析_第2頁
2024屆紹興市六所名校中考押題數學預測卷含解析_第3頁
2024屆紹興市六所名校中考押題數學預測卷含解析_第4頁
2024屆紹興市六所名校中考押題數學預測卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆紹興市六所名校中考押題數學預測卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖所示的幾何體是由4個大小相同的小立方體搭成,其俯視圖是()A. B. C. D.2.若代數式有意義,則實數x的取值范圍是()A.x≠1 B.x≥0 C.x≠0 D.x≥0且x≠13.如圖,平行四邊形ABCD中,E,F分別在CD、BC的延長線上,AE∥BD,EF⊥BC,tan∠ABC=,EF=,則AB的長為()A. B. C.1 D.4.如圖,a∥b,點B在直線b上,且AB⊥BC,∠1=40°,那么∠2的度數()A.40° B.50° C.60° D.90°5.已知一元二次方程2x2+2x﹣1=0的兩個根為x1,x2,且x1<x2,下列結論正確的是()A.x1+x2=1 B.x1?x2=﹣1 C.|x1|<|x2| D.x12+x1=6.下列式子一定成立的是()A.2a+3a=6a B.x8÷x2=x4C. D.(﹣a﹣2)3=﹣7.已知⊙O1與⊙O2的半徑分別是3cm和5cm,兩圓的圓心距為4cm,則兩圓的位置關系是()A.相交B.內切C.外離D.內含8.如圖,正方形ABCD的邊長為2,其面積標記為S1,以CD為斜邊作等腰直角三角形,以該等腰直角三角形的一條直角邊為邊向外作正方形,其面積標記為S2,…,按照此規(guī)律繼續(xù)下去,則S9的值為()A.()6 B.()7 C.()6 D.()79.如圖,在平行四邊形ABCD中,AB=4,BC=6,分別以A,C為圓心,以大于AC的長為半徑作弧,兩弧相交于M,N兩點,作直線MN交AD于點E,則△CDE的周長是()A.7 B.10 C.11 D.1210.已知點,與點關于軸對稱的點的坐標是()A. B. C. D.11.小昱和阿帆均從同一本書的第1頁開始,逐頁依順序在每一頁上寫一個數.小昱在第1頁寫1,且之后每一頁寫的數均為他在前一頁寫的數加2;阿帆在第1頁寫1,且之后每一頁寫的數均為他在前一頁寫的數加1.若小昱在某頁寫的數為101,則阿帆在該頁寫的數為何?()A.350 B.351 C.356 D.35812.如圖:將一個矩形紙片,沿著折疊,使點分別落在點處.若,則的度數為()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.因式分解:2m2﹣8n2=.14.如圖,點O(0,0),B(0,1)是正方形OBB1C的兩個頂點,以對角線OB1為一邊作正方形OB1B2C1,再以正方形OB1B2C1的對角線OB2為一邊作正方形OB2B3C2,……,依次下去.則點B6的坐標____________.15.如圖放置的正方形,正方形,正方形,…都是邊長為的正方形,點在軸上,點,…,都在直線上,則的坐標是__________,的坐標是______.16.甲乙兩地9月上旬的日平均氣溫如圖所示,則甲乙兩地這10天日平均氣溫方差大小關系為________.(填“>”或“<”)17.將ΔABC繞點B逆時針旋轉到ΔA'BC'使A、B、C'在同一直線上,若∠BCA=90°,∠BAC=30°,AB=4cm,則圖中陰影部分面積為________cm18.方程的解是__________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在銳角三角形ABC中,點D,E分別在邊AC,AB上,AG⊥BC于點G,AF⊥DE于點F,∠EAF=∠GAC.求證:△ADE∽△ABC;若AD=3,AB=5,求的值.20.(6分)如圖,有四張背面完全相同的紙牌A,B,C,D,其正面分別畫有四個不同的幾何圖形,將這四張紙牌背面朝上洗勻.從中隨機摸出一張,求摸出的牌面圖形是中心對稱圖形的概率;小明和小亮約定做一個游戲,其規(guī)則為:先由小明隨機摸出一張紙牌,不放回,再由小亮從剩下的紙牌中隨機摸出一張,若摸出的兩張牌面圖形都是軸對稱圖形小明獲勝,否則小亮獲勝,這個游戲公平嗎?請用列表法(或樹狀圖)說明理由(紙牌用A,B,C,D表示).21.(6分)某地鐵站口的垂直截圖如圖所示,已知∠A=30°,∠ABC=75°,AB=BC=4米,求C點到地面AD的距離(結果保留根號).22.(8分)數學課上,李老師和同學們做一個游戲:他在三張硬紙片上分別寫出一個代數式,背面分別標上序號①、②、③,擺成如圖所示的一個等式,然后翻開紙片②是4x1+5x+6,翻開紙片③是3x1﹣x﹣1.解答下列問題求紙片①上的代數式;若x是方程1x=﹣x﹣9的解,求紙片①上代數式的值.23.(8分)如圖,有四張背面相同的卡片A、B、C、D,卡片的正面分別印有正三角形、平行四邊形、圓、正五邊形(這些卡片除圖案不同外,其余均相同).把這四張卡片背面向上洗勻后,進行下列操作:(1)若任意抽取其中一張卡片,抽到的卡片既是中心對稱圖形又是軸對稱圖形的概率是;(2)若任意抽出一張不放回,然后再從余下的抽出一張.請用樹狀圖或列表表示摸出的兩張卡片所有可能的結果,求抽出的兩張卡片的圖形是中心對稱圖形的概率.24.(10分)(2013年四川綿陽12分)如圖,AB是⊙O的直徑,C是半圓O上的一點,AC平分∠DAB,AD⊥CD,垂足為D,AD交⊙O于E,連接CE.(1)判斷CD與⊙O的位置關系,并證明你的結論;(2)若E是的中點,⊙O的半徑為1,求圖中陰影部分的面積.25.(10分)如圖,一根電線桿PQ直立在山坡上,從地面的點A看,測得桿頂端點P的仰角為45°,向前走6m到達點B,又測得桿頂端點P和桿底端點Q的仰角分別為60°和30°,求電線桿PQ的高度.(結果保留根號).26.(12分)如圖,已知反比例函數y=的圖象與一次函數y=x+b的圖象交于點A(1,4),點B(﹣4,n).求n和b的值;求△OAB的面積;直接寫出一次函數值大于反比例函數值的自變量x的取值范圍.27.(12分)某超市在春節(jié)期間開展優(yōu)惠活動,凡購物者可以通過轉動轉盤的方式享受折扣和優(yōu)惠,在每個轉盤中指針指向每個區(qū)域的可能性均相同,若指針指向分界線,則重新轉動轉盤,區(qū)域對應的優(yōu)惠方式如下,A1,A2,A3區(qū)域分別對應9折8折和7折優(yōu)惠,B1,B2,B3,B4區(qū)域對應不優(yōu)惠?本次活動共有兩種方式.方式一:轉動轉盤甲,指針指向折扣區(qū)域時,所購物品享受對應的折扣優(yōu)惠,指針指向其他區(qū)域無優(yōu)惠;方式二:同時轉動轉盤甲和轉盤乙,若兩個轉盤的指針均指向折扣區(qū)域時,所購物品享受折上折的優(yōu)惠,其他情況無優(yōu)惠.(1)若顧客選擇方式一,則享受優(yōu)惠的概率為;(2)若顧客選擇方式二,請用樹狀圖或列表法列出所有可能顧客享受折上折優(yōu)惠的概率.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】試題分析:根據三視圖的意義,可知俯視圖為從上面往下看,因此可知共有三個正方形,在一條線上.故選C.考點:三視圖2、D【解析】試題分析:∵代數式有意義,∴,解得x≥0且x≠1.故選D.考點:二次根式,分式有意義的條件.3、B【解析】

由平行四邊形性質得出AB=CD,AB∥CD,證出四邊形ABDE是平行四邊形,得出DE=DC=AB,再由平行線得出∠ECF=∠ABC,由三角函數求出CF長,再用勾股定理CE,即可得出AB的長.【詳解】∵四邊形ABCD是平行四邊形,∴AB∥DC,AB=CD,∵AE∥BD,∴四邊形ABDE是平行四邊形,∴AB=DE,∴AB=DE=CD,即D為CE中點,∵EF⊥BC,∴∠EFC=90°,∵AB∥CD,∴∠ECF=∠ABC,∴tan∠ECF=tan∠ABC=,在Rt△CFE中,EF=,tan∠ECF===,∴CF=,根據勾股定理得,CE==,∴AB=CE=,故選B.【點睛】本題考查了平行四邊形的性質和判定、平行線的性質,三角函數的運用;熟練掌握平行四邊形的性質,勾股定理,判斷出AB=CE是解決問題的關鍵.4、B【解析】分析:根據“平行線的性質、平角的定義和垂直的定義”進行分析計算即可.詳解:∵AB⊥BC,∴∠ABC=90°,∵點B在直線b上,∴∠1+∠ABC+∠3=180°,∴∠3=180°-∠1-90°=50°,∵a∥b,∴∠2=∠3=50°.故選B.點睛:熟悉“平行線的性質、平角的定義和垂直的定義”是正確解答本題的關鍵.5、D【解析】【分析】直接利用根與系數的關系對A、B進行判斷;由于x1+x2<0,x1x2<0,則利用有理數的性質得到x1、x2異號,且負數的絕對值大,則可對C進行判斷;利用一元二次方程解的定義對D進行判斷.【詳解】根據題意得x1+x2=﹣=﹣1,x1x2=﹣,故A、B選項錯誤;∵x1+x2<0,x1x2<0,∴x1、x2異號,且負數的絕對值大,故C選項錯誤;∵x1為一元二次方程2x2+2x﹣1=0的根,∴2x12+2x1﹣1=0,∴x12+x1=,故D選項正確,故選D.【點睛】本題考查了一元二次方程的解、一元二次方程根與系數的關系,熟練掌握相關內容是解題的關鍵.6、D【解析】

根據合并同類項、同底數冪的除法法則、分數指數運算法則、冪的乘方法則進行計算即可.【詳解】解:A:2a+3a=(2+3)a=5a,故A錯誤;B:x8÷x2=x8-2=x6,故B錯誤;C:=,故C錯誤;D:(-a-2)3=-a-6=-,故D正確.故選D.【點睛】本題考查了合并同類項、同底數冪的除法法則、分數指數運算法則、冪的乘方法則.其中指數為分數的情況在初中階段很少出現.7、A【解析】試題分析:∵⊙O1和⊙O2的半徑分別為5cm和3cm,圓心距O1O2=4cm,5﹣3<4<5+3,∴根據圓心距與半徑之間的數量關系可知⊙O1與⊙O2相交.故選A.考點:圓與圓的位置關系.8、A【解析】試題分析:如圖所示.∵正方形ABCD的邊長為2,△CDE為等腰直角三角形,∴DE2+CE2=CD2,DE=CE,∴S2+S2=S1.觀察發(fā)現規(guī)律:S1=22=4,S2=S1=2,S2=S2=1,S4=S2=,…,由此可得Sn=()n﹣2.當n=9時,S9=()9﹣2=()6,故選A.考點:勾股定理.9、B【解析】∵四邊形ABCD是平行四邊形,

∴AD=BC=4,CD=AB=6,

∵由作法可知,直線MN是線段AC的垂直平分線,

∴AE=CE,

∴AE+DE=CE+DE=AD,

∴△CDE的周長=CE+DE+CD=AD+CD=4+6=1.

故選B.10、C【解析】

根據關于y軸對稱的點,縱坐標相同,橫坐標互為相反數,可得答案.【詳解】解:點,與點關于軸對稱的點的坐標是,

故選:C.【點睛】本題考查了關于y軸對稱的點的坐標,解決本題的關鍵是掌握好對稱點的坐標規(guī)律:關于x軸對稱的點,橫坐標相同,縱坐標互為相反數;關于y軸對稱的點,縱坐標相同,橫坐標互為相反數;關于原點對稱的點,橫坐標與縱坐標都互為相反數.11、B【解析】

根據題意確定出小昱和阿帆所寫的數字,設小昱所寫的第n個數為101,根據規(guī)律確定出n的值,即可確定出阿帆在該頁寫的數.【詳解】解:小昱所寫的數為1,3,5,1,…,101,…;阿帆所寫的數為1,8,15,22,…,設小昱所寫的第n個數為101,根據題意得:101=1+(n-1)×2,整理得:2(n-1)=100,即n-1=50,解得:n=51,則阿帆所寫的第51個數為1+(51-1)×1=1+50×1=1+350=2.故選B.【點睛】此題考查了有理數的混合運算,弄清題中的規(guī)律是解本題的關鍵.12、B【解析】根據折疊前后對應角相等可知.

解:設∠ABE=x,

根據折疊前后角相等可知,∠C1BE=∠CBE=50°+x,

所以50°+x+x=90°,

解得x=20°.

故選B.“點睛”本題考查圖形的翻折變換,解題過程中應注意折疊是一種對稱變換,它屬于軸對稱,根據軸對稱的性質,折疊前后圖形的形狀和大小不變,如本題中折疊前后角相等.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、2(m+2n)(m﹣2n).【解析】試題分析:根據因式分解法的步驟,有公因式的首先提取公因式,可知首先提取系數的最大公約數2,進一步發(fā)現提公因式后,可以用平方差公式繼續(xù)分解.解:2m2﹣8n2,=2(m2﹣4n2),=2(m+2n)(m﹣2n).考點:提公因式法與公式法的綜合運用.14、(-1,0)【解析】根據已知條件由圖中可以得到B1所在的正方形的對角線長為,B2所在的正方形的對角線長為()2,B3所在的正方形的對角線長為()3;B4所在的正方形的對角線長為()4;B5所在的正方形的對角線長為()5;可推出B6所在的正方形的對角線長為()6=1.又因為B6在x軸負半軸,所以B6(-1,0).解:如圖所示∵正方形OBB1C,∴OB1=,B1所在的象限為第一象限;∴OB2=()2,B2在x軸正半軸;∴OB3=()3,B3所在的象限為第四象限;∴OB4=()4,B4在y軸負半軸;∴OB5=()5,B5所在的象限為第三象限;∴OB6=()6=1,B6在x軸負半軸.∴B6(-1,0).故答案為(-1,0).15、【解析】

先求出OA的長度,然后利用含30°的直角三角形的性質得到點D的坐標,探索規(guī)律,從而得到的坐標即可.【詳解】分別過點作y軸的垂線交y軸于點,∵點B在上設∴同理,都是含30°的直角三角形∵,∴同理,點的橫坐標為縱坐標為故點的坐標為故答案為:;.【點睛】本題主要考查含30°的直角三角形的性質,找到點的坐標規(guī)律是解題的關鍵.16、>【解析】

觀察平均氣溫統(tǒng)計圖可知:乙地的平均氣溫比較穩(wěn)定,波動??;波動越小越穩(wěn)定.【詳解】解:觀察平均氣溫統(tǒng)計圖可知:乙地的平均氣溫比較穩(wěn)定,波動?。粍t乙地的日平均氣溫的方差小,故S2甲>S2乙.故答案為:>.【點睛】本題考查方差的意義.方差是用來衡量一組數據波動大小的量,方差越大,表明這組數據偏離平均數越大,即波動越大,數據越不穩(wěn)定.反之,方差越小,表明這組數據分布比較集中,各數據偏離平均數越小,即波動越小,數據越穩(wěn)定.17、4π【解析】分析:易得整理后陰影部分面積為圓心角為110°,兩個半徑分別為4和1的圓環(huán)的面積.詳解:由旋轉可得△ABC≌△A′BC′.∵∠BCA=90°,∠BAC=30°,AB=4cm,∴BC=1cm,AC=13cm,∠A′BA=110°,∠CBC′=110°,∴陰影部分面積=(S△A′BC′+S扇形BAA′)-S扇形BCC′-S△ABC=120π360×(41-11)=4πcm1故答案為4π.點睛:本題利用旋轉前后的圖形全等,直角三角形的性質,扇形的面積公式求解.18、x=1【解析】

將方程兩邊平方后求解,注意檢驗.【詳解】將方程兩邊平方得x-3=4,移項得:x=1,代入原方程得=2,原方程成立,故方程=2的解是x=1.故本題答案為:x=1.【點睛】在解無理方程是最常用的方法是兩邊平方法及換元法,解得答案時一定要注意代入原方程檢驗.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)證明見解析;(2).【解析】

(1)由于AG⊥BC,AF⊥DE,所以∠AFE=∠AGC=90°,從而可證明∠AED=∠ACB,進而可證明△ADE∽△ABC;(2)△ADE∽△ABC,,又易證△EAF∽△CAG,所以,從而可求解.【詳解】(1)∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∵∠EAF=∠GAC,∴∠AED=∠ACB,∵∠EAD=∠BAC,∴△ADE∽△ABC,(2)由(1)可知:△ADE∽△ABC,∴由(1)可知:∠AFE=∠AGC=90°,∴∠EAF=∠GAC,∴△EAF∽△CAG,∴,∴=考點:相似三角形的判定20、(1).(2)公平.【解析】

試題分析:(1)首先根據題意結合概率公式可得答案;(2)首先根據(1)求得摸出兩張牌面圖形都是軸對稱圖形的有16種情況,若摸出兩張牌面圖形都是中心對稱圖形的有12種情況,繼而求得小明贏與小亮贏的概率,比較概率的大小,即可知這個游戲是否公平.試題解析:(1)共有4張牌,正面是中心對稱圖形的情況有3種,所以摸到正面是中心對稱圖形的紙牌的概率是;(2)列表得:

A

B

C

D

A

(A,B)

(A,C)

(A,D)

B

(B,A)

(B,C)

(B,D)

C

(C,A)

(C,B)

(C,D)

D

(D,A)

(D,B)

(D,C)

共產生12種結果,每種結果出現的可能性相同,其中兩張牌都是軸對稱圖形的有6種,∴P(兩張都是軸對稱圖形)=,因此這個游戲公平.考點:游戲公平性;軸對稱圖形;中心對稱圖形;概率公式;列表法與樹狀圖法.21、C點到地面AD的距離為:(2+2)m.【解析】

直接構造直角三角形,再利用銳角三角函數關系得出BE,CF的長,進而得出答案.【詳解】過點B作BE⊥AD于E,作BF∥AD,過C作CF⊥BF于F,在Rt△ABE中,∵∠A=30°,AB=4m,∴BE=2m,由題意可得:BF∥AD,則∠FBA=∠A=30°,在Rt△CBF中,∵∠ABC=75°,∴∠CBF=45°,∵BC=4m,∴CF=sin45°?BC=∴C點到地面AD的距離為:【點睛】考查解直角三角形,熟練掌握銳角三角函數是解題的關鍵.22、(1)7x1+4x+4;(1)55.【解析】

(1)根據整式加法的運算法則,將(4x1+5x+6)+(3x1﹣x﹣1)即可求得紙片①上的代數式;(1)先解方程1x=﹣x﹣9,再代入紙片①的代數式即可求解.【詳解】解:(1)紙片①上的代數式為:(4x1+5x+6)+(3x1﹣x﹣1)=4x1+5x+6+3x1-x-1=7x1+4x+4(1)解方程:1x=﹣x﹣9,解得x=﹣3代入紙片①上的代數式得7x1+4x+4=7×(-3)2+4×(-3)+4=63-11+4=55即紙片①上代數式的值為55.【點睛】本題考查了整式加減混合運算,解一元一次方程,代數式求值,在解題的過程中要牢記并靈活運用整式加減混合運算的法則.特別是對于含括號的運算,在去括號時,一定要注意符號的變化.23、(1);(2).【解析】

(1)既是中心對稱圖形又是軸對稱圖形只有圓一個圖形,然后根據概率的意義解答即可;(2)畫出樹狀圖,然后根據概率公式列式計算即可得解.【詳解】(1)∵正三角形、平行四邊形、圓、正五邊形中只有圓既是中心對稱圖形又是軸對稱圖形,∴抽到的卡片既是中心對稱圖形又是軸對稱圖形的概率是;(2)根據題意畫出樹狀圖如下:一共有12種情況,抽出的兩張卡片的圖形是中心對稱圖形的是B、C共有2種情況,所以,P(抽出的兩張卡片的圖形是中心對稱圖形).【點睛】本題考查了列表法和樹狀圖法,用到的知識點為:概率=所求情況數與總情況數之比.24、解:(1)CD與⊙O相切.理由如下:∵AC為∠DAB的平分線,∴∠DAC=∠BAC.∵OA=OC,∴∠OAC=∠OCA.,∴∠DAC=∠OCA.∴OC∥AD.∵AD⊥CD,∴OC⊥CD.∵OC是⊙O的半徑,∴CD與⊙O相切.(2)如圖,連接EB,由AB為直徑,得到∠AEB=90°,∴EB∥CD,F為EB的中點.∴OF為△ABE的中位線.∴OF=AE=,即CF=DE=.在Rt△OBF中,根據勾股定理得:EF=FB=DC=.∵E是的中點,∴=,∴AE=EC.∴S弓形AE=S弓形EC.∴S陰影=S△DEC=××=.【解析】(1)CD與圓O相切,理由為:由AC為角平分線得到一對角相等,再由OA=OC,利用等邊對等角得到一對角相等,等量代換得到一對內錯角相等,利用內錯角相等兩直線平行得到OC與AD平行,根據AD垂直于CD,得到OC垂直于CD,即可得證.(2)根據E為弧AC的中點,得到弧AE=弧EC,利用等弧對等弦得到AE=EC,可得出弓形AE與弓形EC面積相等,陰影部分面積拼接為直角三角形DEC的面積,求出即可.考點:角平分線定義,等腰三角形的性質,平行的判定和性質,切線的判定,圓周角定理,三角形中位線定理,勾股定理,扇形面積的計算,轉換思想的應用.25、(6+)米【解析】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論