河北保定一中2025年高三第二次階段性素質(zhì)測試數(shù)學試題含解析_第1頁
河北保定一中2025年高三第二次階段性素質(zhì)測試數(shù)學試題含解析_第2頁
河北保定一中2025年高三第二次階段性素質(zhì)測試數(shù)學試題含解析_第3頁
河北保定一中2025年高三第二次階段性素質(zhì)測試數(shù)學試題含解析_第4頁
河北保定一中2025年高三第二次階段性素質(zhì)測試數(shù)學試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

河北保定一中2025年高三第二次階段性素質(zhì)測試數(shù)學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若復數(shù),,其中是虛數(shù)單位,則的最大值為()A. B. C. D.2.對于正在培育的一顆種子,它可能1天后發(fā)芽,也可能2天后發(fā)芽,….下表是20顆不同種子發(fā)芽前所需培育的天數(shù)統(tǒng)計表,則這組種子發(fā)芽所需培育的天數(shù)的中位數(shù)是()發(fā)芽所需天數(shù)1234567種子數(shù)43352210A.2 B.3 C.3.5 D.43.在平面直角坐標系中,經(jīng)過點,漸近線方程為的雙曲線的標準方程為()A. B. C. D.4.一個四棱錐的三視圖如圖所示(其中主視圖也叫正視圖,左視圖也叫側(cè)視圖),則這個四棱錐中最最長棱的長度是().A. B. C. D.5.設(shè)F為雙曲線C:(a>0,b>0)的右焦點,O為坐標原點,以O(shè)F為直徑的圓與圓x2+y2=a2交于P、Q兩點.若|PQ|=|OF|,則C的離心率為A. B.C.2 D.6.等差數(shù)列的前項和為,若,,則數(shù)列的公差為()A.-2 B.2 C.4 D.77.若,滿足約束條件,則的取值范圍為()A. B. C. D.8.若為虛數(shù)單位,則復數(shù),則在復平面內(nèi)對應(yīng)的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.設(shè),,,則()A. B. C. D.10.已知函數(shù)的圖像上有且僅有四個不同的點關(guān)于直線的對稱點在的圖像上,則實數(shù)的取值范圍是()A. B. C. D.11.關(guān)于圓周率,數(shù)學發(fā)展史上出現(xiàn)過許多很有創(chuàng)意的求法,如著名的蒲豐實驗和查理斯實驗.受其啟發(fā),某同學通過下面的隨機模擬方法來估計的值:先用計算機產(chǎn)生個數(shù)對,其中,都是區(qū)間上的均勻隨機數(shù),再統(tǒng)計,能與構(gòu)成銳角三角形三邊長的數(shù)對的個數(shù)﹔最后根據(jù)統(tǒng)計數(shù)來估計的值.若,則的估計值為()A. B. C. D.12.的展開式中的項的系數(shù)為()A.120 B.80 C.60 D.40二、填空題:本題共4小題,每小題5分,共20分。13.(5分)國家禁毒辦于2019年11月5日至12月15日在全國青少年毒品預(yù)防教育數(shù)字化網(wǎng)絡(luò)平臺上開展2019年全國青少年禁毒知識答題活動,活動期間進入答題專區(qū),點擊“開始答題”按鈕后,系統(tǒng)自動生成20道題.已知某校高二年級有甲、乙、丙、丁、戊五位同學在這次活動中答對的題數(shù)分別是,則這五位同學答對題數(shù)的方差是____________.14.(5分)已知,且,則的值是____________.15.設(shè),若函數(shù)有大于零的極值點,則實數(shù)的取值范圍是_____16.在正方體中,分別為棱的中點,則直線與直線所成角的正切值為_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在直三棱柱中,分別是中點,且,.求證:平面;求點到平面的距離.18.(12分)已知拋物線的準線過橢圓C:(a>b>0)的左焦點F,且點F到直線l:(c為橢圓焦距的一半)的距離為4.(1)求橢圓C的標準方程;(2)過點F做直線與橢圓C交于A,B兩點,P是AB的中點,線段AB的中垂線交直線l于點Q.若,求直線AB的方程.19.(12分)已知函數(shù).(1)當時,求的單調(diào)區(qū)間.(2)設(shè)直線是曲線的切線,若的斜率存在最小值-2,求的值,并求取得最小斜率時切線的方程.(3)已知分別在,處取得極值,求證:.20.(12分)2019年春節(jié)期間,某超市準備舉辦一次有獎促銷活動,若顧客一次消費達到400元則可參加一次抽獎活動,超市設(shè)計了兩種抽獎方案.方案一:一個不透明的盒子中裝有30個質(zhì)地均勻且大小相同的小球,其中10個紅球,20個白球,攪拌均勻后,顧客從中隨機抽取一個球,若抽到紅球則顧客獲得60元的返金券,若抽到白球則獲得20元的返金券,且顧客有放回地抽取3次.方案二:一個不透明的盒子中裝有30個質(zhì)地均勻且大小相同的小球,其中10個紅球,20個白球,攪拌均勻后,顧客從中隨機抽取一個球,若抽到紅球則顧客獲得80元的返金券,若抽到白球則未中獎,且顧客有放回地抽取3次.(1)現(xiàn)有兩位顧客均獲得抽獎機會,且都按方案一抽獎,試求這兩位顧客均獲得180元返金券的概率;(2)若某顧客獲得抽獎機會.①試分別計算他選擇兩種抽獎方案最終獲得返金券的數(shù)學期望;②為了吸引顧客消費,讓顧客獲得更多金額的返金券,該超市應(yīng)選擇哪一種抽獎方案進行促銷活動?21.(12分)設(shè)函數(shù).(1)解不等式;(2)記的最大值為,若實數(shù)、、滿足,求證:.22.(10分)在中,角,,所對的邊分別為,,,已知,,角為銳角,的面積為.(1)求角的大小;(2)求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

由復數(shù)的幾何意義可得表示復數(shù),對應(yīng)的兩點間的距離,由兩點間距離公式即可求解.【詳解】由復數(shù)的幾何意義可得,復數(shù)對應(yīng)的點為,復數(shù)對應(yīng)的點為,所以,其中,故選C本題主要考查復數(shù)的幾何意義,由復數(shù)的幾何意義,將轉(zhuǎn)化為兩復數(shù)所對應(yīng)點的距離求值即可,屬于基礎(chǔ)題型.2.C【解析】

根據(jù)表中數(shù)據(jù),即可容易求得中位數(shù).【詳解】由圖表可知,種子發(fā)芽天數(shù)的中位數(shù)為,故選:C.本題考查中位數(shù)的計算,屬基礎(chǔ)題.3.B【解析】

根據(jù)所求雙曲線的漸近線方程為,可設(shè)所求雙曲線的標準方程為k.再把點代入,求得k的值,可得要求的雙曲線的方程.【詳解】∵雙曲線的漸近線方程為設(shè)所求雙曲線的標準方程為k.又在雙曲線上,則k=16-2=14,即雙曲線的方程為∴雙曲線的標準方程為故選:B本題主要考查用待定系數(shù)法求雙曲線的方程,雙曲線的定義和標準方程,以及雙曲線的簡單性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.4.A【解析】

作出其直觀圖,然后結(jié)合數(shù)據(jù)根據(jù)勾股定定理計算每一條棱長即可.【詳解】根據(jù)三視圖作出該四棱錐的直觀圖,如圖所示,其中底面是直角梯形,且,,平面,且,∴,,,,∴這個四棱錐中最長棱的長度是.故選.本題考查了四棱錐的三視圖的有關(guān)計算,正確還原直觀圖是解題關(guān)鍵,屬于基礎(chǔ)題.5.A【解析】

準確畫圖,由圖形對稱性得出P點坐標,代入圓的方程得到c與a關(guān)系,可求雙曲線的離心率.【詳解】設(shè)與軸交于點,由對稱性可知軸,又,為以為直徑的圓的半徑,為圓心.,又點在圓上,,即.,故選A.本題為圓錐曲線離心率的求解,難度適中,審題時注意半徑還是直徑,優(yōu)先考慮幾何法,避免代數(shù)法從頭至尾,運算繁瑣,準確率大大降低,雙曲線離心率問題是圓錐曲線中的重點問題,需強化練習,才能在解決此類問題時事半功倍,信手拈來.6.B【解析】

在等差數(shù)列中由等差數(shù)列公式與下標和的性質(zhì)求得,再由等差數(shù)列通項公式求得公差.【詳解】在等差數(shù)列的前項和為,則則故選:B本題考查等差數(shù)列中求由已知關(guān)系求公差,屬于基礎(chǔ)題.7.B【解析】

根據(jù)約束條件作出可行域,找到使直線的截距取最值得點,相應(yīng)坐標代入即可求得取值范圍.【詳解】畫出可行域,如圖所示:由圖可知,當直線經(jīng)過點時,取得最小值-5;經(jīng)過點時,取得最大值5,故.故選:B本題考查根據(jù)線性規(guī)劃求范圍,屬于基礎(chǔ)題.8.B【解析】

首先根據(jù)特殊角的三角函數(shù)值將復數(shù)化為,求出,再利用復數(shù)的幾何意義即可求解.【詳解】,,則在復平面內(nèi)對應(yīng)的點的坐標為,位于第二象限.故選:B本題考查了復數(shù)的幾何意義、共軛復數(shù)的概念、特殊角的三角函數(shù)值,屬于基礎(chǔ)題.9.A【解析】

先利用換底公式將對數(shù)都化為以2為底,利用對數(shù)函數(shù)單調(diào)性可比較,再由中間值1可得三者的大小關(guān)系.【詳解】,,,因此,故選:A.本題主要考查了利用對數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性比較大小,屬于基礎(chǔ)題.10.A【解析】

可將問題轉(zhuǎn)化,求直線關(guān)于直線的對稱直線,再分別討論兩函數(shù)的增減性,結(jié)合函數(shù)圖像,分析臨界點,進一步確定的取值范圍即可【詳解】可求得直線關(guān)于直線的對稱直線為,當時,,,當時,,則當時,,單減,當時,,單增;當時,,,當,,當時,單減,當時,單增;根據(jù)題意畫出函數(shù)大致圖像,如圖:當與()相切時,得,解得;當與()相切時,滿足,解得,結(jié)合圖像可知,即,故選:A本題考查數(shù)形結(jié)合思想求解函數(shù)交點問題,導數(shù)研究函數(shù)增減性,找準臨界是解題的關(guān)鍵,屬于中檔題11.B【解析】

先利用幾何概型的概率計算公式算出,能與構(gòu)成銳角三角形三邊長的概率,然后再利用隨機模擬方法得到,能與構(gòu)成銳角三角形三邊長的概率,二者概率相等即可估計出.【詳解】因為,都是區(qū)間上的均勻隨機數(shù),所以有,,若,能與構(gòu)成銳角三角形三邊長,則,由幾何概型的概率計算公式知,所以.故選:B.本題考查幾何概型的概率計算公式及運用隨機數(shù)模擬法估計概率,考查學生的基本計算能力,是一個中檔題.12.A【解析】

化簡得到,再利用二項式定理展開得到答案.【詳解】展開式中的項為.故選:本題考查了二項式定理,意在考查學生的計算能力.二、填空題:本題共4小題,每小題5分,共20分。13.2【解析】

由這五位同學答對的題數(shù)分別是,得該組數(shù)據(jù)的平均數(shù),則方差.14.【解析】

由于,且,則,得,則.15.【解析】

先求導數(shù),求解導數(shù)為零的根,結(jié)合根的分布求解.【詳解】因為,所以,令得,因為函數(shù)有大于0的極值點,所以,即.本題主要考查利用導數(shù)研究函數(shù)的極值點問題,極值點為導數(shù)的變號零點,側(cè)重考查轉(zhuǎn)化化歸思想.16.【解析】

由中位線定理和正方體性質(zhì)得,從而作出異面直線所成的角,在三角形中計算可得.【詳解】如圖,連接,,,∵分別為棱的中點,∴,又正方體中,即是平行四邊形,∴,∴,(或其補角)就是直線與直線所成角,是等邊三角形,∴=60°,其正切值為.故答案為:.本題考查異面直線所成的角,解題關(guān)鍵是根據(jù)定義作出異面直線所成的角.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)詳見解析;(2).【解析】

(1)利用線面垂直的判定定理和性質(zhì)定理即可證明;(2)取中點為,則,證得平面,利用等體積法求解即可.【詳解】(1)因為,,,是的中點,,為直三棱柱,所以平面,因為為中點,所以平面,,又,平面(2),又分別是中點,.由(1)知,,又平面,取中點為,連接如圖,則,平面,設(shè)點到平面的距離為,由,得,即,解得,點到平面的距離為.本題考查線面垂直的判定定理和性質(zhì)定理、等體積法求點到面的距離;考查邏輯推理能力和運算求解能力;熟練掌握線面垂直的判定定理和性質(zhì)定理是求解本題的關(guān)鍵;屬于中檔題.18.(1);(2)或.【解析】

(1)由拋物線的準線方程求出的值,確定左焦點坐標,再由點F到直線l:的距離為4,求出即可;(2)設(shè)直線方程,與橢圓方程聯(lián)立,運用根與系數(shù)關(guān)系和弦長公式,以及兩直線垂直的條件和中點坐標公式,即可得到所求直線的方程.【詳解】(1)拋物線的準線方程為,,直線,點F到直線l的距離為,,所以橢圓的標準方程為;(2)依題意斜率不為0,又過點,設(shè)方程為,聯(lián)立,消去得,,,設(shè),,,,線段AB的中垂線交直線l于點Q,所以橫坐標為3,,,,平方整理得,解得或(舍去),,所求的直線方程為或.本題考查橢圓的方程以及直線與橢圓的位置關(guān)系,要熟練應(yīng)用根與系數(shù)關(guān)系、相交弦長公式,合理運用兩點間的距離公式,考查計算求解能力,屬于中檔題.19.(1)單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;(2),;(3)證明見解析.【解析】

(1)由的正負可確定的單調(diào)區(qū)間;(2)利用基本不等式可求得時,取得最小值,由導數(shù)的幾何意義可知,從而求得,求得切點坐標后,可得到切線方程;(3)由極值點的定義可知是的兩個不等正根,由判別式大于零得到的取值范圍,同時得到韋達定理的形式;化簡為,結(jié)合的范圍可證得結(jié)論.【詳解】(1)由題意得:的定義域為,當時,,,當和時,;當時,,的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為.(2),所以(當且僅當,即時取等號),切線的斜率存在最小值,,解得:,,即切點為,從而切線方程,即:.(3),分別在,處取得極值,,是方程,即的兩個不等正根.則,解得:,且,.,,,即不等式成立.本題考查導數(shù)在研究函數(shù)中的應(yīng)用,涉及到利用導數(shù)求解函數(shù)的單調(diào)區(qū)間、導數(shù)幾何意義的應(yīng)用、利用導數(shù)證明不等式等知識;本題中證明不等式的關(guān)鍵是能夠通過極值點的定義將問題轉(zhuǎn)變?yōu)橐辉畏匠谈姆植紗栴}.20.(1)(2)①②第一種抽獎方案.【解析】

(1)方案一中每一次摸到紅球的概率為,每名顧客有放回的抽3次獲180元返金劵的概率為,根據(jù)相互獨立事件的概率可知兩顧客都獲得180元返金劵的概率(2)①分別計算方案一,方案二顧客獲返金卷的期望,方案一列出分布列計算即可,方案二根據(jù)二項分布計算期望即可②根據(jù)①得出結(jié)論.【詳解】(1)選擇方案一,則每一次摸到紅球的概率為設(shè)“每位顧客獲得180元返金劵”為事件A,則所以兩位顧客均獲得180元返金劵的概率(2)①若選擇抽獎方案一,則每一次摸到紅球的概率為,每一次摸到白球的概率為.設(shè)獲得返金劵金額為元,則可能的取值為60,100,140,180.則;;;.所以選擇抽獎方案一,該顧客獲得返金劵金額的數(shù)學期望為(元)若選擇抽獎方案二,設(shè)三次摸球的過程中,摸到紅球的次數(shù)為,最終獲得返金

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論