版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省棗莊八中2025年高三下學期第一次質量檢測試題數(shù)學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列對任意的有成立,若,則等于()A. B. C. D.2.為比較甲、乙兩名高二學生的數(shù)學素養(yǎng),對課程標準中規(guī)定的數(shù)學六大素養(yǎng)進行指標測驗(指標值滿分為5分,分值高者為優(yōu)),根據(jù)測驗情況繪制了如圖所示的六大素養(yǎng)指標雷達圖,則下面敘述正確的是()A.乙的數(shù)據(jù)分析素養(yǎng)優(yōu)于甲B.乙的數(shù)學建模素養(yǎng)優(yōu)于數(shù)學抽象素養(yǎng)C.甲的六大素養(yǎng)整體水平優(yōu)于乙D.甲的六大素養(yǎng)中數(shù)據(jù)分析最差3.已知正項等比數(shù)列中,存在兩項,使得,,則的最小值是()A. B. C. D.4.若復數(shù)在復平面內對應的點在第二象限,則實數(shù)的取值范圍是()A. B. C. D.5.如圖是計算值的一個程序框圖,其中判斷框內應填入的條件是()A.B.C.D.6.已知拋物線的焦點與雙曲線的一個焦點重合,且拋物線的準線被雙曲線截得的線段長為,那么該雙曲線的離心率為()A. B. C. D.7.在中,“”是“”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件8.若函數(shù)f(x)=a|2x-4|(a>0,a≠1)滿足f(1)=,則f(x)的單調遞減區(qū)間是()A.(-∞,2] B.[2,+∞)C.[-2,+∞) D.(-∞,-2]9.已知等差數(shù)列中,若,則此數(shù)列中一定為0的是()A. B. C. D.10.已知函數(shù)是定義在R上的奇函數(shù),且滿足,當時,(其中e是自然對數(shù)的底數(shù)),若,則實數(shù)a的值為()A. B.3 C. D.11.已知實數(shù)滿足約束條件,則的最小值為()A.-5 B.2 C.7 D.1112.已知橢圓+=1(a>b>0)與直線交于A,B兩點,焦點F(0,-c),其中c為半焦距,若△ABF是直角三角形,則該橢圓的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.給出下列四個命題,其中正確命題的序號是_____.(寫出所有正確命題的序號)因為所以不是函數(shù)的周期;對于定義在上的函數(shù)若則函數(shù)不是偶函數(shù);“”是“”成立的充分必要條件;若實數(shù)滿足則.14.已知關于空間兩條不同直線m、n,兩個不同平面、,有下列四個命題:①若且,則;②若且,則;③若且,則;④若,且,則.其中正確命題的序號為______.15.若,i為虛數(shù)單位,則正實數(shù)的值為______.16.若雙曲線的兩條漸近線斜率分別為,,若,則該雙曲線的離心率為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在中,已知,,,為線段的中點,是由繞直線旋轉而成,記二面角的大小為.(1)當平面平面時,求的值;(2)當時,求二面角的余弦值.18.(12分)設函數(shù).(1)時,求的單調區(qū)間;(2)當時,設的最小值為,若恒成立,求實數(shù)t的取值范圍.19.(12分)超級病菌是一種耐藥性細菌,產生超級細菌的主要原因是用于抵抗細菌侵蝕的藥物越來越多,但是由于濫用抗生素的現(xiàn)象不斷的發(fā)生,很多致病菌也對相應的抗生素產生了耐藥性,更可怕的是,抗生素藥物對它起不到什么作用,病人會因為感染而引起可怕的炎癥,高燒、痙攣、昏迷直到最后死亡.某藥物研究所為篩查某種超級細菌,需要檢驗血液是否為陽性,現(xiàn)有n()份血液樣本,每個樣本取到的可能性均等,有以下兩種檢驗方式:(1)逐份檢驗,則需要檢驗n次;(2)混合檢驗,將其中k(且)份血液樣本分別取樣混合在一起檢驗,若檢驗結果為陰性,這k份的血液全為陰性,因而這k份血液樣本只要檢驗一次就夠了,如果檢驗結果為陽性,為了明確這k份血液究竟哪幾份為陽性,就要對這k份再逐份檢驗,此時這k份血液的檢驗次數(shù)總共為次,假設在接受檢驗的血液樣本中,每份樣本的檢驗結果是陽性還是陰性都是獨立的,且每份樣本是陽性結果的概率為p().(1)假設有5份血液樣本,其中只有2份樣本為陽性,若采用逐份檢驗方式,求恰好經過2次檢驗就能把陽性樣本全部檢驗出來的概率;(2)現(xiàn)取其中k(且)份血液樣本,記采用逐份檢驗方式,樣本需要檢驗的總次數(shù)為,采用混合檢驗方式,樣本需要檢驗的總次數(shù)為.(i)試運用概率統(tǒng)計的知識,若,試求p關于k的函數(shù)關系式;(ii)若,采用混合檢驗方式可以使得樣本需要檢驗的總次數(shù)的期望值比逐份檢驗的總次數(shù)期望值更少,求k的最大值.參考數(shù)據(jù):,,,,20.(12分)一個工廠在某年里連續(xù)10個月每月產品的總成本(萬元)與該月產量(萬件)之間有如下一組數(shù)據(jù):1.081.121.191.281.361.481.591.681.801.872.252.372.402.552.642.752.923.033.143.26(1)通過畫散點圖,發(fā)現(xiàn)可用線性回歸模型擬合與的關系,請用相關系數(shù)加以說明;(2)①建立月總成本與月產量之間的回歸方程;②通過建立的關于的回歸方程,估計某月產量為1.98萬件時,產品的總成本為多少萬元?(均精確到0.001)附注:①參考數(shù)據(jù):,,,,.②參考公式:相關系數(shù),,.21.(12分)已知橢圓的短軸長為,左右焦點分別為,,點是橢圓上位于第一象限的任一點,且當時,.(1)求橢圓的標準方程;(2)若橢圓上點與點關于原點對稱,過點作垂直于軸,垂足為,連接并延長交于另一點,交軸于點.(?。┣竺娣e最大值;(ⅱ)證明:直線與斜率之積為定值.22.(10分)設數(shù)列的前n項和滿足,,,(1)證明:數(shù)列是等差數(shù)列,并求其通項公式﹔(2)設,求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
觀察已知條件,對進行化簡,運用累加法和裂項法求出結果.【詳解】已知,則,所以有,,,,兩邊同時相加得,又因為,所以.故選:本題考查了求數(shù)列某一項的值,運用了累加法和裂項法,遇到形如時就可以采用裂項法進行求和,需要掌握數(shù)列中的方法,并能熟練運用對應方法求解.2.C【解析】
根據(jù)題目所給圖像,填寫好表格,由表格數(shù)據(jù)選出正確選項.【詳解】根據(jù)雷達圖得到如下數(shù)據(jù):數(shù)學抽象邏輯推理數(shù)學建模直觀想象數(shù)學運算數(shù)據(jù)分析甲454545乙343354由數(shù)據(jù)可知選C.本題考查統(tǒng)計問題,考查數(shù)據(jù)處理能力和應用意識.3.C【解析】
由已知求出等比數(shù)列的公比,進而求出,嘗試用基本不等式,但取不到等號,所以考慮直接取的值代入比較即可.【詳解】,,或(舍).,,.當,時;當,時;當,時,,所以最小值為.故選:C.本題考查等比數(shù)列通項公式基本量的計算及最小值,屬于基礎題.4.B【解析】
復數(shù),在復平面內對應的點在第二象限,可得關于a的不等式組,解得a的范圍.【詳解】,由其在復平面對應的點在第二象限,得,則.故選:B.本題考查了復數(shù)的運算法則、幾何意義、不等式的解法,考查了推理能力與計算能力,屬于基礎題.5.B【解析】
根據(jù)計算結果,可知該循環(huán)結構循環(huán)了5次;輸出S前循環(huán)體的n的值為12,k的值為6,進而可得判斷框內的不等式.【詳解】因為該程序圖是計算值的一個程序框圈所以共循環(huán)了5次所以輸出S前循環(huán)體的n的值為12,k的值為6,即判斷框內的不等式應為或所以選C本題考查了程序框圖的簡單應用,根據(jù)結果填寫判斷框,屬于基礎題.6.A【解析】
由拋物線的焦點得雙曲線的焦點,求出,由拋物線準線方程被曲線截得的線段長為,由焦半徑公式,聯(lián)立求解.【詳解】解:由拋物線,可得,則,故其準線方程為,拋物線的準線過雙曲線的左焦點,.拋物線的準線被雙曲線截得的線段長為,,又,,則雙曲線的離心率為.故選:.本題考查拋物線的性質及利用過雙曲線的焦點的弦長求離心率.弦過焦點時,可結合焦半徑公式求解弦長.7.C【解析】
由余弦函數(shù)的單調性找出的等價條件為,再利用大角對大邊,結合正弦定理可判斷出“”是“”的充分必要條件.【詳解】余弦函數(shù)在區(qū)間上單調遞減,且,,由,可得,,由正弦定理可得.因此,“”是“”的充分必要條件.故選:C.本題考查充分必要條件的判定,同時也考查了余弦函數(shù)的單調性、大角對大邊以及正弦定理的應用,考查推理能力,屬于中等題.8.B【解析】由f(1)=得a2=,∴a=或a=-(舍),即f(x)=(.由于y=|2x-4|在(-∞,2]上單調遞減,在[2,+∞)上單調遞增,所以f(x)在(-∞,2]上單調遞增,在[2,+∞)上單調遞減,故選B.9.A【解析】
將已知條件轉化為的形式,由此確定數(shù)列為的項.【詳解】由于等差數(shù)列中,所以,化簡得,所以為.故選:A本小題主要考查等差數(shù)列的基本量計算,屬于基礎題.10.B【解析】
根據(jù)題意,求得函數(shù)周期,利用周期性和函數(shù)值,即可求得.【詳解】由已知可知,,所以函數(shù)是一個以4為周期的周期函數(shù),所以,解得,故選:B.本題考查函數(shù)周期的求解,涉及對數(shù)運算,屬綜合基礎題.11.A【解析】
根據(jù)約束條件畫出可行域,再將目標函數(shù)化成斜截式,找到截距的最小值.【詳解】由約束條件,畫出可行域如圖變?yōu)闉樾甭蕿?3的一簇平行線,為在軸的截距,最小的時候為過點的時候,解得所以,此時故選A項本題考查線性規(guī)劃求一次相加的目標函數(shù),屬于常規(guī)題型,是簡單題.12.A【解析】
聯(lián)立直線與橢圓方程求出交點A,B兩點,利用平面向量垂直的坐標表示得到關于的關系式,解方程求解即可.【詳解】聯(lián)立方程,解方程可得或,不妨設A(0,a),B(-b,0),由題意可知,·=0,因為,,由平面向量垂直的坐標表示可得,,因為,所以a2-c2=ac,兩邊同時除以可得,,解得e=或(舍去),所以該橢圓的離心率為.故選:A本題考查橢圓方程及其性質、離心率的求解、平面向量垂直的坐標表示;考查運算求解能力和知識遷移能力;利用平面向量垂直的坐標表示得到關于的關系式是求解本題的關鍵;屬于中檔題、常考題型.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
對①,根據(jù)周期的定義判定即可.對②,根據(jù)偶函數(shù)滿足的性質判定即可.對③,舉出反例判定即可.對④,求解不等式再判定即可.【詳解】解:因為當時,所以由周期函數(shù)的定義知不是函數(shù)的周期,故正確;對于定義在上的函數(shù),若,由偶函數(shù)的定義知函數(shù)不是偶函數(shù),故正確;當時不滿足則“”不是“”成立的充分不必要條件,故錯誤;若實數(shù)滿足則所以成立,故正確.正確命題的序號是.故答案為:.本題主要考查了命題真假的判定,屬于基礎題.14.③④【解析】
由直線與直線的位置關系,直線與平面的位置關系,面面垂直的判定定理和線面垂直的定義判斷.【詳解】①若且,的位置關系是平行、相交或異面,①錯;②若且,則或者,②錯;③若,設過的平面與交于直線,則,又,則,∴,③正確;④若,且,由線面垂直的定義知,④正確.故答案為:③④.本題考查直線與直線的位置關系,直線與平面的位置關系,面面垂直的判定定理和線面垂直的定義,考查空間線面間的位置關系,掌握空間線線、線面、面面位置關系是解題基礎.15.【解析】
利用復數(shù)模的運算性質,即可得答案.【詳解】由已知可得:,,解得.故答案為:.本題考查復數(shù)模的運算性質,考查推理能力與計算能力,屬于基礎題.16.2【解析】
由題得,再根據(jù)求解即可.【詳解】雙曲線的兩條漸近線為,可令,,則,所以,解得.故答案為:2.本題考查雙曲線漸近線求離心率的問題.屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2).【解析】
(1)平面平面,建立坐標系,根據(jù)法向量互相垂直求得;(2)求兩個平面的法向量的夾角.【詳解】(1)如圖,以為原點,在平面內垂直于的直線為軸所在的直線分別為軸,軸,建立空間直角坐標系,則,設為平面的一個法向量,由得,取,則因為平面的一個法向量為由平面平面,得所以即.(2)設二面角的大小為,當平面的一個法向量為,綜上,二面角的余弦值為.本題考查用空間向量求平面間的夾角,平面與平面垂直的判定,二面角的平面角及求法,難度一般.18.(1)的增區(qū)間為,減區(qū)間為;(2).【解析】
(1)求出函數(shù)的導數(shù),由于參數(shù)的范圍對導數(shù)的符號有影響,對參數(shù)分類,再研究函數(shù)的單調區(qū)間;(2)由(1)的結論,求出的表達式,由于恒成立,故求出的最大值,即得實數(shù)的取值范圍的左端點.【詳解】解:(1)解:,當時,,解得的增區(qū)間為,解得的減區(qū)間為.(2)解:若,由得,由得,所以函數(shù)的減區(qū)間為,增區(qū)間為;,因為,所以,,令,則恒成立,由于,當時,,故函數(shù)在上是減函數(shù),所以成立;當時,若則,故函數(shù)在上是增函數(shù),即對時,,與題意不符;綜上,為所求.本題考查導數(shù)在最大值與最小值問題中的應用,求解本題關鍵是根據(jù)導數(shù)研究出函數(shù)的單調性,由最值的定義得出函數(shù)的最值,本題中第一小題是求出函數(shù)的單調區(qū)間,第二小題是一個求函數(shù)的最值的問題,此類題運算量較大,轉化靈活,解題時極易因為變形與運算出錯,故做題時要認真仔細.19.(1)(2)(i)(,且).(ii)最大值為4.【解析】
(1)設恰好經過2次檢驗能把陽性樣本全部檢驗出來為事件A,利用古典概型、排列組合求解即可;(2)(i)由已知得,的所有可能取值為1,,則可求得,,即可得到,進而由可得到p關于k的函數(shù)關系式;(ii)由可得,推導出,設(),利用導函數(shù)判斷的單調性,由單調性可求出的最大值【詳解】(1)設恰好經過2次檢驗能把陽性樣本全部檢驗出來為事件A,則,∴恰好經過兩次檢驗就能把陽性樣本全部檢驗出來的概率為(2)(i)由已知得,的所有可能取值為1,,,,,若,則,則,,,∴p關于k的函數(shù)關系式為(,且)(ii)由題意知,得,,,,設(),則,令,則,∴當時,,即在上單調增減,又,,,又,,,∴k的最大值為4本題考查古典概型的概率公式的應用,考查隨機變量及其分布,考查利用導函數(shù)判斷函數(shù)的單調性20.(1)見解析;(2)①②3.386(萬元)【解析】
(1)利用代入數(shù)值,求出后即可得解;(2)①計算出、后,利用求出后即可得解;②把代入線性回歸方程,計算即可得解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 沈陽理工大學《變頻控制技術》2022-2023學年期末試卷
- 合同法第52條5項
- 新入職員工的意識培訓
- 2025版高考英語一輪復習第1部分人與自我主題群1生活與學習主題語境5認識自我豐富自我完善自我2教師用書教案
- 新高考2025屆高考政治小題必練1神奇的貨幣
- 大班音樂嘗葡萄課件
- 2024年拉薩客運資格證答題軟件下載
- 2024賓館轉讓合同范文
- 2024屋頂防水合同范文
- 2024小額貸款擔保合同范本
- 淺議小升初數(shù)學教學銜接
- 設備安裝應急救援預案
- 深基坑工程降水技術及現(xiàn)階段發(fā)展
- 暫堵壓裂技術服務方案
- 《孔乙己》公開課一等獎PPT優(yōu)秀課件
- 美的中央空調故障代碼H系列家庭中央空調(第一部分多聯(lián)機)
- 物料承認管理辦法
- 業(yè)主委員會成立流程圖
- (完整版)全usedtodo,beusedtodoing,beusedtodo辨析練習(帶答案)
- 廣聯(lián)達辦公大廈工程施工組織設計
- 疑難病例HELLP綜合征
評論
0/150
提交評論