版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2021-2022高考數(shù)學(xué)模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)為虛數(shù)單位,則復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.在復(fù)平面內(nèi),復(fù)數(shù)z=i對應(yīng)的點為Z,將向量繞原點O按逆時針方向旋轉(zhuǎn),所得向量對應(yīng)的復(fù)數(shù)是()A. B. C. D.3.空間點到平面的距離定義如下:過空間一點作平面的垂線,這個點和垂足之間的距離叫做這個點到這個平面的距離.已知平面,,兩兩互相垂直,點,點到,的距離都是3,點是上的動點,滿足到的距離與到點的距離相等,則點的軌跡上的點到的距離的最小值是()A. B.3 C. D.4.已知雙曲線(,)的左、右頂點分別為,,虛軸的兩個端點分別為,,若四邊形的內(nèi)切圓面積為,則雙曲線焦距的最小值為()A.8 B.16 C. D.5.已知隨機變量X的分布列如下表:X01Pabc其中a,b,.若X的方差對所有都成立,則()A. B. C. D.6.在鈍角中,角所對的邊分別為,為鈍角,若,則的最大值為()A. B. C.1 D.7.已知是虛數(shù)單位,若,則()A. B.2 C. D.108.已知雙曲線的一條漸近線與直線垂直,則雙曲線的離心率等于()A. B. C. D.9.已知函數(shù)()的最小值為0,則()A. B. C. D.10.已知α,β表示兩個不同的平面,l為α內(nèi)的一條直線,則“α∥β是“l(fā)∥β”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件11.過雙曲線的右焦點F作雙曲線C的一條弦AB,且,若以AB為直徑的圓經(jīng)過雙曲線C的左頂點,則雙曲線C的離心率為()A. B. C.2 D.12.某學(xué)校組織學(xué)生參加英語測試,成績的頻率分布直方圖如圖,數(shù)據(jù)的分組依次為,若低于60分的人數(shù)是18人,則該班的學(xué)生人數(shù)是()A.45 B.50 C.55 D.60二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在體積為V的圓柱中,以線段上的點O為項點,上下底面為底面的兩個圓錐的體積分別為,,則的值是______.14.在中,,是的角平分線,設(shè),則實數(shù)的取值范圍是__________.15.平面區(qū)域的外接圓的方程是____________.16.設(shè)常數(shù),如果的二項展開式中項的系數(shù)為-80,那么______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)證明:當(dāng)時,;(2)若函數(shù)有三個零點,求實數(shù)的取值范圍.18.(12分)已知各項均不相等的等差數(shù)列的前項和為,且成等比數(shù)列.(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和.19.(12分)設(shè),,其中.(1)當(dāng)時,求的值;(2)對,證明:恒為定值.20.(12分)在中,角、、的對邊分別為、、,且.(1)若,,求的值;(2)若,求的值.21.(12分)已知函數(shù)(1)求單調(diào)區(qū)間和極值;(2)若存在實數(shù),使得,求證:22.(10分)在平面直角坐標系中,以為極點,軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為;直線的參數(shù)方程為(為參數(shù)),直線與曲線分別交于兩點.(1)寫出曲線的直角坐標方程和直線的普通方程;(2)若點的極坐標為,,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
利用復(fù)數(shù)的除法運算化簡,求得對應(yīng)的坐標,由此判斷對應(yīng)點所在象限.【詳解】,對應(yīng)的點的坐標為,位于第一象限.故選:A.【點睛】本小題主要考查復(fù)數(shù)除法運算,考查復(fù)數(shù)對應(yīng)點所在象限,屬于基礎(chǔ)題.2.A【解析】
由復(fù)數(shù)z求得點Z的坐標,得到向量的坐標,逆時針旋轉(zhuǎn),得到向量的坐標,則對應(yīng)的復(fù)數(shù)可求.【詳解】解:∵復(fù)數(shù)z=i(i為虛數(shù)單位)在復(fù)平面中對應(yīng)點Z(0,1),
∴=(0,1),將繞原點O逆時針旋轉(zhuǎn)得到,
設(shè)=(a,b),,則,即,
又,解得:,∴,對應(yīng)復(fù)數(shù)為.故選:A.【點睛】本題考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.3.D【解析】
建立平面直角坐標系,將問題轉(zhuǎn)化為點的軌跡上的點到軸的距離的最小值,利用到軸的距離等于到點的距離得到點軌跡方程,得到,進而得到所求最小值.【詳解】如圖,原題等價于在直角坐標系中,點,是第一象限內(nèi)的動點,滿足到軸的距離等于點到點的距離,求點的軌跡上的點到軸的距離的最小值.設(shè),則,化簡得:,則,解得:,即點的軌跡上的點到的距離的最小值是.故選:.【點睛】本題考查立體幾何中點面距離最值的求解,關(guān)鍵是能夠準確求得動點軌跡方程,進而根據(jù)軌跡方程構(gòu)造不等關(guān)系求得最值.4.D【解析】
根據(jù)題意畫出幾何關(guān)系,由四邊形的內(nèi)切圓面積求得半徑,結(jié)合四邊形面積關(guān)系求得與等量關(guān)系,再根據(jù)基本不等式求得的取值范圍,即可確定雙曲線焦距的最小值.【詳解】根據(jù)題意,畫出幾何關(guān)系如下圖所示:設(shè)四邊形的內(nèi)切圓半徑為,雙曲線半焦距為,則所以,四邊形的內(nèi)切圓面積為,則,解得,則,即故由基本不等式可得,即,當(dāng)且僅當(dāng)時等號成立.故焦距的最小值為.故選:D【點睛】本題考查了雙曲線的定義及其性質(zhì)的簡單應(yīng)用,圓錐曲線與基本不等式綜合應(yīng)用,屬于中檔題.5.D【解析】
根據(jù)X的分布列列式求出期望,方差,再利用將方差變形為,從而可以利用二次函數(shù)的性質(zhì)求出其最大值為,進而得出結(jié)論.【詳解】由X的分布列可得X的期望為,又,所以X的方差,因為,所以當(dāng)且僅當(dāng)時,取最大值,又對所有成立,所以,解得,故選:D.【點睛】本題綜合考查了隨機變量的期望?方差的求法,結(jié)合了概率?二次函數(shù)等相關(guān)知識,需要學(xué)生具備一定的計算能力,屬于中檔題.6.B【解析】
首先由正弦定理將邊化角可得,即可得到,再求出,最后根據(jù)求出的最大值;【詳解】解:因為,所以因為所以,即,,時故選:【點睛】本題考查正弦定理的應(yīng)用,余弦函數(shù)的性質(zhì)的應(yīng)用,屬于中檔題.7.C【解析】
根據(jù)復(fù)數(shù)模的性質(zhì)計算即可.【詳解】因為,所以,,故選:C【點睛】本題主要考查了復(fù)數(shù)模的定義及復(fù)數(shù)模的性質(zhì),屬于容易題.8.B【解析】由于直線的斜率k,所以一條漸近線的斜率為,即,所以,選B.9.C【解析】
設(shè),計算可得,再結(jié)合圖像即可求出答案.【詳解】設(shè),則,則,由于函數(shù)的最小值為0,作出函數(shù)的大致圖像,結(jié)合圖像,,得,所以.故選:C【點睛】本題主要考查了分段函數(shù)的圖像與性質(zhì),考查轉(zhuǎn)化思想,考查數(shù)形結(jié)合思想,屬于中檔題.10.A【解析】試題分析:利用面面平行和線面平行的定義和性質(zhì),結(jié)合充分條件和必要條件的定義進行判斷.解:根據(jù)題意,由于α,β表示兩個不同的平面,l為α內(nèi)的一條直線,由于“α∥β,則根據(jù)面面平行的性質(zhì)定理可知,則必然α中任何一條直線平行于另一個平面,條件可以推出結(jié)論,反之不成立,∴“α∥β是“l(fā)∥β”的充分不必要條件.故選A.考點:必要條件、充分條件與充要條件的判斷;平面與平面平行的判定.11.C【解析】
由得F是弦AB的中點.進而得AB垂直于x軸,得,再結(jié)合關(guān)系求解即可【詳解】因為,所以F是弦AB的中點.且AB垂直于x軸.因為以AB為直徑的圓經(jīng)過雙曲線C的左頂點,所以,即,則,故.故選:C【點睛】本題是對雙曲線的漸近線以及離心率的綜合考查,是考查基本知識,屬于基礎(chǔ)題.12.D【解析】
根據(jù)頻率分布直方圖中頻率=小矩形的高×組距計算成績低于60分的頻率,再根據(jù)樣本容量求出班級人數(shù).【詳解】根據(jù)頻率分布直方圖,得:低于60分的頻率是(0.005+0.010)×20=0.30,∴樣本容量(即該班的學(xué)生人數(shù))是60(人).故選:D.【點睛】本題考查了頻率分布直方圖的應(yīng)用問題,也考查了頻率的應(yīng)用問題,屬于基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
根據(jù)圓柱的體積為,以及圓錐的體積公式,計算即得.【詳解】由題得,,得.故答案為:【點睛】本題主要考查圓錐體的體積,是基礎(chǔ)題.14.【解析】
設(shè),,,由,用面積公式表示面積可得到,利用,即得解.【詳解】設(shè),,,由得:,化簡得,由于,故.故答案為:【點睛】本題考查了解三角形綜合,考查了學(xué)生轉(zhuǎn)化劃歸,綜合分析,數(shù)學(xué)運算能力,屬于中檔題.15.【解析】
作出平面區(qū)域,可知平面區(qū)域為三角形,求出三角形的三個頂點坐標,設(shè)三角形的外接圓方程為,將三角形三個頂點坐標代入圓的一般方程,求出、、的值,即可得出所求圓的方程.【詳解】作出不等式組所表示的平面區(qū)域如下圖所示:由圖可知,平面區(qū)域為,聯(lián)立,解得,則點,同理可得點、,設(shè)的外接圓方程為,由題意可得,解得,,,因此,所求圓的方程為.故答案為:.【點睛】本題考查三角形外接圓方程的求解,同時也考查了一元二次不等式組所表示的平面區(qū)域的求作,考查數(shù)形結(jié)合思想以及運算求解能力,屬于中等題.16.【解析】
利用二項式定理的通項公式即可得出.【詳解】的二項展開式的通項公式:,令,解得.∴,解得.故答案為:-2.【點睛】本小題主要考查根據(jù)二項式展開式的系數(shù)求參數(shù),屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)見解析;(2)【解析】
(1)要證明,只需證明即可;(2)有3個根,可轉(zhuǎn)化為有3個根,即與有3個不同交點,利用導(dǎo)數(shù)作出的圖象即可.【詳解】(1)令,則,當(dāng)時,,故在上單調(diào)遞增,所以,即,所以.(2)由已知,,依題意,有3個零點,即有3個根,顯然0不是其根,所以有3個根,令,則,當(dāng)時,,當(dāng)時,,當(dāng)時,,故在單調(diào)遞減,在,上單調(diào)遞增,作出的圖象,易得.故實數(shù)的取值范圍為.【點睛】本題考查利用導(dǎo)數(shù)證明不等式以及研究函數(shù)零點個數(shù)問題,考查學(xué)生數(shù)形結(jié)合的思想,是一道中檔題.18.(1);(2).【解析】試題分析:(1)設(shè)公差為,列出關(guān)于的方程組,求解的值,即可得到數(shù)列的通項公式;(2)由(1)可得,即可利用裂項相消求解數(shù)列的和.試題解析:(1)設(shè)公差為.由已知得,解得或(舍去),所以,故.(2),考點:等差數(shù)列的通項公式;數(shù)列的求和.19.(1)1(2)1【解析】分析:(1)當(dāng)時可得,可得.(2)先得到關(guān)系式,累乘可得,從而可得,即為定值.詳解:(1)當(dāng)時,,又,所以.(2)即,由累乘可得,又,所以.即恒為定值1.點睛:本題考查組合數(shù)的有關(guān)運算,解題時要注意所給出的的定義,并結(jié)合組合數(shù)公式求解.由于運算量較大,解題時要注意運算的準確性,避免出現(xiàn)錯誤.20.(1);(2).【解析】
(1)利用余弦定理得出關(guān)于的二次方程,結(jié)合,可求出的值;(2)利用兩角和的余弦公式以及誘導(dǎo)公式可求出的值,利用同角三角函數(shù)的基本關(guān)系求出的值,然后利用二倍角的正切公式可求出的值.【詳解】(1)在中,由余弦定理得,,即,解得或(舍),所以;(2)由及得,,所以,又因為,所以,從而,所以.【點睛】本題考查利用余弦定理解三角形,同時也考查了兩角和的余弦公式、同角三角函數(shù)的基本關(guān)系以及二倍角公式求值,考查計算能力,屬于中等題.21.(1)時,函數(shù)單調(diào)遞增,,函數(shù)單調(diào)遞減,;(2)見解析【解析】
(1)求出函數(shù)的定義域與導(dǎo)函數(shù),利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,即可得到函數(shù)的極值;(2)易得且,要證明,即證,即證,即對恒成立,構(gòu)造函數(shù),,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與最值,即可得證;【詳解】解:(1)因為定義域為,所以,時,,即在和上單調(diào)遞增,當(dāng)時,,即函數(shù)在單調(diào)遞減,所以在處取得極小值,在處取得極大值;,;(2)易得,要證明,即證,即證即證對恒成立,令,,則令,解得,即在上單調(diào)遞增;令,解得,即在上單調(diào)遞減;則在取得極小值,也就是最小值,從而結(jié)論得證.【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值,利用導(dǎo)數(shù)證明不等式,考查運算求解能力,考查函數(shù)與方程思想,屬于中檔題.22.(1)曲線的直角坐標方程為即,直線的普通方程為;(2).【解析】
(1)利用代入法消去參數(shù)方程中的參數(shù),可得直線的普通方程,極坐標方程兩邊同乘以利用即可得曲線的直角坐標方程;(2)直線的參數(shù)方程代入圓的直角坐標方程,根據(jù)直線參數(shù)方程的幾
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 學(xué)校均衡發(fā)展工作計劃
- 中一班下學(xué)期班級計劃
- 4煤礦計劃生育工作總結(jié)及工作安排
- 2025年9月消防安全工作計劃例文
- 臨床藥師201年度工作計劃
- ui設(shè)計工作計劃
- 2025年英語培優(yōu)輔差工作計劃
- 新學(xué)期初一英語教學(xué)計劃
- 《ESD測試方法大全》課件
- 《水文、生物災(zāi)害》課件
- 兒童繪畫與心理治療
- 勞務(wù)派遣勞務(wù)外包服務(wù)方案(技術(shù)方案)
- 特種設(shè)備安全總監(jiān)職責(zé)
- 蘇教版數(shù)學(xué)五年級上冊全冊教學(xué)反思(版本1)
- 中建鐵路路基排水溝施工方案
- 固體廢物管理制度
- 部編版語文四年級上冊第二單元類文閱讀理解題(含解析)
- Cmk設(shè)備能力指數(shù)分析表
- XX中學(xué)英語興趣社團活動教案(共8篇)
- 心房顫動課件
- 超圖軟件三維平臺技術(shù)參數(shù)v8c2015r
評論
0/150
提交評論