浙江省寧波萬里國際學校2021-2022學年中考數(shù)學對點突破模擬試卷含解析_第1頁
浙江省寧波萬里國際學校2021-2022學年中考數(shù)學對點突破模擬試卷含解析_第2頁
浙江省寧波萬里國際學校2021-2022學年中考數(shù)學對點突破模擬試卷含解析_第3頁
浙江省寧波萬里國際學校2021-2022學年中考數(shù)學對點突破模擬試卷含解析_第4頁
浙江省寧波萬里國際學校2021-2022學年中考數(shù)學對點突破模擬試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

浙江省寧波萬里國際學校2021-2022學年中考數(shù)學對點突破模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,AD∥BC,AC平分∠BAD,若∠B=40°,則∠C的度數(shù)是()A.40° B.65° C.70° D.80°2.據(jù)調(diào)查,某班20為女同學所穿鞋子的尺碼如表所示,尺碼(碼)3435363738人數(shù)251021則鞋子尺碼的眾數(shù)和中位數(shù)分別是()A.35碼,35碼 B.35碼,36碼 C.36碼,35碼 D.36碼,36碼3.如圖是用八塊相同的小正方體搭建的幾何體,它的左視圖是()A. B.C. D.4.在△ABC中,∠C=90°,sinA=,則tanB等于()A. B.C. D.5.-2的絕對值是()A.2 B.-2 C.±2 D.6.已知M,N,P,Q四點的位置如圖所示,下列結(jié)論中,正確的是()A.∠NOQ=42° B.∠NOP=132°C.∠PON比∠MOQ大 D.∠MOQ與∠MOP互補7.小明要去超市買甲、乙兩種糖果,然后混合成5千克混合糖果,已知甲種糖果的單價為a元/千克,乙種糖果的單價為b元/千克,且a>b.根據(jù)需要小明列出以下三種混合方案:(單位:千克)甲種糖果乙種糖果混合糖果方案1235方案2325方案32.52.55則最省錢的方案為()A.方案1 B.方案2C.方案3 D.三個方案費用相同8.我國古代數(shù)學名著《孫子算經(jīng)》中記載了一道題,大意是:100匹馬恰好拉了100片瓦,已知1匹大馬能拉3片瓦,3匹小馬能拉1片瓦,問有多少匹大馬、多少匹小馬?若設大馬有x匹,小馬有y匹,那么可列方程組為()A. B. C. D.9.如圖,在平面直角坐標系中,矩形OABC的兩邊OA,OC分別在x軸和y軸上,并且OA=5,OC=1.若把矩形OABC繞著點O逆時針旋轉(zhuǎn),使點A恰好落在BC邊上的A1處,則點C的對應點C1的坐標為()A.(﹣) B.(﹣) C.(﹣) D.(﹣)10.在平面直角坐標系中,點A的坐標是(﹣1,0),點B的坐標是(3,0),在y軸的正半軸上取一點C,使A、B、C三點確定一個圓,且使AB為圓的直徑,則點C的坐標是()A.(0,) B.(,0) C.(0,2) D.(2,0)11.計算﹣的結(jié)果為()A. B. C. D.12.二次函數(shù)(a≠0)的圖象如圖所示,則下列命題中正確的是()A.a(chǎn)>b>cB.一次函數(shù)y=ax+c的圖象不經(jīng)第四象限C.m(am+b)+b<a(m是任意實數(shù))D.3b+2c>0二、填空題:(本大題共6個小題,每小題4分,共24分.)13.分式方程+=1的解為________.14.如圖,已知在Rt△ABC中,∠ACB=90°,AB=4,分別以AC,BC為直徑作半圓,面積分別記為S1,S2,則S1+S2等_________.15.正五邊形的內(nèi)角和等于______度.16.長、寬分別為a、b的矩形,它的周長為14,面積為10,則a2b+ab2的值為_____.17.如圖,在x軸的正半軸上依次間隔相等的距離取點A1,A2,A3,A4,…,An,分別過這些點做x軸的垂線與反比例函數(shù)y=的圖象相交于點P1,P2,P3,P4,…Pn,再分別過P2,P3,P4,…Pn作P2B1⊥A1P1,P3B2⊥A2P2,P4B3⊥A3P3,…,PnBn﹣1⊥An﹣1Pn﹣1,垂足分別為B1,B2,B3,B4,…,Bn﹣1,連接P1P2,P2P3,P3P4,…,Pn﹣1Pn,得到一組Rt△P1B1P2,Rt△P2B2P3,Rt△P3B3P4,…,Rt△Pn﹣1Bn﹣1Pn,則Rt△Pn﹣1Bn﹣1Pn的面積為_____.18.甲、乙兩個機器人檢測零件,甲比乙每小時多檢測20個,甲檢測300個比乙檢測200個所用的時間少,若設甲每小時檢測個,則根據(jù)題意,可列出方程:__________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)一不透明的布袋里,裝有紅、黃、藍三種顏色的小球(除顏色外其余都相同),其中有紅球2個,藍球1個,黃球若干個,現(xiàn)從中任意摸出一個球是紅球的概率為.求口袋中黃球的個數(shù);甲同學先隨機摸出一個小球(不放回),再隨機摸出一個小球,請用“樹狀圖法”或“列表法”,求兩次摸出都是紅球的概率;20.(6分)為了解黔東南州某縣中考學生的體育考試得分情況,從該縣參加體育考試的4000名學生中隨機抽取了100名學生的體育考試成績作樣本分析,得出如下不完整的頻數(shù)統(tǒng)計表和頻數(shù)分布直方圖.成績分組

組中值

頻數(shù)

25≤x<30

27.5

4

30≤x<35

32.5

m

35≤x<40

37.5

24

40≤x<45

a

36

45≤x<50

47.5

n

50≤x<55

52.5

4

(1)求a、m、n的值,并補全頻數(shù)分布直方圖;(2)若體育得分在40分以上(包括40分)為優(yōu)秀,請問該縣中考體育成績優(yōu)秀學生人數(shù)約為多少?21.(6分)校園空地上有一面墻,長度為20m,用長為32m的籬笆和這面墻圍成一個矩形花圃,如圖所示.能圍成面積是126m2的矩形花圃嗎?若能,請舉例說明;若不能,請說明理由.若籬笆再增加4m,圍成的矩形花圃面積能達到170m2嗎?請說明理由.22.(8分)如圖所示是一幢住房的主視圖,已知:,房子前后坡度相等,米,米,設后房檐到地面的高度為米,前房檐到地面的高度米,求的值.23.(8分)已知.(1)化簡A;(2)如果a,b是方程的兩個根,求A的值.24.(10分)如圖,在圖中求作⊙P,使⊙P滿足以線段MN為弦且圓心P到∠AOB兩邊的距離相等.(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡,并把作圖痕跡用黑色簽字筆加黑)25.(10分)已知⊙O的直徑為10,點A,點B,點C在⊙O上,∠CAB的平分線交⊙O于點D.(I)如圖①,若BC為⊙O的直徑,求BD、CD的長;(II)如圖②,若∠CAB=60°,求BD、BC的長.26.(12分)我國古代數(shù)學著作《增刪算法統(tǒng)宗》記載“官兵分布”問題:“一千官軍一千布,一官四疋無零數(shù),四軍才分布一疋,請問官軍多少數(shù).”其大意為:今有1000官兵分1000匹布,1官分4匹,4兵分1匹.問官和兵各幾人?27.(12分)小新家、小華家和書店依次在東風大街同一側(cè)(忽略三者與東風大街的距離).小新小華兩人同時各自從家出發(fā)沿東風大街勻速步行到書店買書,已知小新到達書店用了20分鐘,小華的步行速度是40米/分,設小新、小華離小華家的距離分別為y1(米)、y2(米),兩人離家后步行的時間為x(分),y1與x的函數(shù)圖象如圖所示,根據(jù)圖象解決下列問題:(1)小新的速度為_____米/分,a=_____;并在圖中畫出y2與x的函數(shù)圖象(2)求小新路過小華家后,y1與x之間的函數(shù)關系式.(3)直接寫出兩人離小華家的距離相等時x的值.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】

根據(jù)平行線性質(zhì)得出∠B+∠BAD=180°,∠C=∠DAC,求出∠BAD,求出∠DAC,即可得出∠C的度數(shù).【詳解】解:∵AD∥BC,∴∠B+∠BAD=180°,∵∠B=40°,∴∠BAD=140°,∵AC平分∠DAB,∴∠DAC=∠BAD=70°,∵A∥BC,∴∠C=∠DAC=70°,故選C.【點睛】本題考查了平行線性質(zhì)和角平分線定義,關鍵是求出∠DAC或∠BAC的度數(shù).2、D【解析】

眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個;找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)(或兩個數(shù)的平均數(shù))為中位數(shù).【詳解】數(shù)據(jù)36出現(xiàn)了10次,次數(shù)最多,所以眾數(shù)為36,一共有20個數(shù)據(jù),位置處于中間的數(shù)是:36,36,所以中位數(shù)是(36+36)÷2=36.故選D.【點睛】考查中位數(shù)與眾數(shù),掌握眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個;找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)(或兩個數(shù)的平均數(shù))為中位數(shù)是解題的關鍵.3、B【解析】

根據(jù)幾何體的左視圖是從物體的左面看得到的視圖,對各個選項中的圖形進行分析,即可得出答案.【詳解】左視圖是從左往右看,左側(cè)一列有2層,右側(cè)一列有1層1,選項B中的圖形符合題意,故選B.【點睛】本題考查了簡單組合體的三視圖,理解掌握三視圖的概念是解答本題的關鍵.主視圖是從物體的正面看得到的視圖,左視圖是從物體的左面看得到的視圖,俯視圖是從物體的上面看得到的視圖.4、B【解析】法一,依題意△ABC為直角三角形,∴∠A+∠B=90°,∴cosB=,∵,∴sinB=,∵tanB==故選B法2,依題意可設a=4,b=3,則c=5,∵tanb=故選B5、A【解析】

根據(jù)絕對值的性質(zhì)進行解答即可【詳解】解:﹣1的絕對值是:1.故選:A.【點睛】此題考查絕對值,難度不大6、C【解析】試題分析:如圖所示:∠NOQ=138°,選項A錯誤;∠NOP=48°,選項B錯誤;如圖可得∠PON=48°,∠MOQ=42°,所以∠PON比∠MOQ大,選項C正確;由以上可得,∠MOQ與∠MOP不互補,選項D錯誤.故答案選C.考點:角的度量.7、A【解析】

求出三種方案混合糖果的單價,比較后即可得出結(jié)論.【詳解】方案1混合糖果的單價為,方案2混合糖果的單價為,方案3混合糖果的單價為.∵a>b,∴,∴方案1最省錢.故選:A.【點睛】本題考查了加權平均數(shù),求出各方案混合糖果的單價是解題的關鍵.8、C【解析】

設大馬有x匹,小馬有y匹,根據(jù)題意可得等量關系:①大馬數(shù)+小馬數(shù)=100;②大馬拉瓦數(shù)+小馬拉瓦數(shù)=100,根據(jù)等量關系列出方程組即可.【詳解】解:設大馬有x匹,小馬有y匹,由題意得:,故選C.【點睛】此題主要考查了由實際問題抽象出二元一次方程組,關鍵是正確理解題意,找出題目中的等量關系,列出方程組.9、A【解析】

直接利用相似三角形的判定與性質(zhì)得出△ONC1三邊關系,再利用勾股定理得出答案.【詳解】過點C1作C1N⊥x軸于點N,過點A1作A1M⊥x軸于點M,由題意可得:∠C1NO=∠A1MO=90°,∠1=∠2=∠1,則△A1OM∽△OC1N,∵OA=5,OC=1,∴OA1=5,A1M=1,∴OM=4,∴設NO=1x,則NC1=4x,OC1=1,則(1x)2+(4x)2=9,解得:x=±(負數(shù)舍去),則NO=,NC1=,故點C的對應點C1的坐標為:(-,).故選A.【點睛】此題主要考查了矩形的性質(zhì)以及勾股定理等知識,正確得出△A1OM∽△OC1N是解題關鍵.10、A【解析】

直接根據(jù)△AOC∽△COB得出OC2=OA?OB,即可求出OC的長,即可得出C點坐標.【詳解】如圖,連結(jié)AC,CB.

依△AOC∽△COB的結(jié)論可得:OC2=OAOB,即OC2=1×3=3,解得:OC=或?(負數(shù)舍去),故C點的坐標為(0,).故答案選:A.【點睛】本題考查了坐標與圖形性質(zhì),解題的關鍵是熟練的掌握坐標與圖形的性質(zhì).11、A【解析】

根據(jù)分式的運算法則即可【詳解】解:原式=,故選A.【點睛】本題主要考查分式的運算。12、D【解析】解:A.由二次函數(shù)的圖象開口向上可得a>0,由拋物線與y軸交于x軸下方可得c<0,由x=﹣1,得出=﹣1,故b>0,b=2a,則b>a>c,故此選項錯誤;B.∵a>0,c<0,∴一次函數(shù)y=ax+c的圖象經(jīng)一、三、四象限,故此選項錯誤;C.當x=﹣1時,y最小,即a﹣b﹣c最小,故a﹣b﹣c<am2+bm+c,即m(am+b)+b>a,故此選項錯誤;D.由圖象可知x=1,a+b+c>0①,∵對稱軸x=﹣1,當x=1,y>0,∴當x=﹣3時,y>0,即9a﹣3b+c>0②①+②得10a﹣2b+2c>0,∵b=2a,∴得出3b+2c>0,故選項正確;故選D.點睛:此題主要考查了圖象與二次函數(shù)系數(shù)之間的關系,二次函數(shù)與方程之間的轉(zhuǎn)換,會利用特殊值代入法求得特殊的式子,如:y=a+b+c,然后根據(jù)圖象判斷其值.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】

根據(jù)解分式方程的步驟,即可解答.【詳解】方程兩邊都乘以,得:,解得:,檢驗:當時,,所以分式方程的解為,故答案為.【點睛】考查了解分式方程,解分式方程的基本思想是“轉(zhuǎn)化思想”,把分式方程轉(zhuǎn)化為整式方程求解解分式方程一定注意要驗根.14、【解析】試題解析:所以故答案為15、540【解析】

過正五邊形五個頂點,可以畫三條對角線,把五邊形分成3個三角形∴正五邊形的內(nèi)角和=3180=540°16、1.【解析】

由周長和面積可分別求得a+b和ab的值,再利用因式分解把所求代數(shù)式可化為ab(a+b),代入可求得答案【詳解】∵長、寬分別為a、b的矩形,它的周長為14,面積為10,

∴a+b==7,ab=10,

∴a2b+ab2=ab(a+b)=10×7=1,

故答案為:1.【點睛】本題主要考查因式分解的應用,把所求代數(shù)式化為ab(a+b)是解題的關鍵.17、【解析】

解:設OA1=A1A2=A2A3=…=An-2An-1=An-1An=a,∵當x=a時,,∴P1的坐標為(a,),當x=2a時,,∴P2的坐標為(2a,),……∴Rt△P1B1P2的面積為,Rt△P2B2P3的面積為,Rt△P3B3P4的面積為,……∴Rt△Pn-1Bn-1Pn的面積為.故答案為:18、【解析】【分析】若設甲每小時檢測個,檢測時間為,乙每小時檢測個,檢測時間為,根據(jù)甲檢測300個比乙檢測200個所用的時間少,列出方程即可.【解答】若設甲每小時檢測個,檢測時間為,乙每小時檢測個,檢測時間為,根據(jù)題意有:.故答案為【點評】考查分式方程的應用,解題的關鍵是找出題目中的等量關系.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)1;(2)【解析】

(1)設口袋中黃球的個數(shù)為x個,根據(jù)從中任意摸出一個球是紅球的概率為和概率公式列出方程,解方程即可求得答案;(2)根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與兩次摸出都是紅球的情況,再利用概率公式即可求得答案;【詳解】解:(1)設口袋中黃球的個數(shù)為個,根據(jù)題意得:解得:=1經(jīng)檢驗:=1是原分式方程的解∴口袋中黃球的個數(shù)為1個(2)畫樹狀圖得:∵共有12種等可能的結(jié)果,兩次摸出都是紅球的有2種情況∴兩次摸出都是紅球的概率為:.【點睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.20、(1)詳見解析(2)2400【解析】

(1)求出組距,然后利用37.5加上組距就是a的值;根據(jù)頻數(shù)分布直方圖即可求得m的值,然后利用總?cè)藬?shù)100減去其它各組的人數(shù)就是n的值.(2)利用總?cè)藬?shù)4000乘以優(yōu)秀的人數(shù)所占的比例即可求得優(yōu)秀的人數(shù).【詳解】解:(1)組距是:37.5﹣32.5=5,則a=37.5+5=42.5;根據(jù)頻數(shù)分布直方圖可得:m=12;則n=100﹣4﹣12﹣24﹣36﹣4=1.補全頻數(shù)分布直方圖如下:(2)∵優(yōu)秀的人數(shù)所占的比例是:=0.6,∴該縣中考體育成績優(yōu)秀學生人數(shù)約為:4000×0.6=2400(人)21、(1)長為18米、寬為7米或長為14米、寬為9米;(1)若籬笆再增加4m,圍成的矩形花圃面積不能達到172m1.【解析】

(1)假設能,設AB的長度為x米,則BC的長度為(31﹣1x)米,再根據(jù)矩形面積公式列方程求解即可得到答案.(1)假設能,設AB的長度為y米,則BC的長度為(36﹣1y)米,再根據(jù)矩形面積公式列方程,求得方程無解,即假設不成立.【詳解】(1)假設能,設AB的長度為x米,則BC的長度為(31﹣1x)米,根據(jù)題意得:x(31﹣1x)=116,解得:x1=7,x1=9,∴31﹣1x=18或31﹣1x=14,∴假設成立,即長為18米、寬為7米或長為14米、寬為9米.(1)假設能,設AB的長度為y米,則BC的長度為(36﹣1y)米,根據(jù)題意得:y(36﹣1y)=172,整理得:y1﹣18y+85=2.∵△=(﹣18)1﹣4×1×85=﹣16<2,∴該方程無解,∴假設不成立,即若籬笆再增加4m,圍成的矩形花圃面積不能達到172m1.22、【解析】

過A作一條水平線,分別過B,C兩點作這條水平線的垂線,垂足分別為D,E,由后坡度AB與前坡度AC相等知∠BAD=∠CAE=30°,從而得出BD=2、CE=3,據(jù)此可得.【詳解】解:過A作一條水平線,分別過B,C兩點作這條水平線的垂線,垂足分別為D,E,

∵房子后坡度AB與前坡度AC相等,

∴∠BAD=∠CAE,

∵∠BAC=120°,

∴∠BAD=∠CAE=30°,

在直角△ABD中,AB=4米,

∴BD=2米,

在直角△ACE中,AC=6米,

∴CE=3米,

∴a-b=1米.【點睛】本題考查了解直角三角形的應用-坡度坡角問題,解題的關鍵是根據(jù)題意構(gòu)建直角三角形,并熟練掌握坡度坡角的概念.23、(1);(2)-.【解析】

(1)先通分,再根據(jù)同分母的分式相加減求出即可;(2)根據(jù)根與系數(shù)的關系即可得出結(jié)論.【詳解】(1)A=﹣==;(2)∵a,b是方程的兩個根,∴a+b=4,ab=-12,∴.【點睛】本題考查了分式的加減和根與系數(shù)的關系,能正確根據(jù)分式的運算法則進行化簡是解答此題的關鍵.24、見解析.【解析】試題分析:先做出∠AOB的角平分線,再求出線段MN的垂直平分線就得到點P.試題解析:考點:尺規(guī)作圖角平分線和線段的垂直平分線、圓的性質(zhì).25、(1)BD=CD=5;(2)BD=5,BC=5.【解析】

(1)利用圓周角定理可以判定△DCB是等腰直角三角形,利用勾股定理即可解決問題;(2)如圖②,連接OB,OD.由圓周角定理、角平分線的性質(zhì)以及等邊三角形的判定推知△OBD是等邊三角形,則BD=OB=OD=5,再根據(jù)垂徑定理求出BE即可解決問題.【詳解】(1)∵BC是⊙O的直徑,∴∠CAB=∠BDC=90°.∵AD平分∠CAB,∴,∴CD=BD.在直角△BDC中,BC=10,CD2+BD2=BC2,∴BD=CD=5,(2)如圖②,連接OB,OD,OC,∵AD平分∠CAB,且∠CAB=60°,∴∠DAB=∠CAB=30°,∴∠DOB=2∠DAB=60°.又∵OB=OD,∴△OBD是等邊三角形,∴BD=OB=OD.∵⊙O的直徑為10,則OB=5

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論