2025年吉林省通鋼一中、集安一中、梅河口五中等聯(lián)誼校高三下學(xué)期第一次階段考試數(shù)學(xué)試題試卷含解析_第1頁
2025年吉林省通鋼一中、集安一中、梅河口五中等聯(lián)誼校高三下學(xué)期第一次階段考試數(shù)學(xué)試題試卷含解析_第2頁
2025年吉林省通鋼一中、集安一中、梅河口五中等聯(lián)誼校高三下學(xué)期第一次階段考試數(shù)學(xué)試題試卷含解析_第3頁
2025年吉林省通鋼一中、集安一中、梅河口五中等聯(lián)誼校高三下學(xué)期第一次階段考試數(shù)學(xué)試題試卷含解析_第4頁
2025年吉林省通鋼一中、集安一中、梅河口五中等聯(lián)誼校高三下學(xué)期第一次階段考試數(shù)學(xué)試題試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2025年吉林省通鋼一中、集安一中、梅河口五中等聯(lián)誼校高三下學(xué)期第一次階段考試數(shù)學(xué)試題試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在中,內(nèi)角A,B,C所對的邊分別為a,b,c,D是AB的中點(diǎn),若,且,則面積的最大值是()A. B. C. D.2.某幾何體的三視圖如圖所示(單位:),則該幾何體的體積(單位:)為()A. B.6 C. D.3.△ABC的內(nèi)角A,B,C的對邊分別為,已知,則為()A. B. C.或 D.或4.某幾何體的三視圖如圖所示,三視圖是腰長為1的等腰直角三角形和邊長為1的正方形,則該幾何體中最長的棱長為().A. B. C.1 D.5.已知向量,(其中為實(shí)數(shù)),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.已知,是函數(shù)圖像上不同的兩點(diǎn),若曲線在點(diǎn),處的切線重合,則實(shí)數(shù)的最小值是()A. B. C. D.17.定義在上的偶函數(shù),對,,且,有成立,已知,,,則,,的大小關(guān)系為()A. B. C. D.8.若不相等的非零實(shí)數(shù),,成等差數(shù)列,且,,成等比數(shù)列,則()A. B. C.2 D.9.為了得到函數(shù)的圖象,只需把函數(shù)的圖象上所有的點(diǎn)()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度10.已知,,,則a,b,c的大小關(guān)系為()A. B. C. D.11.過橢圓的左焦點(diǎn)的直線過的上頂點(diǎn),且與橢圓相交于另一點(diǎn),點(diǎn)在軸上的射影為,若,是坐標(biāo)原點(diǎn),則橢圓的離心率為()A. B. C. D.12.已知等比數(shù)列滿足,,等差數(shù)列中,為數(shù)列的前項(xiàng)和,則()A.36 B.72 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知為雙曲線:的左焦點(diǎn),直線經(jīng)過點(diǎn),若點(diǎn),關(guān)于直線對稱,則雙曲線的離心率為__________.14.記等差數(shù)列和的前項(xiàng)和分別為和,若,則______.15.已知函數(shù),則________;滿足的的取值范圍為________.16.如圖,已知圓內(nèi)接四邊形ABCD,其中,,,,則__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)求函數(shù)的最大值.18.(12分)已知函數(shù),.(1)若不等式的解集為,求的值.(2)若當(dāng)時,,求的取值范圍.19.(12分)已知非零實(shí)數(shù)滿足.(1)求證:;(2)是否存在實(shí)數(shù),使得恒成立?若存在,求出實(shí)數(shù)的取值范圍;若不存在,請說明理由20.(12分)已知函數(shù),當(dāng)時,有極大值3;(1)求,的值;(2)求函數(shù)的極小值及單調(diào)區(qū)間.21.(12分)如圖,在四棱錐中,是邊長為的正方形的中心,平面,為的中點(diǎn).(Ⅰ)求證:平面平面;(Ⅱ)若,求二面角的余弦值.22.(10分)語音交互是人工智能的方向之一,現(xiàn)在市場上流行多種可實(shí)現(xiàn)語音交互的智能音箱.主要代表有小米公司的“小愛同學(xué)”智能音箱和阿里巴巴的“天貓精靈”智能音箱,它們可以通過語音交互滿足人們的部分需求.某經(jīng)銷商為了了解不同智能音箱與其購買者性別之間的關(guān)聯(lián)程度,從某地區(qū)隨機(jī)抽取了100名購買“小愛同學(xué)”和100名購買“天貓精靈”的人,具體數(shù)據(jù)如下:“小愛同學(xué)”智能音箱“天貓精靈”智能音箱合計(jì)男4560105女554095合計(jì)100100200(1)若該地區(qū)共有13000人購買了“小愛同學(xué)”,有12000人購買了“天貓精靈”,試估計(jì)該地區(qū)購買“小愛同學(xué)”的女性比購買“天貓精靈”的女性多多少人?(2)根據(jù)列聯(lián)表,能否有95%的把握認(rèn)為購買“小愛同學(xué)”、“天貓精靈”與性別有關(guān)?附:0.100.050.0250.010.0050.0012.7063.8415.0246.6357.87910.828

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】

根據(jù)正弦定理可得,求出,根據(jù)平方關(guān)系求出.由兩端平方,求的最大值,根據(jù)三角形面積公式,求出面積的最大值.【詳解】中,,由正弦定理可得,整理得,由余弦定理,得.D是AB的中點(diǎn),且,,即,即,,當(dāng)且僅當(dāng)時,等號成立.的面積,所以面積的最大值為.故選:.本題考查正、余弦定理、不等式、三角形面積公式和向量的數(shù)量積運(yùn)算,屬于中檔題.2.D【解析】

根據(jù)幾何體的三視圖,該幾何體是由正方體去掉三棱錐得到,根據(jù)正方體和三棱錐的體積公式可求解.【詳解】如圖,該幾何體為正方體去掉三棱錐,所以該幾何體的體積為:,故選:D本題主要考查了空間幾何體的三視圖以及體積的求法,考查了空間想象力,屬于中檔題.3.D【解析】

由正弦定理可求得,再由角A的范圍可求得角A.【詳解】由正弦定理可知,所以,解得,又,且,所以或。故選:D.本題主要考查正弦定理,注意角的范圍,是否有兩解的情況,屬于基礎(chǔ)題.4.B【解析】

首先由三視圖還原幾何體,進(jìn)一步求出幾何體的棱長.【詳解】解:根據(jù)三視圖還原幾何體如圖所示,所以,該四棱錐體的最長的棱長為.故選:B.本題主要考查由三視圖還原幾何體,考查運(yùn)算能力和推理能力,屬于基礎(chǔ)題.5.A【解析】

結(jié)合向量垂直的坐標(biāo)表示,將兩個條件相互推導(dǎo),根據(jù)能否推導(dǎo)的情況判斷出充分、必要條件.【詳解】由,則,所以;而當(dāng),則,解得或.所以“”是“”的充分不必要條件.故選:A本小題考查平面向量的運(yùn)算,向量垂直,充要條件等基礎(chǔ)知識;考查運(yùn)算求解能力,推理論證能力,應(yīng)用意識.6.B【解析】

先根據(jù)導(dǎo)數(shù)的幾何意義寫出在兩點(diǎn)處的切線方程,再利用兩直線斜率相等且縱截距相等,列出關(guān)系樹,從而得出,令函數(shù),結(jié)合導(dǎo)數(shù)求出最小值,即可選出正確答案.【詳解】解:當(dāng)時,,則;當(dāng)時,則.設(shè)為函數(shù)圖像上的兩點(diǎn),當(dāng)或時,,不符合題意,故.則在處的切線方程為;在處的切線方程為.由兩切線重合可知,整理得.不妨設(shè)則,由可得則當(dāng)時,的最大值為.則在上單調(diào)遞減,則.故選:B.本題考查了導(dǎo)數(shù)的幾何意義,考查了推理論證能力,考查了函數(shù)與方程、分類與整合、轉(zhuǎn)化與化歸等思想方法.本題的難點(diǎn)是求出和的函數(shù)關(guān)系式.本題的易錯點(diǎn)是計(jì)算.7.A【解析】

根據(jù)偶函數(shù)的性質(zhì)和單調(diào)性即可判斷.【詳解】解:對,,且,有在上遞增因?yàn)槎x在上的偶函數(shù)所以在上遞減又因?yàn)椋?,所以故選:A考查偶函數(shù)的性質(zhì)以及單調(diào)性的應(yīng)用,基礎(chǔ)題.8.A【解析】

由題意,可得,,消去得,可得,繼而得到,代入即得解【詳解】由,,成等差數(shù)列,所以,又,,成等比數(shù)列,所以,消去得,所以,解得或,因?yàn)?,,是不相等的非零?shí)數(shù),所以,此時,所以.故選:A本題考查了等差等比數(shù)列的綜合應(yīng)用,考查了學(xué)生概念理解,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.9.D【解析】

通過變形,通過“左加右減”即可得到答案.【詳解】根據(jù)題意,故只需把函數(shù)的圖象上所有的點(diǎn)向右平移個單位長度可得到函數(shù)的圖象,故答案為D.本題主要考查三角函數(shù)的平移變換,難度不大.10.D【解析】

與中間值1比較,可用換底公式化為同底數(shù)對數(shù),再比較大?。驹斀狻?,,又,∴,即,∴.故選:D.本題考查冪和對數(shù)的大小比較,解題時能化為同底的化為同底數(shù)冪比較,或化為同底數(shù)對數(shù)比較,若是不同類型的數(shù),可借助中間值如0,1等比較.11.D【解析】

求得點(diǎn)的坐標(biāo),由,得出,利用向量的坐標(biāo)運(yùn)算得出點(diǎn)的坐標(biāo),代入橢圓的方程,可得出關(guān)于、、的齊次等式,進(jìn)而可求得橢圓的離心率.【詳解】由題意可得、.由,得,則,即.而,所以,所以點(diǎn).因?yàn)辄c(diǎn)在橢圓上,則,整理可得,所以,所以.即橢圓的離心率為故選:D.本題考查橢圓離心率的求解,解答的關(guān)鍵就是要得出、、的齊次等式,充分利用點(diǎn)在橢圓上這一條件,圍繞求點(diǎn)的坐標(biāo)來求解,考查計(jì)算能力,屬于中等題.12.A【解析】

根據(jù)是與的等比中項(xiàng),可求得,再利用等差數(shù)列求和公式即可得到.【詳解】等比數(shù)列滿足,,所以,又,所以,由等差數(shù)列的性質(zhì)可得.故選:A本題主要考查的是等比數(shù)列的性質(zhì),考查等差數(shù)列的求和公式,考查學(xué)生的計(jì)算能力,是中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

由點(diǎn),關(guān)于直線對稱,得到直線的斜率,再根據(jù)直線過點(diǎn),可求出直線方程,又,中點(diǎn)在直線上,代入直線的方程,化簡整理,即可求出結(jié)果.【詳解】因?yàn)闉殡p曲線:的左焦點(diǎn),所以,又點(diǎn),關(guān)于直線對稱,,所以可得直線的方程為,又,中點(diǎn)在直線上,所以,整理得,又,所以,故,解得,因?yàn)?,所?故答案為本題主要考查雙曲線的簡單性質(zhì),先由兩點(diǎn)對稱,求出直線斜率,再由焦點(diǎn)坐標(biāo)求出直線方程,根據(jù)中點(diǎn)在直線上,即可求出結(jié)果,屬于??碱}型.14.【解析】

結(jié)合等差數(shù)列的前項(xiàng)和公式,可得,求解即可.【詳解】由題意,,,因?yàn)?所以.故答案為:.本題考查了等差數(shù)列的前項(xiàng)和公式及等差中項(xiàng)的應(yīng)用,考查了學(xué)生的計(jì)算求解能力,屬于基礎(chǔ)題.15.【解析】

首先由分段函數(shù)的解析式代入求值即可得到,分和兩種情況討論可得;【詳解】解:因?yàn)?,所以,∵,∴?dāng)時,滿足題意,∴;當(dāng)時,由,解得.綜合可知:滿足的的取值范圍為.故答案為:;.本題考查分段函數(shù)的性質(zhì)的應(yīng)用,分類討論思想,屬于基礎(chǔ)題.16.【解析】

由題意可知,,在和中,利用余弦定理建立方程求,同理求,求,代入求值.【詳解】由圓內(nèi)接四邊形的性質(zhì)可得,.連接BD,在中,有.在中,.所以,則,所以.連接AC,同理可得,所以.所以.故答案為:本題考查余弦定理解三角形,同角三角函數(shù)基本關(guān)系,意在考查方程思想,計(jì)算能力,屬于中檔題型,本題的關(guān)鍵是熟悉圓內(nèi)接四邊形的性質(zhì),對角互補(bǔ).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.【解析】

試題分析:由柯西不等式得試題解析:因?yàn)?,所以.等號?dāng)且僅當(dāng),即時成立.所以的最大值為.考點(diǎn):柯西不等式求最值18.(1);(2)【解析】試題分析:(1)求得的解集,根據(jù)集合相等,列出方程組,即可求解的值;(2)①當(dāng)時,恒成立,②當(dāng)時,轉(zhuǎn)化為,設(shè),求得函數(shù)的最小值,即可求解的取值范圍.試題解析:(1)由,得,因?yàn)椴坏仁降慕饧癁?,所以,故不等式可化為,解得,所以,解?(2)①當(dāng)時,恒成立,所以.②當(dāng)時,可化為,設(shè),則,所以當(dāng)時,,所以.綜上,的取值范圍是.19.(1)見解析(2)存在,【解析】

(1)利用作差法即可證出.(2)將不等式通分化簡可得,討論或,分離參數(shù),利用基本不等式即可求解.【詳解】又即即①當(dāng)時,即恒成立(當(dāng)且僅當(dāng)時取等號),故②當(dāng)時恒成立(當(dāng)且僅當(dāng)時取等號),故綜上,本題考查了作差法證明不等式、基本不等式求最值、考查了分類討論的思想,屬于基礎(chǔ)題.20.(1);(2)極小值為,遞減區(qū)間為:,遞增區(qū)間為.【解析】

(1)由題意得到關(guān)于實(shí)數(shù)的方程組,求解方程組,即可求得的值;(2)結(jié)合(1)中的值得出函數(shù)的解析式,即可利用導(dǎo)數(shù)求得函數(shù)的單調(diào)區(qū)間和極小值.【詳解】(1)由題意,函數(shù),則,由當(dāng)時,有極大值,則,解得.(2)由(1)可得函數(shù)的解析式為,則,令,即,解得,令,即,解得或,所以函數(shù)的單調(diào)減區(qū)間為,遞增區(qū)間為,當(dāng)時,函數(shù)取得極小值,極小值為.當(dāng)時,有極大值3.本題主要考查了函數(shù)的極值的概念,以及利用導(dǎo)數(shù)求解函數(shù)的單調(diào)區(qū)間和極值,其中解答中熟記函數(shù)的極值的概念,以及函數(shù)的導(dǎo)數(shù)與原函數(shù)的關(guān)系,準(zhǔn)確運(yùn)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.21.(Ⅰ)詳見解析;(Ⅱ).【解析】

(Ⅰ)由正方形的性質(zhì)得出,由平面得出,進(jìn)而可推導(dǎo)出平面,再利用面面垂直的判定定理可證得結(jié)論;(Ⅱ)取的中點(diǎn),連接、,以、、所在直線分別為、、軸建立空間直角坐標(biāo)系,利用空間向量法能求出二面角的余弦值.【詳解】(Ⅰ)是正方形,,平面,平面,、平面,且,平面,又平面,平面平面;(Ⅱ)取的中點(diǎn),連接、,是正方形,易知、、兩兩垂直,以點(diǎn)為坐標(biāo)原點(diǎn),以、、所在直線分別為、、軸建立如圖所示的空間直角坐標(biāo)系,在中,,,,、、、,設(shè)平面的一個法向量,,,由,得,令,則,,.設(shè)平面的一個法向量,,,由,得,取,得,,得.,二面角為鈍二面角,二面角的余弦值為.本題考查面面垂直的證明,同時也考查了利用空間向量法求解二面角,考查推理能力與計(jì)算能力,屬于中等題.22.(1)多2350人;(2)有95%的把握認(rèn)為購買“小愛同學(xué)”、“天貓精靈”與性別有關(guān).【解析】

(1)根據(jù)題意,知100人中購買“小愛同學(xué)”的女性有55人,購買“天貓精靈”的女性有40人,即可估計(jì)該地區(qū)購買“小愛同學(xué)”的女性人數(shù)和購買“天

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論