新高考數(shù)學(xué)一輪復(fù)習(xí)講與練第02講 等式性質(zhì)與不等式(講)(解析版)_第1頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)講與練第02講 等式性質(zhì)與不等式(講)(解析版)_第2頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)講與練第02講 等式性質(zhì)與不等式(講)(解析版)_第3頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)講與練第02講 等式性質(zhì)與不等式(講)(解析版)_第4頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)講與練第02講 等式性質(zhì)與不等式(講)(解析版)_第5頁(yè)
已閱讀5頁(yè),還剩7頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第2講等式性質(zhì)與不等式本講為高考重要知識(shí)點(diǎn),題型主要和其他知識(shí)結(jié)合考察,屬于工具型知識(shí)點(diǎn),梳理等式性質(zhì)的基礎(chǔ)上,通過(guò)類(lèi)比,研究不等式的性質(zhì),并利用這些性質(zhì)研究一類(lèi)重要的不等式-基本不等式。體會(huì)函數(shù)觀點(diǎn)統(tǒng)一方程和不等式的數(shù)學(xué)思想??键c(diǎn)一等式性質(zhì)與不等式的性質(zhì)1.實(shí)數(shù)的大小順序與運(yùn)算性質(zhì)的關(guān)系(1)a>b?a-b>0;(2)a=b?a-b=0;(3)a<b?a-b<0.2.不等式的性質(zhì)(1)對(duì)稱(chēng)性:a>b?b<a;(2)傳遞性:a>b,b>c?a>c;(3)可加性:a>b?a+c>b+c;a>b,c>d?a+c>b+d;(4)可乘性:a>b,c>0?ac>bc;a>b,c<0?ac<bc;a>b>0,c>d>0?ac>bd;(5)可乘方:a>b>0?an>bn(n∈N,n≥1);(6)可開(kāi)方:a>b>0?SKIPIF1<0>SKIPIF1<0(n∈N,n≥2).考點(diǎn)二基本不等式1.基本不等式:SKIPIF1<0≤SKIPIF1<0(1)基本不等式成立的條件:a≥0,b≥0.(2)等號(hào)成立的條件:當(dāng)且僅當(dāng)a=b時(shí)取等號(hào).(3)其中SKIPIF1<0稱(chēng)為正數(shù)a,b的算術(shù)平均數(shù),SKIPIF1<0稱(chēng)為正數(shù)a,b的幾何平均數(shù).2.兩個(gè)重要的不等式(1)a2+b2≥2ab(a,b∈R),當(dāng)且僅當(dāng)a=b時(shí)取等號(hào).(2)ab≤SKIPIF1<0(a,b∈R),當(dāng)且僅當(dāng)a=b時(shí)取等號(hào).3.利用基本不等式求最值已知x≥0,y≥0,則(1)如果積xy是定值p,那么當(dāng)且僅當(dāng)x=y(tǒng)時(shí),x+y有最小值是2SKIPIF1<0(簡(jiǎn)記:積定和最小).(2)如果和x+y是定值s,那么當(dāng)且僅當(dāng)x=y(tǒng)時(shí),xy有最大值是SKIPIF1<0(簡(jiǎn)記:和定積最大).注意:1.SKIPIF1<0≥2(a,b同號(hào)),當(dāng)且僅當(dāng)a=b時(shí)取等號(hào).2.ab≤SKIPIF1<0≤SKIPIF1<0.3.SKIPIF1<0(a>0,b>0).高頻考點(diǎn)一等式性質(zhì)與不等式性質(zhì)例1、已知,則下列結(jié)論正確的是

A. B. C. D.【答案】【解析】【解答】解:對(duì)于:當(dāng)時(shí),根式無(wú)意義,選項(xiàng)錯(cuò)誤;

對(duì)于:在一個(gè)不等式兩邊同時(shí)加上一個(gè)實(shí)數(shù),不等式仍成立,故B正確;

對(duì)于:,當(dāng)時(shí),不成立;

對(duì)于:當(dāng),時(shí),,但不成立.

故選:.【變式訓(xùn)練】1.若SKIPIF1<0,則下列不等式正確的是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】對(duì)于A,若SKIPIF1<0,則SKIPIF1<0,所以A錯(cuò)誤,對(duì)于B,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以B正確,對(duì)于C,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以C錯(cuò)誤,對(duì)于D,若SKIPIF1<0,則SKIPIF1<0,所以D錯(cuò)誤,故選:B高頻考點(diǎn)二“1”的代換型例2、已知x,y均為正實(shí)數(shù),且SKIPIF1<0,則x+3y的最小值為_(kāi)_________【詳解】x,y均為正實(shí)數(shù),SKIPIF1<0,SKIPIF1<0SKIPIF1<0當(dāng)SKIPIF1<0時(shí)等號(hào)成立.故答案為:2.【變式訓(xùn)練】1.已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最小值為()A.20 B.24 C.25 D.28【答案】C【詳解】由題意SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)等號(hào)成立.故選:C.2.已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最小值為(

)A.13 B.19 C.21 D.27【答案】D【詳解】SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,b=6時(shí),等號(hào)成立,故SKIPIF1<0的最小值為27。故選:D3.已知正實(shí)數(shù)SKIPIF1<0,b滿(mǎn)足SKIPIF1<0+b=1,則SKIPIF1<0的最小值為_(kāi)____【詳解】因?yàn)镾KIPIF1<0,且SKIPIF1<0都是正實(shí)數(shù).所以SKIPIF1<0SKIPIF1<0當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號(hào)成立.所以SKIPIF1<0的最小值為SKIPIF1<0【做題技巧】1.基本公式SKIPIF1<02.一正二定三相等。是均值成立的前提條件。高頻考點(diǎn)三“和”與“積”互消型例3、已知x、y都是正數(shù),且滿(mǎn)足SKIPIF1<0,則SKIPIF1<0的最大值為_(kāi)________.【答案】18.【詳解】因?yàn)镾KIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,(當(dāng)且僅當(dāng)SKIPIF1<0時(shí),取等號(hào))即SKIPIF1<0,解得SKIPIF1<0,所以得SKIPIF1<0,所以SKIPIF1<0的最大值是SKIPIF1<0.此時(shí)SKIPIF1<0,SKIPIF1<0.故答案為:18.【變式訓(xùn)練】1.已知SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最小值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】由題可知SKIPIF1<0,乘“SKIPIF1<0”得SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),取等號(hào),則SKIPIF1<0的最小值為SKIPIF1<0.故選:A2.已知SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最小值為_(kāi)__________.【答案】6【詳解】由SKIPIF1<0,得SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)取等號(hào).故答案為:6.【基本規(guī)律】1.有“和”、“積”無(wú)常數(shù),可以同除,化回到“1”的代換型。如變式1;2.有“和”、“積”有常數(shù)求積型,可以借助基本不等式構(gòu)造不等式求解,如典例分析;3..有“和”、“積”有常數(shù)求和型,可以借助基本不等式構(gòu)造不等式求解,如變式2。高頻考點(diǎn)四以分母為主元構(gòu)造型例4、已知非負(fù)數(shù)SKIPIF1<0滿(mǎn)足SKIPIF1<0,則SKIPIF1<0的最小值是()A.3 B.4 C.10 D.16【答案】B【詳解】由SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0當(dāng)且僅當(dāng)SKIPIF1<0取等號(hào),故選:B【變式訓(xùn)練】1.已知SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最小值為()A.9 B.10 C.11 D.SKIPIF1<0【答案】A【詳解】SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0時(shí)等號(hào)成立,故SKIPIF1<0的最小值為9.故選:A.2.已知正數(shù)SKIPIF1<0、SKIPIF1<0滿(mǎn)足SKIPIF1<0,則SKIPIF1<0的最小值是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】已知正數(shù)SKIPIF1<0、SKIPIF1<0滿(mǎn)足SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號(hào)成立,因此,SKIPIF1<0的最小值是SKIPIF1<0.故選:C.3.設(shè)SKIPIF1<0,則SKIPIF1<0的最小值為()A.SKIPIF1<0 B.SKIPIF1<0 C.4 D.SKIPIF1<0【答案】A【詳解】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)取等號(hào)故選:A【基本規(guī)律】構(gòu)造分母型:1.以分母為主元構(gòu)造,可以直接分母換元,變化后為“1”的代換,如典例分析2.構(gòu)造過(guò)程中,分子會(huì)有分母參數(shù)的變化,可以分離常數(shù)后再構(gòu)造分母,如變式23.變式3是三項(xiàng)構(gòu)造,且無(wú)條件等式。高頻考點(diǎn)五構(gòu)造分母:待定系數(shù)例5、已知正實(shí)數(shù)SKIPIF1<0,SKIPIF1<0滿(mǎn)足SKIPIF1<0,則SKIPIF1<0的最小值為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】由正實(shí)數(shù)x,y滿(mǎn)足4x+3y=4,可得2(2x+1)+(3y+2)=8.令a=2x+1,b=3y+2,可得2a+b=8.所求SKIPIF1<0SKIPIF1<0當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào),所以答案為SKIPIF1<0.故選:A.【變式訓(xùn)練】1.知正實(shí)數(shù)SKIPIF1<0、SKIPIF1<0滿(mǎn)足SKIPIF1<0,則SKIPIF1<0的最小值為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】設(shè)SKIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0,所以,SKIPIF1<0SKIPIF1<0.當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號(hào)成立,因此,SKIPIF1<0的最小值為SKIPIF1<0.故選:A.2.已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0取到最小值為.【答案】SKIPIF1<0.【解析】試題分析:令SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號(hào)成立,即SKIPIF1<0的最小值是SKIPIF1<0.【基本規(guī)律】特征:條件等式和所求式子之間變量系數(shù)“不一致”方法:直觀湊配或者分母換元高頻考點(diǎn)六分子含參型:分離分子型例6、若SKIPIF1<0,則SKIPIF1<0的最小值為_(kāi)__________.【答案】SKIPIF1<0【詳解】因?yàn)镾KIPIF1<0,則SKIPIF1<0,SKIPIF1<0SKIPIF1<0,

當(dāng)且僅當(dāng)SKIPIF1<0,即當(dāng)SKIPIF1<0時(shí),等號(hào)成立,因此,SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<0.【變式訓(xùn)練】1.已知正實(shí)數(shù)SKIPIF1<0滿(mǎn)足SKIPIF1<0,則SKIPIF1<0的最小值是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,因此SKIPIF1<0,因?yàn)镾KIPIF1<0是正實(shí)數(shù),所以SKIPIF1<0,(當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào),即SKIPIF1<0時(shí)取等號(hào),即SKIPIF1<0時(shí)取等號(hào)),故選:A2.若SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最小值為_(kāi)________【答案】SKIPIF1<0【分析】令SKIPIF1<0,可得SKIPIF1<0,化簡(jiǎn)可得SKIPIF1<0,再結(jié)合基本不等式可求解.【詳解】令SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)等號(hào)成立,故SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<0.3.若正實(shí)數(shù)x,y滿(mǎn)足2x+y=2,則SKIPIF1<0的最小值是_____.【答案】SKIPIF1<0【方法總結(jié)】1.分離分子原理題,如典例分析2.分子二次型換元分離,如變式23.分子二次型湊配構(gòu)造分離,如變式3高頻考點(diǎn)七反解代入型:消元法例7、已知正數(shù)SKIPIF1<0,SKIPIF1<0滿(mǎn)足SKIPIF1<0,則SKIPIF1<0的最大值為_(kāi)_____.【答案】SKIPIF1<0【詳解】由SKIPIF1<0,得SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)等號(hào)成立,、所以SKIPIF1<0的最大值為SKIPIF1<0.故答案為:SKIPIF1<0.【變式訓(xùn)練】1.已知SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最小值為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,記SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0即SKIPIF1<0等號(hào)成立,此時(shí)SKIPIF1<0,SKIPIF1<0.2.若正數(shù)SKIPIF1<0,SKIPIF1<0滿(mǎn)足SKIPIF1<0,則SKIPIF1<0的最小值是______,此時(shí)SKIPIF1<0______.【答案】22解:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,因?yàn)镾KIPIF1<0、SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0SKIPIF1<0SKIPIF1<0,即SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)取等號(hào),故答案為:2;2.3.若正實(shí)數(shù)SKIPIF1<0滿(mǎn)足SKIPIF1<0,則SKIPIF1<0的最小值為_(kāi)__________.【答案】SKIPIF1<0【詳解】由SKIPIF1<0且SKIPIF1<0知:SKIPIF1<0,∴SKIPIF1<0當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立,即SKIPIF1<0時(shí)等號(hào)成立.故答案為:SKIPIF1<0【方法總結(jié)】條件等式和所求等式之間互化難以實(shí)現(xiàn),可以借助反解代入消元,再重新構(gòu)造。高頻考點(diǎn)八反解代入型:消元法例8、非負(fù)實(shí)數(shù)SKIPIF1<0滿(mǎn)足SKIPIF1<0,則SKIPIF1<0的最小值為_(kāi)__________.【答案】SKIPIF1<0【詳解】由題意,非負(fù)實(shí)數(shù)SKIPIF1<0滿(mǎn)足SKIPIF1<0,可得SKIPIF1<0,又由SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)等號(hào)成立,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<0.【變式訓(xùn)練】1.已知SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最小值是___.【答案】SKIPIF1<0【解析】原式可變形為SKIPIF1<0,兩邊同時(shí)乘以2,得SKIPIF1<0,所以SKIPIF1<0,即x+2ySKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立。填SKIPIF1<02.已知a,b∈R+,且(a+b)(a+2b)+a+b=9,則【答案】6【詳解】a,b∈R+,且(a+b)(a+2b)+a+b=9,即有(a+b)(a+2b+1)=9,

即(2a+2b)(a+2b+1)=18,可得3a+4b+1=(2a+2b)+(a+2b+1)≥22a+2ba+2b+1=62,

當(dāng)且僅當(dāng)2a+2b=a+2b+1【方法總結(jié)】特征:條件式子復(fù)雜,一般有一次和二次(因式分解展開(kāi)就是一次和二次),可能就符合因式分解原理高頻考點(diǎn)九均值用兩次例9、SKIPIF1<0是不同時(shí)為0的實(shí)數(shù),則SKIPIF1<0的最大值為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】因?yàn)閍,b均為正實(shí)數(shù),則SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論