2024-2025學年福建省福州教育學院附屬中學初三第三次畢業(yè)診斷及模擬測試數(shù)學試題含解析_第1頁
2024-2025學年福建省福州教育學院附屬中學初三第三次畢業(yè)診斷及模擬測試數(shù)學試題含解析_第2頁
2024-2025學年福建省福州教育學院附屬中學初三第三次畢業(yè)診斷及模擬測試數(shù)學試題含解析_第3頁
2024-2025學年福建省福州教育學院附屬中學初三第三次畢業(yè)診斷及模擬測試數(shù)學試題含解析_第4頁
2024-2025學年福建省福州教育學院附屬中學初三第三次畢業(yè)診斷及模擬測試數(shù)學試題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024-2025學年福建省福州教育學院附屬中學初三第三次畢業(yè)診斷及模擬測試數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖是二次函數(shù)y=ax2+bx+c的圖象,有下列結論:①ac<1;②a+b<1;③4ac>b2;④4a+2b+c<1.其中正確的個數(shù)是()A.1個 B.2個 C.3個 D.4個2.如圖,正方形ABCD的邊長為2cm,動點P從點A出發(fā),在正方形的邊上沿A→B→C的方向運動到點C停止,設點P的運動路程為x(cm),在下列圖象中,能表示△ADP的面積y(cm2)關于x(cm)的函數(shù)關系的圖象是()A. B. C. D.3.下列幾何體中三視圖完全相同的是()A. B. C. D.4.如圖,△ABC中,AD⊥BC,AB=AC,∠BAD=30°,且AD=AE,則∠EDC等于()A.10° B.12.5° C.15° D.20°5.下列各組數(shù)中,互為相反數(shù)的是()A.﹣2與2 B.2與2 C.3與 D.3與36.化簡÷的結果是()A. B. C. D.2(x+1)7.如圖,下列圖形都是由面積為1的正方形按一定的規(guī)律組成,其中,第(1)個圖形中面積為1的正方形有2個,第(2)個圖形中面積為1的正方形有5個,第(3)個圖形中面積為1的正方形有9個,…,按此規(guī)律.則第(6)個圖形中面積為1的正方形的個數(shù)為()A.20 B.27 C.35 D.408.的值是A. B. C. D.9.已知二次函數(shù)的圖象如圖所示,則下列說法正確的是()A.<0 B.<0 C.<0 D.<010.如圖,正方形ABCD中,AB=6,G是BC的中點.將△ABG沿AG對折至△AFG,延長GF交DC于點E,則DE的長是()A.1 B.1.5 C.2 D.2.511.如圖,?ABCD的對角線AC,BD相交于點O,E是AB中點,且AE+EO=4,則?ABCD的周長為()A.20B.16C.12D.812.△ABC的三條邊長分別是5,13,12,則其外接圓半徑和內切圓半徑分別是()A.13,5 B.6.5,3 C.5,2 D.6.5,2二、填空題:(本大題共6個小題,每小題4分,共24分.)13.甲乙兩地9月上旬的日平均氣溫如圖所示,則甲乙兩地這10天日平均氣溫方差大小關系為________.(填“>”或“<”)14.如圖,在平面直角坐標系中,直線y=﹣3x+3與x軸、y軸分別交于A、B兩點,以AB為邊在第一象限作正方形,點D恰好在雙曲線上,則k值為_____.15.已知兩圓內切,半徑分別為2厘米和5厘米,那么這兩圓的圓心距等于_____厘米.16.如圖,△ABC≌△ADE,∠EAC=40°,則∠B=_______°.17.請寫出一個比2大且比4小的無理數(shù):________.18.如圖,在四邊形ABCD中,點E、F分別是邊AB、AD的中點,BC=15,CD=9,EF=6,∠AFE=50°,則∠ADC的度數(shù)為_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)已知一個二次函數(shù)的圖象經(jīng)過A(0,﹣3),B(1,0),C(m,2m+3),D(﹣1,﹣2)四點,求這個函數(shù)解析式以及點C的坐標.20.(6分)如圖,在規(guī)格為8×8的邊長為1個單位的正方形網(wǎng)格中(每個小正方形的邊長為1),△ABC的三個頂點都在格點上,且直線m、n互相垂直.(1)畫出△ABC關于直線n的對稱圖形△A′B′C′;(2)直線m上存在一點P,使△APB的周長最小;①在直線m上作出該點P;(保留畫圖痕跡)②△APB的周長的最小值為.(直接寫出結果)21.(6分)如圖,AB為⊙O的直徑,點C,D在⊙O上,且點C是的中點,過點C作AD的垂線EF交直線AD于點E.(1)求證:EF是⊙O的切線;(2)連接BC,若AB=5,BC=3,求線段AE的長.22.(8分)如圖1,在四邊形ABCD中,AD∥BC,AB=CD=13,AD=11,BC=21,E是BC的中點,P是AB上的任意一點,連接PE,將PE繞點P逆時針旋轉90°得到PQ.(1)如圖2,過A點,D點作BC的垂線,垂足分別為M,N,求sinB的值;(2)若P是AB的中點,求點E所經(jīng)過的路徑弧EQ的長(結果保留π);(3)若點Q落在AB或AD邊所在直線上,請直接寫出BP的長.23.(8分)重慶某中學組織七、八、九年級學生參加“直轄20年,點贊新重慶”作文比賽,該校將收到的參賽作文進行分年級統(tǒng)計,繪制了如圖1和如圖2兩幅不完整的統(tǒng)計圖,根據(jù)圖中提供的信息完成以下問題.扇形統(tǒng)計圖中九年級參賽作文篇數(shù)對應的圓心角是度,并補全條形統(tǒng)計圖;經(jīng)過評審,全校有4篇作文榮獲特等獎,其中有一篇來自七年級,學校準備從特等獎作文中任選兩篇刊登在校刊上,請利用畫樹狀圖或列表的方法求出七年級特等獎作文被選登在??系母怕剩?4.(10分)如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=m求反比例函數(shù)和一次函數(shù)的解析式;直接寫出當x>0時,kx+b<m25.(10分)如圖,已知是直角坐標平面上三點.將先向右平移3個單位,再向上平移3個單位,畫出平移后的圖形;以點為位似中心,位似比為2,將放大,在軸右側畫出放大后的圖形;填空:面積為.26.(12分)某種型號油電混合動力汽車,從A地到B地燃油行駛需純燃油費用76元,從A地到B地用電行駛需純用電費用26元,已知每行駛1千米,純燃油費用比純用電費用多0.5元.求每行駛1千米純用電的費用;若要使從A地到B地油電混合行駛所需的油、電費用合計不超過39元,則至少需用電行駛多少千米?27.(12分)如圖,在平面直角坐標系中,直線y1=2x﹣2與雙曲線y2=交于A、C兩點,AB⊥OA交x軸于點B,且OA=AB.求雙曲線的解析式;求點C的坐標,并直接寫出y1<y2時x的取值范圍.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】

由拋物線的開口方向判斷a與1的關系,由拋物線與y軸的交點判斷c與1的關系,然后根據(jù)拋物線與x軸交點及x=1時二次函數(shù)的值的情況進行推理,進而對所得結論進行判斷.【詳解】解:①根據(jù)圖示知,該函數(shù)圖象的開口向上,∴a>1;該函數(shù)圖象交于y軸的負半軸,∴c<1;故①正確;②對稱軸∴∴b<1;故②正確;③根據(jù)圖示知,二次函數(shù)與x軸有兩個交點,所以,即,故③錯誤④故本選項正確.正確的有3項故選C.本題考查二次函數(shù)的圖象與系數(shù)的關系.二次項系數(shù)決定了開口方向,一次項系數(shù)和二次項系數(shù)共同決定了對稱軸的位置,常數(shù)項決定了與軸的交點位置.2、B【解析】

△ADP的面積可分為兩部分討論,由A運動到B時,面積逐漸增大,由B運動到C時,面積不變,從而得出函數(shù)關系的圖象.【詳解】解:當P點由A運動到B點時,即0≤x≤2時,y=×2x=x,當P點由B運動到C點時,即2<x<4時,y=×2×2=2,符合題意的函數(shù)關系的圖象是B;故選B.本題考查了動點函數(shù)圖象問題,用到的知識點是三角形的面積、一次函數(shù),在圖象中應注意自變量的取值范圍.3、A【解析】

找到從物體正面、左面和上面看得到的圖形全等的幾何體即可.【詳解】解:A、球的三視圖完全相同,都是圓,正確;B、圓柱的俯視圖與主視圖和左視圖不同,錯誤;C、圓錐的俯視圖與主視圖和左視圖不同,錯誤;D、四棱錐的俯視圖與主視圖和左視圖不同,錯誤;故選A.考查三視圖的有關知識,注意三視圖都相同的常見的幾何體有球和正方體.4、C【解析】試題分析:根據(jù)三角形的三線合一可求得∠DAC及∠ADE的度數(shù),根據(jù)∠EDC=90°-∠ADE即可得到答案.∵△ABC中,AD⊥BC,AB=AC,∠BAD=30°,∴∠DAC=∠BAD=30°,∵AD=AE(已知),∴∠ADE=75°∴∠EDC=90°-∠ADE=15°.故選C.考點:本題主要考查了等腰三角形的性質,三角形內角和定理點評:解答本題的關鍵是掌握等腰三角形的頂角平分線、底邊上的中線、底邊上的高相互重合.5、A【解析】

根據(jù)只有符號不同的兩數(shù)互為相反數(shù),可直接判斷.【詳解】-2與2互為相反數(shù),故正確;2與2相等,符號相同,故不是相反數(shù);3與互為倒數(shù),故不正確;3與3相同,故不是相反數(shù).故選:A.此題主要考查了相反數(shù),關鍵是觀察特點是否只有符號不同,比較簡單.6、A【解析】

原式利用除法法則變形,約分即可得到結果.【詳解】原式=?(x﹣1)=.故選A.本題考查了分式的乘除法,熟練掌握運算法則是解答本題的關鍵.7、B【解析】試題解析:第(1)個圖形中面積為1的正方形有2個,第(2)個圖形中面積為1的圖象有2+3=5個,第(3)個圖形中面積為1的正方形有2+3+4=9個,…,按此規(guī)律,第n個圖形中面積為1的正方形有2+3+4+…+(n+1)=個,則第(6)個圖形中面積為1的正方形的個數(shù)為2+3+4+5+6+7=27個.故選B.考點:規(guī)律型:圖形變化類.8、D【解析】

根據(jù)特殊角三角函數(shù)值,可得答案.【詳解】解:,故選:D.本題考查了特殊角三角函數(shù)值,熟記特殊角三角函數(shù)值是解題關鍵.9、B【解析】

根據(jù)拋物線的開口方向確定a,根據(jù)拋物線與y軸的交點確定c,根據(jù)對稱軸確定b,根據(jù)拋物線與x軸的交點確定b2-4ac,根據(jù)x=1時,y>0,確定a+b+c的符號.【詳解】解:∵拋物線開口向上,∴a>0,∵拋物線交于y軸的正半軸,∴c>0,∴ac>0,A錯誤;∵->0,a>0,∴b<0,∴B正確;∵拋物線與x軸有兩個交點,∴b2-4ac>0,C錯誤;當x=1時,y>0,∴a+b+c>0,D錯誤;故選B.本題考查的是二次函數(shù)圖象與系數(shù)的關系,二次函數(shù)y=ax2+bx+c系數(shù)符號由拋物線開口方向、對稱軸、拋物線與y軸的交點拋物線與x軸交點的個數(shù)確定.10、C【解析】

連接AE,根據(jù)翻折變換的性質和正方形的性質可證Rt△AFE≌Rt△ADE,在直角△ECG中,根據(jù)勾股定理求出DE的長.【詳解】連接AE,∵AB=AD=AF,∠D=∠AFE=90°,由折疊的性質得:Rt△ABG≌Rt△AFG,在△AFE和△ADE中,∵AE=AE,AD=AF,∠D=∠AFE,∴Rt△AFE≌Rt△ADE,∴EF=DE,設DE=FE=x,則CG=3,EC=6?x.在直角△ECG中,根據(jù)勾股定理,得:(6?x)2+9=(x+3)2,解得x=2.則DE=2.熟練掌握翻折變換、正方形的性質、全等三角形的判定與性質是本題的解題關鍵.11、B【解析】

首先證明:OE=12【詳解】∵四邊形ABCD是平行四邊形,∴OA=OC,∵AE=EB,∴OE=12∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四邊形ABCD的周長=2×8=16,故選:B.本題考查平行四邊形的性質、三角形的中位線定理等知識,解題的關鍵是熟練掌握三角形的中位線定理,屬于中考常考題型.12、D【解析】

根據(jù)邊長確定三角形為直角三角形,斜邊即為外切圓直徑,內切圓半徑為,【詳解】解:如下圖,∵△ABC的三條邊長分別是5,13,12,且52+122=132,∴△ABC是直角三角形,其斜邊為外切圓直徑,∴外切圓半徑==6.5,內切圓半徑==2,故選D.本題考查了直角三角形內切圓和外切圓的半徑,屬于簡單題,熟悉概念是解題關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、>【解析】

觀察平均氣溫統(tǒng)計圖可知:乙地的平均氣溫比較穩(wěn)定,波動??;波動越小越穩(wěn)定.【詳解】解:觀察平均氣溫統(tǒng)計圖可知:乙地的平均氣溫比較穩(wěn)定,波動?。粍t乙地的日平均氣溫的方差小,故S2甲>S2乙.故答案為:>.本題考查方差的意義.方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動越大,數(shù)據(jù)越不穩(wěn)定.反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.14、1【解析】作DH⊥x軸于H,如圖,

當y=0時,-3x+3=0,解得x=1,則A(1,0),

當x=0時,y=-3x+3=3,則B(0,3),

∵四邊形ABCD為正方形,

∴AB=AD,∠BAD=90°,

∴∠BAO+∠DAH=90°,

而∠BAO+∠ABO=90°,

∴∠ABO=∠DAH,

在△ABO和△DAH中∴△ABO≌△DAH,

∴AH=OB=3,DH=OA=1,

∴D點坐標為(1,1),

∵頂點D恰好落在雙曲線y=上,

∴a=1×1=1.故答案是:1.15、1【解析】

由兩圓的半徑分別為2和5,根據(jù)兩圓位置關系與圓心距d,兩圓半徑R,r的數(shù)量關系間的聯(lián)系和兩圓位置關系求得圓心距即可.【詳解】解:∵兩圓的半徑分別為2和5,兩圓內切,∴d=R﹣r=5﹣2=1cm,故答案為1.此題考查了圓與圓的位置關系.解題的關鍵是掌握兩圓位置關系與圓心距d,兩圓半徑R,r的數(shù)量關系間的聯(lián)系.16、1°【解析】

根據(jù)全等三角形的對應邊相等、對應角相等得到∠BAC=∠DAE,AB=AD,根據(jù)等腰三角形的性質和三角形內角和定理計算即可.【詳解】∵△ABC≌△ADE,∴∠BAC=∠DAE,AB=AD,∴∠BAD=∠EAC=40°,∴∠B=(180°-40°)÷2=1°,故答案為1.本題考查的是全等三角形的性質和三角形內角和定理,掌握全等三角形的對應邊相等、對應角相等是解題的關鍵.17、(或)【解析】

利用完全平方數(shù)和算術平方根對無理數(shù)的大小進行估算,然后找出無理數(shù)即可【詳解】設無理數(shù)為,,所以x的取值在4~16之間都可,故可填本題考查估算無理數(shù)的大小,能夠判斷出中間數(shù)的取值范圍是解題關鍵18、140°【解析】

如圖,連接BD,∵點E、F分別是邊AB、AD的中點,∴EF是△ABD的中位線,∴EF∥BD,BD=2EF=12,∴∠ADB=∠AFE=50°,∵BC=15,CD=9,BD=12,∴BC2=225,CD2=81,BD2=144,∴CD2+BD2=BC2,∴∠BDC=90°,∴∠ADC=∠ADB+∠BDC=50°+90°=140°.故答案為:140°.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、y=2x2+x﹣3,C點坐標為(﹣,0)或(2,7)【解析】

設拋物線的解析式為y=ax2+bx+c,把A(0,﹣3),B(1,0),D(﹣1,﹣2)代入可求出解析式,進而求出點C的坐標即可.【詳解】設拋物線的解析式為y=ax2+bx+c,把A(0,﹣3),B(1,0),D(﹣1,﹣2)代入得,解得,∴拋物線的解析式為y=2x2+x﹣3,把C(m,2m+3)代入得2m2+m﹣3=2m+3,解得m1=﹣,m2=2,∴C點坐標為(﹣,0)或(2,7).本題考查了用待定系數(shù)法求二次函數(shù)的解析式:在利用待定系數(shù)法求二次函數(shù)關系式時,要根據(jù)題目給定的條件,選擇恰當?shù)姆椒ㄔO出關系式,從而代入數(shù)值求解.20、(1)詳見解析;(2)①詳見解析;②.【解析】

(1)根據(jù)軸對稱的性質,可作出△ABC關于直線n的對稱圖形△A′B′C′;

(2)①作點B關于直線m的對稱點B'',連接B''A與x軸的交點為點P;

②由△ABP的周長=AB+AP+BP=AB+AP+B''P,則當AP與PB''共線時,△APB的周長有最小值.【詳解】解:(1)如圖△A′B′C′為所求圖形.(2)①如圖:點P為所求點.②∵△ABP的周長=AB+AP+BP=AB+AP+B''P∴當AP與PB''共線時,△APB的周長有最小值.∴△APB的周長的最小值AB+AB''=+3故答案為+3本題考查軸對稱變換,勾股定理,最短路徑問題,解題關鍵是熟練掌握軸對稱的性質.21、(1)證明見解析(2)【解析】

(1)連接OC,根據(jù)等腰三角形的性質、平行線的判定得到OC∥AE,得到OC⊥EF,根據(jù)切線的判定定理證明;(2)根據(jù)勾股定理求出AC,證明△AEC∽△ACB,根據(jù)相似三角形的性質列出比例式,計算即可.【詳解】(1)證明:連接OC,∵OA=OC,∴∠OCA=∠BAC,∵點C是的中點,∴∠EAC=∠BAC,∴∠EAC=∠OCA,∴OC∥AE,∵AE⊥EF,∴OC⊥EF,即EF是⊙O的切線;(2)解:∵AB為⊙O的直徑,∴∠BCA=90°,∴AC==4,∵∠EAC=∠BAC,∠AEC=∠ACB=90°,∴△AEC∽△ACB,∴,∴AE=.本題考查的是切線的判定、圓周角定理以及相似三角形的判定和性質,掌握切線的判定定理、直徑所對的圓周角是直角是解題的關鍵.22、(1)1213;(2)5π;(3)PB的值為10526或【解析】

(1)如圖1中,作AM⊥CB用M,DN⊥BC于N,根據(jù)題意易證Rt△ABM≌Rt△DCN,再根據(jù)全等三角形的性質可得出對應邊相等,根據(jù)勾股定理可求出AM的值,即可得出結論;(2)連接AC,根據(jù)勾股定理求出AC的長,再根據(jù)弧長計算公式即可得出結論;(3)當點Q落在直線AB上時,根據(jù)相似三角形的性質可得對應邊成比例,即可求出PB的值;當點Q在DA的延長線上時,作PH⊥AD交DA的延長線于H,延長HP交BC于G,設PB=x,則AP=13﹣x,再根據(jù)全等三角形的性質可得對應邊相等,即可求出PB的值.【詳解】解:(1)如圖1中,作AM⊥CB用M,DN⊥BC于N.∴∠DNM=∠AMN=90°,∵AD∥BC,∴∠DAM=∠AMN=∠DNM=90°,∴四邊形AMND是矩形,∴AM=DN,∵AB=CD=13,∴Rt△ABM≌Rt△DCN,∴BM=CN,∵AD=11,BC=21,∴BM=CN=5,∴AM==12,在Rt△ABM中,sinB==.(2)如圖2中,連接AC.在Rt△ACM中,AC===20,∵PB=PA,BE=EC,∴PE=AC=10,∴的長==5π.(3)如圖3中,當點Q落在直線AB上時,∵△EPB∽△AMB,∴==,∴==,∴PB=.如圖4中,當點Q在DA的延長線上時,作PH⊥AD交DA的延長線于H,延長HP交BC于G.設PB=x,則AP=13﹣x.∵AD∥BC,∴∠B=∠HAP,∴PG=x,PH=(13﹣x),∴BG=x,∵△PGE≌△QHP,∴EG=PH,∴﹣x=(13﹣x),∴BP=.綜上所述,滿足條件的PB的值為或.本題考查了相似三角形與全等三角形的性質,解題的關鍵是熟練的掌握相似三角形與全等三角形的判定與性質.23、【解析】

試題分析:(1)求出總的作文篇數(shù),即可得出九年級參賽作文篇數(shù)對應的圓心角的度數(shù),求出八年級的作文篇數(shù),補全條形統(tǒng)計圖即可;(2)設四篇榮獲特等獎的作文分別為A、B、C、D,其中A代表七年級獲獎的特等獎作文,用畫樹狀法即可求得結果.試題解析:(1)20÷20%=100,九年級參賽作文篇數(shù)對應的圓心角=360°×=126°;100﹣20﹣35=45,補全條形統(tǒng)計圖如圖所示:(2)假設4篇榮獲特等獎的作文分別為A、B、C、D,其中A代表七年級獲獎的特等獎作文.畫樹狀圖法:共有12種可能的結果,七年級特等獎作文被選登在??系慕Y果有6種,∴P(七年級特等獎作文被選登在??希?.考點:1.條形統(tǒng)計圖;2.扇形統(tǒng)計圖;3.列表法與畫樹狀圖法.24、(1)y=4x,y=﹣x+5;(2)0<x<1或x>4;(3)P的坐標為(【解析】

(1)把A(1,4)代入y=mx,求出m=4,把B(4,n)代入y=4(2)根據(jù)圖像解答即可;(3)作B關于x軸的對稱點B′,連接AB′,交x軸于P,此時PA+PB=AB′最小,然后用待定系數(shù)法求出直線AB′的解析式即可.【詳解】解:(1)把A(1,4)代入y=mx∴反比例函數(shù)的解析式為y=4x把B(4,n)代入y=4x∴B(4,1),把A(1,4)、(4,1)代入y=kx+b,得:k+b=44k+b=1解得:k=-1∴一次函數(shù)的解析式為y=﹣x+5;(2)根據(jù)圖象得當0<x<1或x>4,一次函數(shù)y=﹣x+5的圖象在反比例函數(shù)y=4x∴當x>0時,kx+b<mx(3)如圖,作B關于x軸的對稱點B′,連接AB′,交x軸于P,此時PA+PB=AB′最小,∵B(4,1),∴B′(4,﹣1),設直線AB′的解析式為y=px+q,∴p+q=44p+q=-1解得p=-5∴直線AB′的解析式為y=-5令y=0,得-5解得x=175∴點P的坐標為(175本題考查了待定系數(shù)法求反比例函數(shù)及一次函數(shù)解析式,利用圖像解不等式,軸對稱最短等知識.熟練掌握待定系數(shù)法是解(1)的關鍵,正確識圖是解(2)的關鍵,根據(jù)軸對稱的性質確定出點P的位置是解答(3)的關鍵.25、(1)詳見解析;(2)詳見解析;(3).【解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論