新高考數(shù)學(xué)二輪復(fù)習(xí)圓錐曲線重難點(diǎn)提升專題1 圓錐曲線的方程與軌跡方程(原卷版)_第1頁
新高考數(shù)學(xué)二輪復(fù)習(xí)圓錐曲線重難點(diǎn)提升專題1 圓錐曲線的方程與軌跡方程(原卷版)_第2頁
新高考數(shù)學(xué)二輪復(fù)習(xí)圓錐曲線重難點(diǎn)提升專題1 圓錐曲線的方程與軌跡方程(原卷版)_第3頁
新高考數(shù)學(xué)二輪復(fù)習(xí)圓錐曲線重難點(diǎn)提升專題1 圓錐曲線的方程與軌跡方程(原卷版)_第4頁
新高考數(shù)學(xué)二輪復(fù)習(xí)圓錐曲線重難點(diǎn)提升專題1 圓錐曲線的方程與軌跡方程(原卷版)_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

專題1圓錐曲線的方程與軌跡方程一、考情分析求圓錐曲線的方程,一般出現(xiàn)在圓錐曲線解答題的第(1)問,多用待定系數(shù)法,通過解方程確定待定系數(shù),考查頻率非常高,也比較容易得分;求圓錐曲線的軌跡方程一般用定義法,有時(shí)可用到直接法、相關(guān)點(diǎn)法、交軌法等,難度一般中等或中等以下.二、解題秘籍(一)用待定系數(shù)法求圓錐曲線的方程1.求橢圓標(biāo)準(zhǔn)方程的基本方法是待定系數(shù)法,具體過程是先定形,再定量,即首先確定焦點(diǎn)所在位置,然后再根據(jù)條件建立關(guān)于a,b的方程組.如果焦點(diǎn)位置不確定,要考慮是否有兩解,有時(shí)為了解題方便,也可把橢圓方程設(shè)為mx2+ny2=1(m>0,n>0,m≠n)的形式.2.雙曲線標(biāo)準(zhǔn)方程的形式,注意焦點(diǎn)F1,F2的位置是雙曲線定位的條件,它決定了雙曲線標(biāo)準(zhǔn)方程的類型.“焦點(diǎn)跟著正項(xiàng)走”,若x2項(xiàng)的系數(shù)為正,則焦點(diǎn)在x軸上;若y2項(xiàng)的系數(shù)為正,那么焦點(diǎn)在y軸上.確定方程的形式后,然后再根據(jù)a,b,c,e及漸近線之間的關(guān)系,求出a,b的值,當(dāng)雙曲線焦點(diǎn)的位置不確定時(shí),為了避免討論焦點(diǎn)的位置,常設(shè)雙曲線方程為Ax2+By2=1(A·B<0),這樣可以簡化運(yùn)算.3.如果已知雙曲線的漸近線方程SKIPIF1<0,求雙曲線的標(biāo)準(zhǔn)方程,可設(shè)雙曲線方程為eq\f(x2,a2)-eq\f(y2,b2)=λ(λ≠0),再由條件求出λ的值即可.與雙曲線eq\f(x2,a2)-eq\f(y2,b2)=1(a>0,b>0)有共同漸近線的方程可表示eq\f(x2,a2)-eq\f(y2,b2)=λ(λ≠0).4.利用待定系數(shù)法求拋物線的標(biāo)準(zhǔn)方程的步驟(1)依據(jù)條件設(shè)出拋物線的標(biāo)準(zhǔn)方程的類型.(2)求參數(shù)p的值.(3)確定拋物線的標(biāo)準(zhǔn)方程.【例1】(2023屆山西省長治市高三上學(xué)期質(zhì)量檢測)已知點(diǎn)SKIPIF1<0在橢圓SKIPIF1<0:SKIPIF1<0(SKIPIF1<0)上,且點(diǎn)SKIPIF1<0到橢圓右頂點(diǎn)SKIPIF1<0的距離為SKIPIF1<0.(1)求橢圓SKIPIF1<0的方程;(2)若點(diǎn)SKIPIF1<0,SKIPIF1<0是橢圓SKIPIF1<0上不同的兩點(diǎn)(均異于SKIPIF1<0)且滿足直線SKIPIF1<0與SKIPIF1<0斜率之積為SKIPIF1<0.試判斷直線SKIPIF1<0是否過定點(diǎn),若是,求出定點(diǎn)坐標(biāo),若不是,說明理由.【解析】(1)點(diǎn)SKIPIF1<0,在橢圓SKIPIF1<0:SKIPIF1<0(SKIPIF1<0)上代入得:SKIPIF1<0,點(diǎn)SKIPIF1<0到橢圓右頂點(diǎn)SKIPIF1<0的距離為SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,故橢圓SKIPIF1<0的方程為SKIPIF1<0.(2)由題意,直線SKIPIF1<0的斜率存在,可設(shè)直線SKIPIF1<0的方程為SKIPIF1<0(SKIPIF1<0),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.聯(lián)立SKIPIF1<0得SKIPIF1<0.SKIPIF1<0.∴SKIPIF1<0,SKIPIF1<0,∵直線SKIPIF1<0與直線SKIPIF1<0斜率之積為SKIPIF1<0.∴SKIPIF1<0,∴SKIPIF1<0.化簡得SKIPIF1<0,∴SKIPIF1<0,化簡得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),直線SKIPIF1<0方程為SKIPIF1<0,過定點(diǎn)SKIPIF1<0.SKIPIF1<0代入判別式大于零中,解得SKIPIF1<0(SKIPIF1<0).當(dāng)SKIPIF1<0時(shí),直線SKIPIF1<0的方程為SKIPIF1<0,過定點(diǎn)SKIPIF1<0,不符合題意.綜上所述:直線SKIPIF1<0過定點(diǎn)SKIPIF1<0.【點(diǎn)評】利用待定系數(shù)法求橢圓的方程,一般需要兩個(gè)獨(dú)立的條件確定關(guān)于SKIPIF1<0的等式.【例2】(2023屆廣東省開平市忠源紀(jì)念中學(xué)高三階段性檢測)已知雙曲線SKIPIF1<0的離心率為SKIPIF1<0,點(diǎn)SKIPIF1<0在SKIPIF1<0上.(1)求雙曲線SKIPIF1<0的方程.(2)設(shè)過點(diǎn)SKIPIF1<0的直線SKIPIF1<0與雙曲線SKIPIF1<0交于SKIPIF1<0兩點(diǎn),問在SKIPIF1<0軸上是否存在定點(diǎn)SKIPIF1<0,使得SKIPIF1<0為常數(shù)?若存在,求出點(diǎn)SKIPIF1<0的坐標(biāo)以及該常數(shù)的值;若不存在,請說明理由.【解析】(1)因?yàn)殡p曲線SKIPIF1<0的離心率為SKIPIF1<0,所以SKIPIF1<0,化簡得SKIPIF1<0.將點(diǎn)SKIPIF1<0的坐標(biāo)代入SKIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0的方程為SKIPIF1<0.(2)設(shè)SKIPIF1<0,直線SKIPIF1<0的方程為SKIPIF1<0,聯(lián)立方程組SKIPIF1<0消去SKIPIF1<0得(1-SKIPIF1<0SKIPIF1<0,由題可知SKIPIF1<0且SKIPIF1<0,即SKIPIF1<0且SKIPIF1<0,所以SKIPIF1<0.設(shè)存在符合條件的定點(diǎn)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0.所以SKIPIF1<0,化簡得SKIPIF1<0.因?yàn)镾KIPIF1<0為常數(shù),所以SKIPIF1<0,解得SKIPIF1<0.此時(shí)該常數(shù)的值為SKIPIF1<0,所以,在SKIPIF1<0軸上存在點(diǎn)SKIPIF1<0,使得SKIPIF1<0為常數(shù),該常數(shù)為SKIPIF1<0.【點(diǎn)評】求雙曲線的標(biāo)準(zhǔn)方程的基本方法是待定系數(shù)法.具體過程是先定形,再定量,即先確定雙曲線標(biāo)準(zhǔn)方程的形式,然后再根據(jù)a,b,c,e及漸近線之間的關(guān)系,求出a,b的值.注意用待定系數(shù)法確定雙曲線的標(biāo)準(zhǔn)方程要注意方程的個(gè)數(shù)要與未知數(shù)的個(gè)數(shù)相等.【例3】(2023屆甘肅省張掖市高三上學(xué)期診斷)已知拋物線SKIPIF1<0上的點(diǎn)SKIPIF1<0到其焦點(diǎn)F的距離為SKIPIF1<0.(1)求拋物線C的方程;(2)點(diǎn)SKIPIF1<0在拋物線C上,過點(diǎn)SKIPIF1<0的直線l與拋物線C交于SKIPIF1<0,SKIPIF1<0SKIPIF1<0兩點(diǎn),點(diǎn)H與點(diǎn)A關(guān)于x軸對稱,直線AH分別與直線OE,OB交于點(diǎn)M,N(O為坐標(biāo)原點(diǎn)),求證:SKIPIF1<0.【解析】(1)由點(diǎn)SKIPIF1<0在拋物線上可得,SKIPIF1<0,解得SKIPIF1<0.由拋物線的定義可得SKIPIF1<0,整理得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍去).故拋物線C的方程為SKIPIF1<0.(2)由SKIPIF1<0在拋物線C上可得SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,直線OE的方程為SKIPIF1<0,因?yàn)辄c(diǎn)SKIPIF1<0和點(diǎn)SKIPIF1<0關(guān)于SKIPIF1<0軸對稱,所以SKIPIF1<0,SKIPIF1<0均不為0.由題意知直線l的斜率存在且大于0,設(shè)直線l的方程為SKIPIF1<0,聯(lián)立SKIPIF1<0消去y,得SKIPIF1<0.則SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.由直線OE的方程為SKIPIF1<0,得SKIPIF1<0.易知直線OB的方程為SKIPIF1<0,故SKIPIF1<0.要證SKIPIF1<0,即證SKIPIF1<0,即證SKIPIF1<0,即證SKIPIF1<0,即證SKIPIF1<0,則SKIPIF1<0,此等式顯然成立,所以SKIPIF1<0.【點(diǎn)評】用待定系數(shù)法求拋物線的標(biāo)準(zhǔn)方程,只需要確定p的值,因此只需要由已知條件整理出一個(gè)關(guān)于p的等式.(二)直接法求曲線軌跡方程1.直接法求曲線方程的關(guān)鍵就是把幾何條件或等量關(guān)系翻譯為代數(shù)方程,要注意翻譯的等價(jià)性.通常將步驟簡記為建系、設(shè)點(diǎn)、列式、代換、化簡、證明這幾個(gè)步驟,但最后的證明可以省略.2.求出曲線的方程后還需注意檢驗(yàn)方程的純粹性和完備性.3.對方程化簡時(shí),要保證前后方程解集相同,必要時(shí)可說明x,y的取值范圍.【例4】設(shè)動(dòng)點(diǎn)SKIPIF1<0在直線SKIPIF1<0和SKIPIF1<0上的射影分別為點(diǎn)SKIPIF1<0和SKIPIF1<0,已知SKIPIF1<0,其中SKIPIF1<0為坐標(biāo)原點(diǎn).(1)求動(dòng)點(diǎn)SKIPIF1<0的軌跡SKIPIF1<0的方程;(2)過直線SKIPIF1<0上的一點(diǎn)SKIPIF1<0作軌跡SKIPIF1<0的兩條切線SKIPIF1<0和SKIPIF1<0(SKIPIF1<0,SKIPIF1<0為切點(diǎn)),求證:直線SKIPIF1<0經(jīng)過定點(diǎn).【分析】(1)利用直接法求軌跡方程,設(shè)SKIPIF1<0,把SKIPIF1<0坐標(biāo)化,即可得到動(dòng)點(diǎn)SKIPIF1<0的軌跡SKIPIF1<0的方程;(2)利用導(dǎo)數(shù)的幾何意義,求得切線斜率,設(shè)SKIPIF1<0,可得切線SKIPIF1<0、SKIPIF1<0的方程,聯(lián)立可得切點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,又點(diǎn)SKIPIF1<0在直線SKIPIF1<0上,代入可得SKIPIF1<0,再代入到直線SKIPIF1<0的方程即可得解.【解析】(1)設(shè)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,由條件可得SKIPIF1<0,整理可得點(diǎn)SKIPIF1<0的軌方程為SKIPIF1<0;(2)由(1)知,SKIPIF1<0,求導(dǎo)可得SKIPIF1<0,設(shè)SKIPIF1<0,則切線SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0①,同理可得切線SKIPIF1<0的方程為SKIPIF1<0②,聯(lián)立①②,解得點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,因?yàn)辄c(diǎn)SKIPIF1<0在直線SKIPIF1<0上,所以SKIPIF1<0,即SKIPIF1<0,又直線SKIPIF1<0的斜率SKIPIF1<0,所以直線SKIPIF1<0的方程為:SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,代入可得SKIPIF1<0,所以直線SKIPIF1<0過定點(diǎn)SKIPIF1<0.【點(diǎn)評】利用直接法求曲線的軌跡方程一般是根據(jù)題中的一個(gè)等量關(guān)系式,將其坐標(biāo)化,即可得到曲線的軌跡方程.(三)定義法求曲線軌跡方程1.運(yùn)用圓錐曲線的定義求軌跡方程,可從曲線定義出發(fā)直接寫出方程,或從曲線定義出發(fā)建立關(guān)系式,從而求出方程.2.定義法和待定系數(shù)法適用于已知曲線的軌跡類型,利用條件把待定系數(shù)求出來,使問題得解.3.平面內(nèi)與兩個(gè)定點(diǎn)F1,F2的距離之和等于常數(shù)(大于|F1F2|)的點(diǎn)的軌跡叫做橢圓.這兩個(gè)定點(diǎn)叫做橢圓的焦點(diǎn),兩焦點(diǎn)間的距離叫做橢圓的焦距.集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c為常數(shù):(1)若a>c,則集合P為橢圓;(2)若a=c,則集合P為線段;(3)若a<c,則集合P為空集.4.平面內(nèi)與兩個(gè)定點(diǎn)F1,F2的距離的差的絕對值等于常數(shù)(小于|F1F2|)的點(diǎn)的軌跡叫做雙曲線.這兩個(gè)定點(diǎn)叫做雙曲線的焦點(diǎn),兩焦點(diǎn)間的距離叫做雙曲線的焦距.集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c為常數(shù)且a>0,c>0.(1)當(dāng)2a<|F1F2|時(shí),P點(diǎn)的軌跡是雙曲線;(2)當(dāng)2a=|F1F2|時(shí),P點(diǎn)的軌跡是以F1,F2為端點(diǎn)的兩條射線;(3)當(dāng)2a>|F1F2|時(shí),P點(diǎn)不存在.5.平面內(nèi)與一個(gè)定點(diǎn)F和一條定直線l(l不經(jīng)過點(diǎn)F)的距離相等的點(diǎn)的軌跡叫做拋物線.點(diǎn)F叫做拋物線的焦點(diǎn),直線l叫做拋物線的準(zhǔn)線.注意:(1)定直線l不經(jīng)過定點(diǎn)F.(2)定義中包含三個(gè)定值,分別為一個(gè)定點(diǎn),一條定直線及一個(gè)確定的比值.【例5】(2023屆河北省示范性高中高三上學(xué)期調(diào)研)已知圓A:SKIPIF1<0,直線l(與x軸不重合)過點(diǎn)SKIPIF1<0交圓A于C、D兩點(diǎn),過點(diǎn)B作直線SKIPIF1<0的平行線交直線SKIPIF1<0于點(diǎn)E.(1)證明SKIPIF1<0為定值,并求點(diǎn)E的軌跡方程;(2)設(shè)點(diǎn)E的軌跡方程為SKIPIF1<0,直線l與曲線SKIPIF1<0交于M、N兩點(diǎn),線段SKIPIF1<0的垂直平分線交x軸于點(diǎn)P,是否存在實(shí)常數(shù)入,使得SKIPIF1<0,若存在,求出SKIPIF1<0的值;若不存在,請說明理由.【解析】(1)SKIPIF1<0,得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),如圖1所示,因?yàn)镈,C都在圓A上所以SKIPIF1<0,即SKIPIF1<0又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,∴SKIPIF1<0,所以SKIPIF1<0當(dāng)SKIPIF1<0時(shí),如圖2所示,同理可得,SKIPIF1<0因此SKIPIF1<0,所以點(diǎn)E的軌跡是以A,B為焦點(diǎn)的雙曲線,故SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,∴SKIPIF1<0為定值2,且點(diǎn)E的軌跡方程為SKIPIF1<0.(2)由題知,直線l的斜率不為0,設(shè)l:SKIPIF1<0,聯(lián)立SKIPIF1<0消去x得,SKIPIF1<0,于是SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則有SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,所以線段SKIPIF1<0的中點(diǎn)為SKIPIF1<0,從而線段SKIPIF1<0的中垂線的方程為SKIPIF1<0令SKIPIF1<0得,SKIPIF1<0,∴SKIPIF1<0又SKIPIF1<0故SKIPIF1<0,于是SKIPIF1<0即存在SKIPIF1<0使得SKIPIF1<0.【點(diǎn)評】利用雙曲線定義求軌跡方程,關(guān)鍵是利用題中條件,確定動(dòng)點(diǎn)到兩定點(diǎn)距離之差的絕對值為定值.【例6】已知一定點(diǎn)SKIPIF1<0,及一定直線l:SKIPIF1<0,以動(dòng)點(diǎn)M為圓心的圓M過點(diǎn)F,且與直線l相切.(1)求動(dòng)點(diǎn)M的軌跡C的方程;(2)設(shè)P在直線l上,直線PA,PB分別與曲線C相切于A,B,N為線段AB的中點(diǎn).求證:SKIPIF1<0,且直線AB恒過定點(diǎn).【解析】(1)動(dòng)點(diǎn)M為圓心的圓M過點(diǎn)F,且與直線l相切,動(dòng)圓圓心到定點(diǎn)F(0,1)與定直線y=-1的距離相等,

∴動(dòng)圓圓心的軌跡為拋物線,其中F(0,1)為焦點(diǎn),y=-1為準(zhǔn)線,SKIPIF1<0,∴動(dòng)圓圓心軌跡方程為x2=4y.(2)依題意可設(shè)SKIPIF1<0,又SKIPIF1<0故切線SKIPIF1<0的斜率為SKIPIF1<0,故切線SKIPIF1<0同理可得到切線SKIPIF1<0又SKIPIF1<0,∴SKIPIF1<0且SKIPIF1<0,故方程SKIPIF1<0有兩根SKIPIF1<0∴SKIPIF1<0,SKIPIF1<0SKIPIF1<0又SKIPIF1<0為線段SKIPIF1<0的中點(diǎn),SKIPIF1<0又由SKIPIF1<0得到:SKIPIF1<0即SKIPIF1<0同理可得到SKIPIF1<0,故直線AB方程為:SKIPIF1<0,故直線過定點(diǎn)SKIPIF1<0.【點(diǎn)評】利用拋物線定義求軌跡方程關(guān)鍵是確定動(dòng)點(diǎn)到一定點(diǎn)與定直線距離相等.(四)相關(guān)點(diǎn)法求曲線軌跡方程“相關(guān)點(diǎn)法”求軌跡方程的基本步驟(1)設(shè)點(diǎn):設(shè)被動(dòng)點(diǎn)坐標(biāo)為(x,y),主動(dòng)點(diǎn)坐標(biāo)為(x1,y1);(2)求關(guān)系式:求出兩個(gè)動(dòng)點(diǎn)坐標(biāo)之間的關(guān)系式eq\b\lc\{\rc\(\a\vs4\al\co1(x1=fx,y,,y1=gx,y;))(3)代換:將上述關(guān)系式代入已知曲線方程,便可得到所求動(dòng)點(diǎn)的軌跡方程.【例7】(2023屆廣東省揭陽市高三上學(xué)期調(diào)研)已知SKIPIF1<0?SKIPIF1<0是橢圓SKIPIF1<0:SKIPIF1<0的左?右焦點(diǎn),點(diǎn)SKIPIF1<0SKIPIF1<0是橢圓上的動(dòng)點(diǎn).(1)求SKIPIF1<0的重心SKIPIF1<0的軌跡方程;(2)設(shè)點(diǎn)SKIPIF1<0是SKIPIF1<0的內(nèi)切圓圓心,求證:SKIPIF1<0.【解析】(1)連接SKIPIF1<0,由三角形重心性質(zhì)知SKIPIF1<0在SKIPIF1<0的三等分點(diǎn)處(靠近原點(diǎn))設(shè)SKIPIF1<0,則有SKIPIF1<0又SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0SKIPIF1<0的重心SKIPIF1<0的軌跡方程為SKIPIF1<0;(2)根據(jù)對稱性,不妨設(shè)點(diǎn)SKIPIF1<0在第一象限內(nèi),易知圓SKIPIF1<0的半徑為等于SKIPIF1<0,利用等面積法有:SKIPIF1<0結(jié)合橢圓定義:SKIPIF1<0有SKIPIF1<0,解得SKIPIF1<0由SKIPIF1<0?SKIPIF1<0兩點(diǎn)的坐標(biāo)可知直線SKIPIF1<0的方程為SKIPIF1<0根據(jù)圓心SKIPIF1<0到直線SKIPIF1<0的距離等于半徑,有SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0,又SKIPIF1<0化簡得SKIPIF1<0,即SKIPIF1<0∴SKIPIF1<0,即SKIPIF1<0由已知得SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0所以SKIPIF1<0,即SKIPIF1<0.(五)交軌法求曲線軌跡方程求兩曲線的交點(diǎn)軌跡時(shí),可由方程直接消去參數(shù),或者先引入?yún)?shù)來建立這些動(dòng)曲線的聯(lián)系,然后消去參數(shù)來得到軌跡方程,稱之交軌法.若動(dòng)點(diǎn)是兩曲線的交點(diǎn),可以通過這兩曲線的方程直接求出交點(diǎn)的軌跡方程,也可以解方程組先求出交點(diǎn)坐標(biāo)的參數(shù)方程,再化為普通方程.【例8】(2022屆重慶市第八中學(xué)高三上學(xué)期月考)已知拋物線SKIPIF1<0,過點(diǎn)SKIPIF1<0的直線交拋物線SKIPIF1<0于SKIPIF1<0兩點(diǎn),以SKIPIF1<0為切點(diǎn)分別作拋物線SKIPIF1<0的兩條切線交于點(diǎn)SKIPIF1<0.(1)若線段SKIPIF1<0的中點(diǎn)SKIPIF1<0的縱坐標(biāo)為SKIPIF1<0,求直線SKIPIF1<0的方程;(2)求動(dòng)點(diǎn)SKIPIF1<0的軌跡.【分析】(1)聯(lián)立直線與拋物線,根據(jù)韋達(dá)定理及中點(diǎn)求出k即可;(2)寫出圓的切線方程,根據(jù)P是交點(diǎn)可得SKIPIF1<0是方程SKIPIF1<0的兩根,由(1)中SKIPIF1<0代入化簡即可求出.【解析】(1)依題意有:直線SKIPIF1<0的斜率必存在,故可設(shè)直線SKIPIF1<0的方程為SKIPIF1<0由SKIPIF1<0可得:SKIPIF1<0.設(shè)SKIPIF1<0,則有SKIPIF1<0于是:SKIPIF1<0,解得SKIPIF1<0,故直線SKIPIF1<0的方程為SKIPIF1<0(2)設(shè)SKIPIF1<0,對于拋物線SKIPIF1<0,SKIPIF1<0于是:SKIPIF1<0點(diǎn)處切線方程為SKIPIF1<0,點(diǎn)SKIPIF1<0在該切線上,故SKIPIF1<0,即SKIPIF1<0.同理:SKIPIF1<0點(diǎn)坐標(biāo)也滿足SKIPIF1<0于是:SKIPIF1<0是方程SKIPIF1<0的兩根,所以SKIPIF1<0又由(1)可知:SKIPIF1<0,于是SKIPIF1<0,消k得SKIPIF1<0,于是SKIPIF1<0的軌跡方程為SKIPIF1<0,點(diǎn)SKIPIF1<0的軌跡是一條直線.【點(diǎn)評】求兩條動(dòng)直線交點(diǎn)軌跡方程一般用交軌法三、跟蹤檢測1.(2023屆廣東省廣東廣雅中學(xué)高三上學(xué)期9月階段測試)已知橢圓SKIPIF1<0:SKIPIF1<0(SKIPIF1<0)的離心率為SKIPIF1<0.圓SKIPIF1<0(SKIPIF1<0為坐標(biāo)原點(diǎn))在橢圓SKIPIF1<0的內(nèi)部,半徑為SKIPIF1<0.SKIPIF1<0,SKIPIF1<0分別為橢圓SKIPIF1<0和圓SKIPIF1<0上的動(dòng)點(diǎn),且SKIPIF1<0,SKIPIF1<0兩點(diǎn)的最小距離為SKIPIF1<0.(1)求橢圓SKIPIF1<0的方程;(2)SKIPIF1<0,SKIPIF1<0是橢圓SKIPIF1<0上不同的兩點(diǎn),且直線SKIPIF1<0與以SKIPIF1<0為直徑的圓的一個(gè)交點(diǎn)在圓SKIPIF1<0上.求證:以SKIPIF1<0為直徑的圓過定點(diǎn).2.(2023屆山西省忻州市高三上學(xué)期聯(lián)考)已知雙曲線SKIPIF1<0的離心率是SKIPIF1<0,點(diǎn)SKIPIF1<0是雙曲線SKIPIF1<0的一個(gè)焦點(diǎn),且點(diǎn)SKIPIF1<0到雙曲線SKIPIF1<0的一條漸近線的距離是2.(1)求雙曲線SKIPIF1<0的標(biāo)準(zhǔn)方程.(2)設(shè)點(diǎn)SKIPIF1<0在直線SKIPIF1<0上,過點(diǎn)SKIPIF1<0作兩條直線SKIPIF1<0,直線SKIPIF1<0與雙曲線SKIPIF1<0交于SKIPIF1<0兩點(diǎn),直線SKIPIF1<0與雙曲線SKIPIF1<0交于SKIPIF1<0兩點(diǎn).若直線SKIPIF1<0與直線SKIPIF1<0的傾斜角互補(bǔ),證明:SKIPIF1<0.3.(2023屆廣東省茂名市高三上學(xué)期9月大聯(lián)考)如圖,平面直角坐標(biāo)系SKIPIF1<0中,點(diǎn)SKIPIF1<0為SKIPIF1<0軸上的一個(gè)動(dòng)點(diǎn),動(dòng)點(diǎn)SKIPIF1<0滿足SKIPIF1<0,又點(diǎn)SKIPIF1<0滿足SKIPIF1<0.(1)求動(dòng)點(diǎn)SKIPIF1<0的軌跡SKIPIF1<0的方程;(2)過曲線SKIPIF1<0上的點(diǎn)SKIPIF1<0(SKIPIF1<0)的直線SKIPIF1<0與SKIPIF1<0,SKIPIF1<0軸的交點(diǎn)分別為SKIPIF1<0和SKIPIF1<0,且SKIPIF1<0,過原點(diǎn)SKIPIF1<0的直線與SKIPIF1<0平行,且與曲線SKIPIF1<0交于SKIPIF1<0、SKIPIF1<0兩點(diǎn),求SKIPIF1<0面積的最大值.4.(2023屆湖南省永州市高三上學(xué)期適應(yīng)性考試)點(diǎn)SKIPIF1<0在雙曲線SKIPIF1<0上,離心率SKIPIF1<0.(1)求雙曲線SKIPIF1<0的方程;(2)SKIPIF1<0是雙曲線SKIPIF1<0上的兩個(gè)動(dòng)點(diǎn)(異于點(diǎn)SKIPIF1<0),SKIPIF1<0分別表示直線SKIPIF1<0的斜率,滿足SKIPIF1<0,求證:直線SKIPIF1<0恒過一個(gè)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).5.(2023屆福建師范大學(xué)附屬中學(xué)高三上學(xué)期月考)在平面直角坐標(biāo)系SKIPIF1<0中,設(shè)點(diǎn)SKIPIF1<0,點(diǎn)SKIPIF1<0與SKIPIF1<0兩點(diǎn)的距離之和為SKIPIF1<0為一動(dòng)點(diǎn),點(diǎn)SKIPIF1<0滿足向量關(guān)系式:SKIPIF1<0.(1)求點(diǎn)SKIPIF1<0的軌跡方程SKIPIF1<0;(2)設(shè)SKIPIF1<0與SKIPIF1<0軸交于點(diǎn)SKIPIF1<0(SKIPIF1<0在SKIPIF1<0的左側(cè)),點(diǎn)SKIPIF1<0為SKIPIF1<0上一動(dòng)點(diǎn)(且不與SKIPIF1<0重合).設(shè)直線SKIPIF1<0軸與直線SKIPIF1<0分別交于點(diǎn)SKIPIF1<0,取SKIPIF1<0,連接SKIPIF1<0,證明:SKIPIF1<0為SKIPIF1<0的角平分線.6.(2023屆云南省大理市轄區(qū)高三統(tǒng)一檢測)已知SKIPIF1<0為橢圓C的左、右焦點(diǎn),點(diǎn)SKIPIF1<0為其上一點(diǎn),且SKIPIF1<0.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)過點(diǎn)SKIPIF1<0的直線l與橢圓C相交于P,Q兩點(diǎn),點(diǎn)P關(guān)于坐標(biāo)原點(diǎn)O的對稱點(diǎn)R,試問SKIPIF1<0的面積是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請說明理由.7.(2022屆福建省福州第十八中學(xué)高三上學(xué)期考試)已知拋物線SKIPIF1<0的焦點(diǎn)SKIPIF1<0到準(zhǔn)線的距離為2.(1)求SKIPIF1<0的方程;(2)已知SKIPIF1<0為坐標(biāo)原點(diǎn),點(diǎn)SKIPIF1<0在SKIPIF1<0上,點(diǎn)SKIPIF1<0滿足SKIPIF1<0,求直線SKIPIF1<0斜率的最大值.8.(2023屆陜西師范大學(xué)附屬中學(xué)、渭北中學(xué)等高三上學(xué)期聯(lián)考)已知拋物線SKIPIF1<0,O是坐標(biāo)原點(diǎn),F是C的焦點(diǎn),M是C上一點(diǎn),SKIPIF1<0,SKIPIF1<0.(1)求拋物線C的標(biāo)準(zhǔn)方程;(2)設(shè)點(diǎn)SKIPIF1<0在C上,過Q作兩條互相垂直的直線SKIPIF1<0,分別交C于A,B兩點(diǎn)(異于Q點(diǎn)).證明:直線SKIPIF1<0恒過定點(diǎn).9.(2023屆廣東省潮陽實(shí)驗(yàn)、湛江一中、深圳實(shí)驗(yàn)三校高三上學(xué)期9月聯(lián)考)已知橢圓SKIPIF1<0的離心率為SKIPIF1<0,橢圓上一動(dòng)點(diǎn)SKIPIF1<0與左?右焦點(diǎn)構(gòu)成的三角形面積最大值為SKIPIF1<0.(1)求橢圓SKIPIF1<0的方程;(2)設(shè)橢圓SKIPIF1<0的左?右頂點(diǎn)分別為SKIPIF1<0,直線SKIPIF1<0交橢圓SKIPIF1<0于SKIPIF1<0兩點(diǎn),記直線SKIPIF1<0的斜率為SKIPIF1<0,直線SKIPIF1<0的斜率為SKIPIF1<0,已知SKIPIF1<0.①求證:直線SKIPIF1<0恒過定點(diǎn);②設(shè)SKIPIF1<0和SKIPIF1<0的面積分別為SKIPIF1<0,求SKIPIF1<0的最大值.10.(2022屆云南省紅河州高三檢測)在平面直角坐標(biāo)系SKIPIF1<0中,點(diǎn)SK

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論