北京市大興區(qū)重點中學(xué)2025屆初三第二學(xué)期綜合練習(xí)(一)數(shù)學(xué)試題試卷含解析_第1頁
北京市大興區(qū)重點中學(xué)2025屆初三第二學(xué)期綜合練習(xí)(一)數(shù)學(xué)試題試卷含解析_第2頁
北京市大興區(qū)重點中學(xué)2025屆初三第二學(xué)期綜合練習(xí)(一)數(shù)學(xué)試題試卷含解析_第3頁
北京市大興區(qū)重點中學(xué)2025屆初三第二學(xué)期綜合練習(xí)(一)數(shù)學(xué)試題試卷含解析_第4頁
北京市大興區(qū)重點中學(xué)2025屆初三第二學(xué)期綜合練習(xí)(一)數(shù)學(xué)試題試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

北京市大興區(qū)重點中學(xué)2025屆初三第二學(xué)期綜合練習(xí)(一)數(shù)學(xué)試題試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,將函數(shù)的圖象沿y軸向上平移得到一條新函數(shù)的圖象,其中點A(-4,m),B(-1,n),平移后的對應(yīng)點分別為點A'、B'.若曲線段AB掃過的面積為9(圖中的陰影部分),則新圖象的函數(shù)表達式是()A. B. C. D.2.如圖,已知AB是⊙O的直徑,弦CD⊥AB于E,連接BC、BD、AC,下列結(jié)論中不一定正確的是()A.∠ACB=90° B.OE=BE C.BD=BC D.3.如圖是一個幾何體的三視圖,則這個幾何體是()A. B. C. D.4.方程x2﹣3x+2=0的解是()A.x1=1,x2=2 B.x1=﹣1,x2=﹣2C.x1=1,x2=﹣2 D.x1=﹣1,x2=25.下列運算正確的是()A. B. C. D.6.如圖,在四邊形ABCD中,∠A+∠D=α,∠ABC的平分線與∠BCD的平分線交于點P,則∠P=()A.90°-α B.90°+α C. D.360°-α7.如圖數(shù)軸的A、B、C三點所表示的數(shù)分別為a、b、c.若|a﹣b|=3,|b﹣c|=5,且原點O與A、B的距離分別為4、1,則關(guān)于O的位置,下列敘述何者正確?()A.在A的左邊 B.介于A、B之間C.介于B、C之間 D.在C的右邊8.一、單選題點P(2,﹣1)關(guān)于原點對稱的點P′的坐標(biāo)是()A.(﹣2,1) B.(﹣2,﹣1) C.(﹣1,2) D.(1,﹣2)9.為了解中學(xué)300名男生的身高情況,隨機抽取若干名男生進行身高測量,將所得數(shù)據(jù)整理后,畫出頻數(shù)分布直方圖(如圖).估計該校男生的身高在169.5cm~174.5cm之間的人數(shù)有()A.12 B.48 C.72 D.9610.某校八年級兩個班,各選派10名學(xué)生參加學(xué)校舉行的“古詩詞”大賽,各參賽選手成績的數(shù)據(jù)分析如表所示,則以下判斷錯誤的是()班級平均數(shù)中位數(shù)眾數(shù)方差八(1)班94939412八(2)班9595.5938.4A.八(2)班的總分高于八(1)班B.八(2)班的成績比八(1)班穩(wěn)定C.兩個班的最高分在八(2)班D.八(2)班的成績集中在中上游二、填空題(共7小題,每小題3分,滿分21分)11.如圖,一艘輪船自西向東航行,航行到A處測得小島C位于北偏東60°方向上,繼續(xù)向東航行10海里到達點B處,測得小島C在輪船的北偏東15°方向上,此時輪船與小島C的距離為_________海里.(結(jié)果保留根號)12.不等式≥-1的正整數(shù)解為________________.13.如圖是“已知一條直角邊和斜邊作直角三角形”的尺規(guī)作圖過程已知:線段a、b,求作:.使得斜邊AB=b,AC=a作法:如圖.(1)作射線AP,截取線段AB=b;(2)以AB為直徑,作⊙O;(3)以點A為圓心,a的長為半徑作弧交⊙O于點C;(4)連接AC、CB.即為所求作的直角三角形.請回答:該尺規(guī)作圖的依據(jù)是______.14.如圖,在△ABC中,∠C=120°,AB=4cm,兩等圓⊙A與⊙B外切,則圖中兩個扇形的面積之和(即陰影部分)為cm2(結(jié)果保留π).15.《九章算術(shù)》是中國傳統(tǒng)數(shù)學(xué)最重要的著作,奠定了中國傳統(tǒng)數(shù)學(xué)的基本框架,其中方程術(shù)是重要的數(shù)學(xué)成就.書中有一個方程問題:今有醇酒一斗,直錢五十;行酒一斗,直錢一十.今將錢三十,得酒二斗.問醇、行酒各得幾何?意思是:今有美酒一斗,價格是50錢;普通酒一斗,價格是10錢.現(xiàn)在買兩種酒2斗共付30錢,問買美酒、普通酒各多少?設(shè)買美酒x斗,買普通酒y斗,則可列方程組為______________.16.如圖,矩形ABCD的對角線BD經(jīng)過的坐標(biāo)原點,矩形的邊分別平行于坐標(biāo)軸,點C在反比例函數(shù)y=的圖象上,若點A的坐標(biāo)為(﹣2,﹣3),則k的值為_____.17.如圖1,在△ABC中,∠ACB=90°,BC=2,∠A=30°,點E,F(xiàn)分別是線段BC,AC的中點,連結(jié)EF.(1)線段BE與AF的位置關(guān)系是,=.(2)如圖2,當(dāng)△CEF繞點C順時針旋轉(zhuǎn)a時(0°<a<180°),連結(jié)AF,BE,(1)中的結(jié)論是否仍然成立.如果成立,請證明;如果不成立,請說明理由.(3)如圖3,當(dāng)△CEF繞點C順時針旋轉(zhuǎn)a時(0°<a<180°),延長FC交AB于點D,如果AD=6﹣2,求旋轉(zhuǎn)角a的度數(shù).三、解答題(共7小題,滿分69分)18.(10分)為了貫徹落實市委政府提出的“精準扶貧”精神,某校特制定了一系列幫扶A、B兩貧困村的計劃,現(xiàn)決定從某地運送152箱魚苗到A、B兩村養(yǎng)殖,若用大小貨車共15輛,則恰好能一次性運完這批魚苗,已知這兩種大小貨車的載貨能力分別為12箱/輛和8箱/輛,其運往A、B兩村的運費如表:車型目的地A村(元/輛)B村(元/輛)大貨車800900小貨車400600(1)求這15輛車中大小貨車各多少輛?(2)現(xiàn)安排其中10輛貨車前往A村,其余貨車前往B村,設(shè)前往A村的大貨車為x輛,前往A、B兩村總費用為y元,試求出y與x的函數(shù)解析式.(3)在(2)的條件下,若運往A村的魚苗不少于100箱,請你寫出使總費用最少的貨車調(diào)配方案,并求出最少費用.19.(5分)某商場甲、乙、丙三名業(yè)務(wù)員2018年前5個月的銷售額(單位:萬元)如下表:月份銷售額人員第1月第2月第3月第4月第5月甲691088乙57899丙5910511(1)根據(jù)上表中的數(shù)據(jù),將下表補充完整:統(tǒng)計值數(shù)值人員平均數(shù)(萬元)眾數(shù)(萬元)中位數(shù)(萬元)方差甲881.76乙7.682.24丙85(2)甲、乙、丙三名業(yè)務(wù)員都說自己的銷售業(yè)績好,你贊同誰的說法?請說明理由.20.(8分)某市為了解本地七年級學(xué)生寒假期間參加社會實踐活動情況,隨機抽查了部分七年級學(xué)生寒假參加社會實踐活動的天數(shù)(“A﹣﹣﹣不超過5天”、“B﹣﹣﹣6天”、“C﹣﹣﹣7天”、“D﹣﹣﹣8天”、“E﹣﹣﹣9天及以上”),并將得到的數(shù)據(jù)繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)以上的信息,回答下列問題:(1)補全扇形統(tǒng)計圖和條形統(tǒng)計圖;(2)所抽查學(xué)生參加社會實踐活動天數(shù)的眾數(shù)是(選填:A、B、C、D、E);(3)若該市七年級約有2000名學(xué)生,請你估計參加社會實踐“活動天數(shù)不少于7天”的學(xué)生大約有多少人?21.(10分)如圖,在平面直角坐標(biāo)系中有Rt△ABC,∠A=90°,AB=AC,A(﹣2,0),B(0,1).(1)求點C的坐標(biāo);(2)將△ABC沿x軸的正方向平移,在第一象限內(nèi)B、C兩點的對應(yīng)點B'、C'正好落在某反比例函數(shù)圖象上.請求出這個反比例函數(shù)和此時的直線B'C'的解析式.(3)若把上一問中的反比例函數(shù)記為y1,點B′,C′所在的直線記為y2,請直接寫出在第一象限內(nèi)當(dāng)y1<y2時x的取值范圍.22.(10分)計算:(1-n)0-|3-2|+(-)-1+4cos30°.23.(12分)如圖所示,AB是⊙O的一條弦,DB切⊙O于點B,過點D作DC⊥OA于點C,DC與AB相交于點E.(1)求證:DB=DE;(2)若∠BDE=70°,求∠AOB的大?。?4.(14分)如圖,∠A=∠B,AE=BE,點D在AC邊上,∠1=∠2,AE和BD相交于點O.求證:△AEC≌△BED;若∠1=40°,求∠BDE的度數(shù).

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】分析:過A作AC∥x軸,交B′B的延長線于點C,過A′作A′D∥x軸,交B′B的于點D,則C(-1,m),AC=-1-(-1)=3,根據(jù)平移的性質(zhì)以及曲線段AB掃過的面積為9(圖中的陰影部分),得出AA′=3,然后根據(jù)平移規(guī)律即可求解.詳解:過A作AC∥x軸,交B′B的延長線于點C,過A′作A′D∥x軸,交B′B的于點D,則C(-1,m),∴AC=-1-(-1)=3,∵曲線段AB掃過的面積為9(圖中的陰影部分),∴矩形ACDA′的面積等于9,∴AC·AA′=3AA′=9,∴AA′=3,∴新函數(shù)的圖是將函數(shù)y=(x-2)2+1的圖象沿y軸向上平移3個單位長度得到的,∴新圖象的函數(shù)表達式是y=(x-2)2+1+3=(x-2)2+1.故選D.點睛:此題主要考查了二次函數(shù)圖象變換以及矩形的面積求法等知識,根據(jù)已知得出AA′的長度是解題關(guān)鍵.2、B【解析】

根據(jù)垂徑定理及圓周角定理進行解答即可.【詳解】∵AB是⊙O的直徑,∴∠ACB=90°,故A正確;∵點E不一定是OB的中點,∴OE與BE的關(guān)系不能確定,故B錯誤;∵AB⊥CD,AB是⊙O的直徑,∴,∴BD=BC,故C正確;∴,故D正確.故選B.本題考查的是垂徑定理,熟知平分弦的直徑平分這條弦,并且平分弦所對的兩條弧是解答此題的關(guān)鍵.3、B【解析】試題分析:結(jié)合三個視圖發(fā)現(xiàn),應(yīng)該是由一個正方體在一個角上挖去一個小正方體,且小正方體的位置應(yīng)該在右上角,故選B.考點:由三視圖判斷幾何體.4、A【解析】

將方程左邊的多項式利用十字相乘法分解因式,然后利用兩數(shù)相乘積為0,兩因式中至少有一個為0轉(zhuǎn)化為兩個一元一次方程,求出一次方程的解即可得到原方程的解.【詳解】解:原方程可化為:(x﹣1)(x﹣1)=0,∴x1=1,x1=1.故選:A.此題考查了解一元二次方程-因式分解法,利用此方法解方程時首先將方程右邊化為0,左邊的多項式分解因式化為積的形式,然后利用兩數(shù)相乘積為0,兩因式中至少有一個為0轉(zhuǎn)化為兩個一元一次方程來求解.5、D【解析】

根據(jù)冪的乘方:底數(shù)不變,指數(shù)相乘.合并同類項即可解答.【詳解】解:A、B兩項不是同類項,所以不能合并,故A、B錯誤,C、D考查冪的乘方運算,底數(shù)不變,指數(shù)相乘.,故D正確;本題考查冪的乘方和合并同類項,熟練掌握運算法則是解題的關(guān)鍵.6、C【解析】試題分析:∵四邊形ABCD中,∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣α,∵PB和PC分別為∠ABC、∠BCD的平分線,∴∠PBC+∠PCB=(∠ABC+∠BCD)=(360°﹣α)=180°﹣α,則∠P=180°﹣(∠PBC+∠PCB)=180°﹣(180°﹣α)=α.故選C.考點:1.多邊形內(nèi)角與外角2.三角形內(nèi)角和定理.7、C【解析】分析:由A、B、C三點表示的數(shù)之間的關(guān)系結(jié)合三點在數(shù)軸上的位置即可得出b=a+3,c=b+5,再根據(jù)原點O與A、B的距離分別為1、1,即可得出a=±1、b=±1,結(jié)合a、b、c間的關(guān)系即可求出a、b、c的值,由此即可得出結(jié)論.解析:∵|a﹣b|=3,|b﹣c|=5,∴b=a+3,c=b+5,∵原點O與A、B的距離分別為1、1,∴a=±1,b=±1,∵b=a+3,∴a=﹣1,b=﹣1,∵c=b+5,∴c=1.∴點O介于B、C點之間.故選C.點睛:本題考查了數(shù)值以及絕對值,解題的關(guān)鍵是確定a、b、c的值.本題屬于基礎(chǔ)題,難度不大,解決該題型題目時,根據(jù)數(shù)軸上點的位置關(guān)系分別找出各點代表的數(shù)是關(guān)鍵.8、A【解析】

根據(jù)“關(guān)于原點對稱的點,橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù)”解答.【詳解】解:點P(2,-1)關(guān)于原點對稱的點的坐標(biāo)是(-2,1).故選A.本題考查了關(guān)于原點對稱的點的坐標(biāo),解決本題的關(guān)鍵是掌握好對稱點的坐標(biāo)規(guī)律:關(guān)于原點對稱的點,橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù).9、C【解析】

解:根據(jù)圖形,身高在169.5cm~174.5cm之間的人數(shù)的百分比為:,∴該校男生的身高在169.5cm~174.5cm之間的人數(shù)有300×24%=72(人).故選C.10、C【解析】

直接利用表格中數(shù)據(jù),結(jié)合方差的定義以及算術(shù)平均數(shù)、中位數(shù)、眾數(shù)得出答案.【詳解】A選項:八(2)班的平均分高于八(1)班且人數(shù)相同,所以八(2)班的總分高于八(1)班,正確;

B選項:八(2)班的方差比八(1)班小,所以八(2)班的成績比八(1)班穩(wěn)定,正確;

C選項:兩個班的最高分無法判斷出現(xiàn)在哪個班,錯誤;

D選項:八(2)班的中位數(shù)高于八(1)班,所以八(2)班的成績集中在中上游,正確;

故選C.考查了方差的定義以及算術(shù)平均數(shù)、中位數(shù)、眾數(shù),利用表格獲取正確的信息是解題關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、5【解析】

如圖,作BH⊥AC于H.在Rt△ABH中,求出BH,再在Rt△BCH中,利用等腰直角三角形的性質(zhì)求出BC即可.【詳解】如圖,作BH⊥AC于H.

在Rt△ABH中,∵AB=10海里,∠BAH=30°,

∴∠ABH=60°,BH=AB=5(海里),

在Rt△BCH中,∵∠CBH=∠C=45°,BH=5(海里),

∴BH=CH=5海里,

∴CB=5(海里).

故答案為:5.本題考查了解直角三角形的應(yīng)用-方向角問題,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造特殊三角形解決問題.12、1,2,1.【解析】

去分母,移項,合并同類項,系數(shù)化成1即可求出不等式的解集,根據(jù)不等式的解集即可求出答案.【詳解】,

∴1-x≥-2,

∴-x≥-1,

∴x≤1,

∴不等式的正整數(shù)解是1,2,1,

故答案為:1,2,1.本題考查了解一元一次不等式和一元一次不等式的整數(shù)解,關(guān)鍵是求出不等式的解集.13、等圓的半徑相等,直徑所對的圓周角是直角,三角形定義【解析】

根據(jù)圓周角定理可判斷△ABC為直角三角形.【詳解】根據(jù)作圖得AB為直徑,則利用圓周角定理可判斷∠ACB=90°,從而得到△ABC滿足條件.故答案為:等圓的半徑相等,直徑所對的圓周角是直角,三角形定義.本題考查了作圖﹣復(fù)雜作圖:復(fù)雜作圖是在五種基本作圖的基礎(chǔ)上進行作圖,一般是結(jié)合了幾何圖形的性質(zhì)和基本作圖方法.解決此類題目的關(guān)鍵是熟悉基本幾何圖形的性質(zhì),結(jié)合幾何圖形的基本性質(zhì)把復(fù)雜作圖拆解成基本作圖,逐步操作.也考查了圓周角定理.14、.【解析】

圖中陰影部分的面積就是兩個扇形的面積,圓A,B的半徑為2cm,則根據(jù)扇形面積公式可得陰影面積.【詳解】(cm2).故答案為.考點:1、扇形的面積公式;2、兩圓相外切的性質(zhì).15、【解析】

設(shè)買美酒x斗,買普通酒y斗,根據(jù)“美酒一斗的價格是50錢、買兩種酒2斗共付30錢”列出方程組.【詳解】依題意得:.故答案為.考查了由實際問題抽象出二元一次方程組,解答本題的關(guān)鍵是讀懂題意,設(shè)出未知數(shù),找出合適的等量關(guān)系,列方程組.16、1或﹣1【解析】

根據(jù)矩形的對角線將矩形分成面積相等的兩個直角三角形,找到圖中的所有矩形及相等的三角形,即可推出S四邊形CEOF=S四邊形HAGO,根據(jù)反比例函數(shù)比例系數(shù)的幾何意義即可求出k2+4k+1=6,再解出k的值即可.【詳解】如圖:∵四邊形ABCD、HBEO、OECF、GOFD為矩形,又∵BO為四邊形HBEO的對角線,OD為四邊形OGDF的對角線,∴S△BEO=S△BHO,S△OFD=S△OGD,S△CBD=S△ADB,∴S△CBD﹣S△BEO﹣S△OFD=S△ADB﹣S△BHO﹣S△OGD,∴S四邊形CEOF=S四邊形HAGO=2×3=6,∴xy=k2+4k+1=6,解得k=1或k=﹣1.故答案為1或﹣1.本題考查了反比例函數(shù)k的幾何意義、矩形的性質(zhì)、一元二次方程的解法,解題的關(guān)鍵是判斷出S四邊形CEOF=S四邊形HAGO.17、(1)互相垂直;;(2)結(jié)論仍然成立,證明見解析;(3)135°.【解析】

(1)結(jié)合已知角度以及利用銳角三角函數(shù)關(guān)系求出AB的長,進而得出答案;

(2)利用已知得出△BEC∽△AFC,進而得出∠1=∠2,即可得出答案;

(3)過點D作DH⊥BC于H,則DB=4-(6-2)=2-2,進而得出BH=-1,DH=3-,求出CH=BH,得出∠DCA=45°,進而得出答案.【詳解】解:(1)如圖1,線段BE與AF的位置關(guān)系是互相垂直;

∵∠ACB=90°,BC=2,∠A=30°,

∴AC=2,

∵點E,F(xiàn)分別是線段BC,AC的中點,

∴=;(2))如圖2,∵點E,F(xiàn)分別是線段BC,AC的中點,

∴EC=BC,F(xiàn)C=AC,

∴,

∵∠BCE=∠ACF=α,

∴△BEC∽△AFC,

∴,

∴∠1=∠2,

延長BE交AC于點O,交AF于點M

∵∠BOC=∠AOM,∠1=∠2

∴∠BCO=∠AMO=90°

∴BE⊥AF;(3)如圖3,∵∠ACB=90°,BC=2,∠A=30°∴AB=4,∠B=60°過點D作DH⊥BC于H∴DB=4-(6-2)=2-2,∴BH=-1,DH=3-,又∵CH=2-(-1)=3-,∴CH=BH,∴∠HCD=45°,∴∠DCA=45°,α=180°-45°=135°.三、解答題(共7小題,滿分69分)18、(1)大貨車用8輛,小貨車用7輛;(2)y=100x+1.(3)見解析.【解析】

(1)設(shè)大貨車用x輛,小貨車用y輛,根據(jù)大、小兩種貨車共15輛,運輸152箱魚苗,列方程組求解;(2)設(shè)前往A村的大貨車為x輛,則前往B村的大貨車為(8-x)輛,前往A村的小貨車為(10-x)輛,前往B村的小貨車為[7-(10-x)]輛,根據(jù)表格所給運費,求出y與x的函數(shù)關(guān)系式;(3)結(jié)合已知條件,求x的取值范圍,由(2)的函數(shù)關(guān)系式求使總運費最少的貨車調(diào)配方案.【詳解】(1)設(shè)大貨車用x輛,小貨車用y輛,根據(jù)題意得:解得:.∴大貨車用8輛,小貨車用7輛.(2)y=800x+900(8-x)+400(10-x)+600[7-(10-x)]=100x+1.(3≤x≤8,且x為整數(shù)).(3)由題意得:12x+8(10-x)≥100,解得:x≥5,又∵3≤x≤8,∴5≤x≤8且為整數(shù),∵y=100x+1,k=100>0,y隨x的增大而增大,∴當(dāng)x=5時,y最小,最小值為y=100×5+1=9900(元).答:使總運費最少的調(diào)配方案是:5輛大貨車、5輛小貨車前往A村;3輛大貨車、2輛小貨車前往B村.最少運費為9900元.19、(1)8.2;9;9;6.4;(2)贊同甲的說法.理由見解析.【解析】

(1)利用平均數(shù)、眾數(shù)、中位數(shù)的定義和方差的計算公式求解;(2)利用甲的平均數(shù)大得到總營業(yè)額高,方差小,營業(yè)額穩(wěn)定進行判斷.【詳解】(1)甲的平均數(shù);乙的眾數(shù)為9;丙的中位數(shù)為9,丙的方差;故答案為8.2;9;9;6.4;(2)贊同甲的說法.理由是:甲的平均數(shù)高,總營業(yè)額比乙、丙都高,每月的營業(yè)額比較穩(wěn)定.本題考查了方差:方差是反映一組數(shù)據(jù)的波動大小的一個量.方差越大,則平均值的離散程度越大,穩(wěn)定性也越小.記住方差的計算公式.也考查了平均數(shù)、眾數(shù)和中位數(shù).20、(1)見解析;(2)A;(3)800人.【解析】

(1)用A組人數(shù)除以它所占的百分比求出樣本容量,利用360°乘以對應(yīng)的百分比即可求得扇形圓心角的度數(shù),再求得時間是8天的人數(shù),從而補全扇形統(tǒng)計圖和條形統(tǒng)計圖;(2)根據(jù)眾數(shù)的定義即可求解;(3)利用總?cè)藬?shù)2000乘以對應(yīng)的百分比即可求解.【詳解】解:(1)∵被調(diào)查的學(xué)生人數(shù)為24÷40%=60人,∴D類別人數(shù)為60﹣(24+12+15+3)=6人,則D類別的百分比為×100%=10%,補全圖形如下:(2)所抽查學(xué)生參加社會實踐活動天數(shù)的眾數(shù)是A,故答案為:A;(3)估計參加社會實踐“活動天數(shù)不少于7天”的學(xué)生大約有2000×(25%+10%+5%)=800人.本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大小.21、(1)C(﹣3,2);(2)y1=,y2=﹣x+3;(3)3<x<1.【解析】分析:(1)過點C作CN⊥x軸于點N,由已知條件證Rt△CAN≌Rt△AOB即可得到AN=BO=1,CN=AO=2,NO=NA+AO=3結(jié)合點C在第二象限即可得到點C的坐標(biāo);(2)設(shè)△ABC向右平移了c個單位,則結(jié)合(1)可得點C′,B′的坐標(biāo)分別為(﹣3+c,2)、(c,1),再設(shè)反比例函數(shù)的解析式為y1=,將點C′,B′的坐標(biāo)代入所設(shè)解析式即可求得c的值,由此即可得到點C′,B′的坐標(biāo),這樣用待定系數(shù)法即可求得兩個函數(shù)的解析式了;(3)結(jié)合(2)中所得點C′,B′的坐標(biāo)和圖象即可得到本題所求答案.詳解:(1)作CN⊥x軸于點N,∴∠CAN=∠CAB=∠AOB=90°,∴∠CAN+∠CAN=90°,∠CAN+∠OAB=90°,∴∠CAN=∠OAB,∵A(﹣2,0)B(0,1),∴OB=1,AO=2,在Rt△CAN和Rt△AOB,∵,∴Rt△CAN≌Rt△AOB(AAS),∴AN=BO=1,CN=AO=2,NO=NA+AO=3,又∵點C在第二象限,∴C(﹣3,2);(2)設(shè)△ABC沿x軸的正方向平移c個單位,則C′(﹣3+c,2),則B′(c,1),設(shè)這個反比例函數(shù)的解析式為:y1=,又點C′和B′在該比例函數(shù)圖象上,把點C′和B′的坐標(biāo)分別代入y1=,得﹣1+2c=c,解得c=1,即反比例函數(shù)解析式為y1=,此時C′(3,2),B′(1,1),設(shè)直線B′C′的解析式y(tǒng)2=mx+n,∵,∴,∴直線C′B′的解析式為y2=﹣x+3;(3)由圖象可知反比例函數(shù)y1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論