廣東省深圳市南山區(qū)南山中學英文校2023-2024學年中考數(shù)學仿真試卷含解析_第1頁
廣東省深圳市南山區(qū)南山中學英文校2023-2024學年中考數(shù)學仿真試卷含解析_第2頁
廣東省深圳市南山區(qū)南山中學英文校2023-2024學年中考數(shù)學仿真試卷含解析_第3頁
廣東省深圳市南山區(qū)南山中學英文校2023-2024學年中考數(shù)學仿真試卷含解析_第4頁
廣東省深圳市南山區(qū)南山中學英文校2023-2024學年中考數(shù)學仿真試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

廣東省深圳市南山區(qū)南山中學英文校2023-2024學年中考數(shù)學仿真試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.下列運算正確的是()A.a(chǎn)4+a2=a4 B.(x2y)3=x6y3C.(m﹣n)2=m2﹣n2 D.b6÷b2=b32.如圖,兩根竹竿AB和AD斜靠在墻CE上,量得∠ABC=,∠ADC=,則竹竿AB與AD的長度之比為A. B. C. D.3.的負倒數(shù)是()A. B.- C.3 D.﹣34.已知二次函數(shù)(為常數(shù)),當自變量的值滿足時,與其對應的函數(shù)值的最小值為4,則的值為()A.1或5 B.或3 C.或1 D.或55.關于x的不等式組的所有整數(shù)解是()A.0,1 B.﹣1,0,1 C.0,1,2 D.﹣2,0,1,26.如圖,Rt△AOB中,∠AOB=90°,OA在x軸上,OB在y軸上,點A、B的坐標分別為(,0),(0,1),把Rt△AOB沿著AB對折得到Rt△AO′B,則點O′的坐標為()A. B. C. D.7.下列運算正確的是()A.a(chǎn)3+a3=a6 B.a(chǎn)6÷a2=a4 C.a(chǎn)3?a5=a15 D.(a3)4=a78.如圖,以兩條直線l1,l2的交點坐標為解的方程組是()A. B. C. D.9.下列運算正確的是()A.2a﹣a=1B.2a+b=2abC.(a4)3=a7D.(﹣a)2?(﹣a)3=﹣a510.共享單車為市民短距離出行帶來了極大便利.據(jù)2017年“深圳互聯(lián)網(wǎng)自行車發(fā)展評估報告”披露,深圳市日均使用共享單車2590000人次,其中2590000用科學記數(shù)法表示為()A.259×104 B.25.9×105 C.2.59×106 D.0.259×107二、填空題(本大題共6個小題,每小題3分,共18分)11.若點A(1,m)在反比例函數(shù)y=的圖象上,則m的值為________.12.如圖,學校環(huán)保社成員想測量斜坡CD旁一棵樹AB的高度,他們先在點C處測得樹頂B的仰角為60°,然后在坡頂D測得樹頂B的仰角為30°,已知DE⊥EA,斜坡CD的長度為30m,DE的長為15m,則樹AB的高度是_____m.13.如圖,等腰△ABC的周長為21,底邊BC=5,AB的垂直平分線DE交AB于點D,交AC于點E,則△BEC的周長為____.14.如圖,在平面直角坐標系中,四邊形OABC是邊長為2的正方形,頂點A、C分別在x軸、y軸的正半軸上,點Q在對角線OB上,若OQ=OC,則點Q的坐標為_______.15.計算(x4)2的結果等于_____.16.已知整數(shù)k<5,若△ABC的邊長均滿足關于x的方程,則△ABC的周長是.三、解答題(共8題,共72分)17.(8分)太原市志愿者服務平臺旨在弘揚“奉獻、關愛、互助、進步”的志愿服務精神,培育志思服務文化,推動太原市志愿服務的制度化、常態(tài)化,弘揚社會正能量,截止到2018年5月9日16:00,在該平臺注冊的志愿組織數(shù)達2678個,志愿者人數(shù)達247951人,組織志愿活動19748次,累計志愿服務時間3889241小時,學校為了解共青團員志愿服務情況,調(diào)查小組根據(jù)平臺數(shù)據(jù)進行了抽樣問卷調(diào)查,過程如下:(1)收集、整理數(shù)據(jù):從九年級隨機抽取40名共青團員,將其志愿服務時間按如下方式分組(A:0~5小時;B:5~10小時;C:10~15小時;D:15~20小時;E:20~25小時;F:25~30小時,注:每組含最小值,不含最大值)得到這40名志愿者服務時間如下:BDEACEDBFCDDDBECDEEFAFFADCDBDFCFDECEEECE并將上述數(shù)據(jù)整理在如下的頻數(shù)分布表中,請你補充其中的數(shù)據(jù):志愿服務時間ABCDEF頻數(shù)34107(2)描述數(shù)據(jù):根據(jù)上面的頻數(shù)分布表,小明繪制了如下的頻數(shù)直方圖(圖1),請將空缺的部分補充完整;(3)分析數(shù)據(jù):①調(diào)查小組從八年級共青團員中隨機抽取40名,將他們的志愿服務時間按(1)題的方式整理后,畫出如圖2的扇形統(tǒng)計圖.請你對比八九年級的統(tǒng)計圖,寫出一個結論;②校團委計劃組織志愿服務時間不足10小時的團員參加義務勞動,根據(jù)上述信息估計九年級200名團員中參加此次義務勞動的人數(shù)約為人;(4)問題解決:校團委計劃組織中考志愿服務活動,共甲、乙、丙三個服務點,八年級的小穎和小文任意選擇一個服務點參與志服務,求兩人恰好選在同一個服務點的概率.18.(8分)周末,甲、乙兩名大學生騎自行車去距學校6000米的凈月潭公園.兩人同時從學校出發(fā),以a米/分的速度勻速行駛.出發(fā)4.5分鐘時,甲同學發(fā)現(xiàn)忘記帶學生證,以1.5a米/分的速度按原路返回學校,取完學生證(在學校取學生證所用時間忽略不計),繼續(xù)以返回時的速度追趕乙.甲追上乙后,兩人以相同的速度前往凈月潭.乙騎自行車的速度始終不變.設甲、乙兩名大學生距學校的路程為s(米),乙同學行駛的時間為t(分),s與t之間的函數(shù)圖象如圖所示.(1)求a、b的值.(2)求甲追上乙時,距學校的路程.(3)當兩人相距500米時,直接寫出t的值是.19.(8分)如圖,的直角頂點P在第四象限,頂點A、B分別落在反比例函數(shù)圖象的兩支上,且軸于點C,軸于點D,AB分別與x軸,y軸相交于點F和已知點B的坐標為.填空:______;證明:;當四邊形ABCD的面積和的面積相等時,求點P的坐標.20.(8分)如圖1,在直角梯形ABCD中,動點P從B點出發(fā),沿B→C→D→A勻速運動,設點P運動的路程為x,△ABP的面積為y,圖象如圖2所示.(1)在這個變化中,自變量、因變量分別是、;(2)當點P運動的路程x=4時,△ABP的面積為y=;(3)求AB的長和梯形ABCD的面積.21.(8分)濟南國際滑雪自建成以來,吸引大批滑雪愛好者,一滑雪者從山坡滑下,測得滑行距離y(單位:m)與滑行時間x(單位:s)之間的關系可以近似的用二次函數(shù)來表示.滑行時間x/s0123…滑行距離y/m041224…(1)根據(jù)表中數(shù)據(jù)求出二次函數(shù)的表達式.現(xiàn)測量出滑雪者的出發(fā)點與終點的距離大約840m,他需要多少時間才能到達終點?將得到的二次函數(shù)圖象補充完整后,向左平移2個單位,再向下平移5個單位,求平移后的函數(shù)表達式.22.(10分)解分式方程:.23.(12分)在同一副撲克牌中取出6張撲克牌,分別是黑桃2、4、6,紅心6、7、8.將撲克牌背面朝上分別放在甲、乙兩張桌面上,先從甲桌面上任意摸出一張黑桃,再從乙桌面上任意摸出一張紅心.表示出所有可能出現(xiàn)的結果;小黃和小石做游戲,制定了兩個游戲規(guī)則:規(guī)則1:若兩次摸出的撲克牌中,至少有一張是“6”,小黃贏;否則,小石贏.規(guī)則2:若摸出的紅心牌點數(shù)是黑桃牌點數(shù)的整數(shù)倍時,小黃贏;否則,小石贏.小黃想要在游戲中獲勝,會選擇哪一條規(guī)則,并說明理由.24.如圖,已知點D、E為△ABC的邊BC上兩點.AD=AE,BD=CE,為了判斷∠B與∠C的大小關系,請你填空完成下面的推理過程,并在空白括號內(nèi)注明推理的依據(jù).解:過點A作AH⊥BC,垂足為H.∵在△ADE中,AD=AE(已知)AH⊥BC(所作)∴DH=EH(等腰三角形底邊上的高也是底邊上的中線)又∵BD=CE(已知)∴BD+DH=CE+EH(等式的性質(zhì))即:BH=又∵(所作)∴AH為線段的垂直平分線∴AB=AC(線段垂直平分線上的點到線段兩個端點的距離相等)∴(等邊對等角)

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】分析:根據(jù)合并同類項,積的乘方,完全平方公式,同底數(shù)冪相除的性質(zhì),逐一計算判斷即可.詳解:根據(jù)同類項的定義,可知a4與a2不是同類項,不能計算,故不正確;根據(jù)積的乘方,等于個個因式分別乘方,可得(x2y)3=x6y3,故正確;根據(jù)完全平方公式,可得(m-n)2=m2-2mn+n2,故不正確;根據(jù)同底數(shù)冪的除法,可知b6÷b2=b4,不正確.故選B.點睛:此題主要考查了合并同類項,積的乘方,完全平方公式,同底數(shù)冪相除的性質(zhì),熟記并靈活運用是解題關鍵.2、B【解析】

在兩個直角三角形中,分別求出AB、AD即可解決問題;【詳解】在Rt△ABC中,AB=,在Rt△ACD中,AD=,∴AB:AD=:=,故選B.【點睛】本題考查解直角三角形的應用、銳角三角函數(shù)等知識,解題的關鍵是學會利用參數(shù)解決問題.3、D【解析】

根據(jù)倒數(shù)的定義,互為倒數(shù)的兩數(shù)乘積為1,2×=1.再求出2的相反數(shù)即可解答.【詳解】根據(jù)倒數(shù)的定義得:2×=1.

因此的負倒數(shù)是-2.

故選D.【點睛】本題考查了倒數(shù),解題的關鍵是掌握倒數(shù)的概念.4、D【解析】

由解析式可知該函數(shù)在時取得最小值0,拋物線開口向上,當時,y隨x的增大而增大;當時,y隨x的增大而減??;根據(jù)時,函數(shù)的最小值為4可分如下三種情況:①若,時,y取得最小值4;②若-1<h<3時,當x=h時,y取得最小值為0,不是4;③若,當x=3時,y取得最小值4,分別列出關于h的方程求解即可.【詳解】解:∵當x>h時,y隨x的增大而增大,當時,y隨x的增大而減小,并且拋物線開口向上,

∴①若,當時,y取得最小值4,

可得:4,

解得或(舍去);

②若-1<h<3時,當x=h時,y取得最小值為0,不是4,

∴此種情況不符合題意,舍去;

③若-1≤x≤3<h,當x=3時,y取得最小值4,

可得:,

解得:h=5或h=1(舍).

綜上所述,h的值為-3或5,

故選:D.【點睛】本題主要考查二次函數(shù)的性質(zhì)和最值,根據(jù)二次函數(shù)的性質(zhì)和最值分類討論是解題的關鍵.5、B【解析】

分別求出每一個不等式的解集,根據(jù)口訣:同大取大、同小取小、大小小大中間找、大大小小無解了確定不等式組的解集,據(jù)此即可得出答案.【詳解】解不等式﹣2x<4,得:x>﹣2,解不等式3x﹣5<1,得:x<2,則不等式組的解集為﹣2<x<2,所以不等式組的整數(shù)解為﹣1、0、1,故選:B.【點睛】考查的是解一元一次不等式組,正確求出每一個不等式解集是基礎,熟知“同大取大;同小取??;大小小大中間找;大大小小找不到”的原則是解答此題的關鍵.6、B【解析】

連接OO′,作O′H⊥OA于H.只要證明△OO′A是等邊三角形即可解決問題.【詳解】連接OO′,作O′H⊥OA于H,在Rt△AOB中,∵tan∠BAO==,∴∠BAO=30°,由翻折可知,∠BAO′=30°,∴∠OAO′=60°,∵AO=AO′,∴△AOO′是等邊三角形,∵O′H⊥OA,∴OH=,∴OH′=OH=,∴O′(,),

故選B.【點睛】本題考查翻折變換、坐標與圖形的性質(zhì)、等邊三角形的判定和性質(zhì)、銳角三角函數(shù)等知識,解題的關鍵是發(fā)現(xiàn)特殊三角形,利用特殊三角形解決問題.7、B【解析】

根據(jù)同底數(shù)冪的乘法、除法、冪的乘方依次計算即可得到答案.【詳解】A、a3+a3=2a3,故A錯誤;B、a6÷a2=a4,故B正確;C、a3?a5=a8,故C錯誤;D、(a3)4=a12,故D錯誤.故選:B.【點睛】此題考查整式的計算,正確掌握同底數(shù)冪的乘法、除法、冪的乘方的計算方法是解題的關鍵.8、C【解析】

兩條直線的交點坐標應該是聯(lián)立兩個一次函數(shù)解析式所組成的方程組的解.因此本題需先根據(jù)兩直線經(jīng)過的點的坐標,用待定系數(shù)法求出兩直線的解析式.然后聯(lián)立兩函數(shù)的解析式可得出所求的方程組.【詳解】直線l1經(jīng)過(2,3)、(0,-1),易知其函數(shù)解析式為y=2x-1;直線l2經(jīng)過(2,3)、(0,1),易知其函數(shù)解析式為y=x+1;因此以兩條直線l1,l2的交點坐標為解的方程組是:.故選C.【點睛】本題主要考查了函數(shù)解析式與圖象的關系,滿足解析式的點就在函數(shù)的圖象上,在函數(shù)的圖象上的點,就一定滿足函數(shù)解析式.函數(shù)圖象交點坐標為兩函數(shù)解析式組成的方程組的解.9、D【解析】【分析】根據(jù)合并同類項,冪的乘方,同底數(shù)冪的乘法的計算法則解答.【詳解】A、2a﹣a=a,故本選項錯誤;B、2a與b不是同類項,不能合并,故本選項錯誤;C、(a4)3=a12,故本選項錯誤;D、(﹣a)2?(﹣a)3=﹣a5,故本選項正確,故選D.【點睛】本題考查了合并同類項、冪的乘方、同底數(shù)冪的乘法,熟練掌握各運算的運算法則是解題的關鍵.10、C【解析】

絕對值大于1的正數(shù)可以科學計數(shù)法,a×10n,即可得出答案.【詳解】n由左邊第一個不為0的數(shù)字前面的0的個數(shù)決定,所以此處n=6.【點睛】本題考查了科學計數(shù)法的運用,熟悉掌握是解決本題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、3【解析】試題解析:把A(1,m)代入y=得:m=3.所以m的值為3.12、1【解析】

先根據(jù)CD=20米,DE=10m得出∠DCE=30°,故可得出∠DCB=90°,再由∠BDF=30°可知∠DBE=60°,由DF∥AE可得出∠BGF=∠BCA=60°,故∠GBF=30°,所以∠DBC=30°,再由銳角三角函數(shù)的定義即可得出結論.【詳解】解:作DF⊥AB于F,交BC于G.則四邊形DEAF是矩形,∴DE=AF=15m,∵DF∥AE,∴∠BGF=∠BCA=60°,∵∠BGF=∠GDB+∠GBD=60°,∠GDB=30°,∴∠GDB=∠GBD=30°,∴GD=GB,在Rt△DCE中,∵CD=2DE,∴∠DCE=30°,∴∠DCB=90°,∵∠DGC=∠BGF,∠DCG=∠BFG=90°∴△DGC≌△BGF,∴BF=DC=30m,∴AB=30+15=1(m),故答案為1.【點睛】本題考查的是解直角三角形的應用-仰角俯角問題,熟記銳角三角函數(shù)的定義是解答此題的關鍵.13、3【解析】試題分析:因為等腰△ABC的周長為33,底邊BC=5,所以AB=AC=8,又DE垂直平分AB,所以AE=BE,所以△BEC的周長為=BE+CE+BC=AE+CE+BC=AC+BC=8+5=3.考點:3.等腰三角形的性質(zhì);3.垂直平分線的性質(zhì).14、(2,2)【解析】如圖,過點Q作QD⊥OA于點D,∴∠QDO=90°.∵四邊形OABC是正方形,且邊長為2,OQ=OC,∴∠QOA=45°,OQ=OC=2,∴△ODQ是等腰直角三角形,∴OD=OQ=22=2∴點Q的坐標為(215、x1【解析】分析:直接利用冪的乘方運算法則計算得出答案.詳解:(x4)2=x4×2=x1.故答案為x1.點睛:本題主要考查了冪的乘方運算,正確掌握運算法則是解題的關鍵.16、6或12或1.【解析】

根據(jù)題意得k≥0且(3)2﹣4×8≥0,解得k≥.∵整數(shù)k<5,∴k=4.∴方程變形為x2﹣6x+8=0,解得x1=2,x2=4.∵△ABC的邊長均滿足關于x的方程x2﹣6x+8=0,∴△ABC的邊長為2、2、2或4、4、4或4、4、2.∴△ABC的周長為6或12或1.考點:一元二次方程根的判別式,因式分解法解一元二次方程,三角形三邊關系,分類思想的應用.【詳解】請在此輸入詳解!三、解答題(共8題,共72分)17、(1)7,9;(2)見解析;(3)①在15~20小時的人數(shù)最多;②35;(4).【解析】

(1)觀察統(tǒng)計圖即可得解;(2)根據(jù)題意作圖;(3)①根據(jù)兩個統(tǒng)計圖解答即可;②根據(jù)圖1先算出不足10小時的概率再乘以200人即可;(4)根據(jù)題意畫出樹狀圖即可解答.【詳解】解:(1)C的頻數(shù)為7,E的頻數(shù)為9;故答案為7,9;(2)補全頻數(shù)直方圖為:(3)①八九年級共青團員志愿服務時間在15~20小時的人數(shù)最多;②200×=35,所以估計九年級200名團員中參加此次義務勞動的人數(shù)約為35人;故答案為35;(4)畫樹狀圖為:共有9種等可能的結果數(shù),其中兩人恰好選在同一個服務點的結果數(shù)為3,所以兩人恰好選在同一個服務點的概率==.【點睛】本題考查了條形統(tǒng)計圖與扇形統(tǒng)計圖與樹狀圖法,解題的關鍵是熟練的掌握條形統(tǒng)計圖與扇形統(tǒng)計圖與樹狀圖法.18、(1)a的值為200,b的值為30;(2)甲追上乙時,與學校的距離4100米;(3)1.1或17.1.【解析】

(1)根據(jù)速度=路程÷時間,即可解決問題.(2)首先求出甲返回用的時間,再列出方程即可解決問題.(3)分兩種情形列出方程即可解決問題.【詳解】解:(1)由題意a==200,b==30,∴a=200,b=30.(2)+4.1=7.1,設t分鐘甲追上乙,由題意,300(t?7.1)=200t,解得t=22.1,22.1×200=4100,∴甲追上乙時,距學校的路程4100米.(3)兩人相距100米是的時間為t分鐘.由題意:1.1×200(t?4.1)+200(t?4.1)=100,解得t=1.1分鐘,或300(t?7.1)+100=200t,解得t=17.1分鐘,故答案為1.1分鐘或17.1分鐘.點睛:本題主要考查了函數(shù)圖象的讀圖能力和函數(shù)與實際問題結合的應用.要能根據(jù)函數(shù)圖象的性質(zhì)和圖象上的數(shù)據(jù)分析即圖象的變化趨勢得出函數(shù)的類型和所需要的條件,結合實際意義得到正確的結論.19、(1)1;(2)證明見解析;(1)點坐標為.【解析】

由點B的坐標,利用反比例函數(shù)圖象上點的坐標特征可求出k值;設A點坐標為,則D點坐標為,P點坐標為,C點坐標為,進而可得出PB,PC,PA,PD的長度,由四條線段的長度可得出,結合可得出∽,由相似三角形的性質(zhì)可得出,再利用“同位角相等,兩直線平行”可證出;由四邊形ABCD的面積和的面積相等可得出,利用三角形的面積公式可得出關于a的方程,解之取其負值,再將其代入P點的坐標中即可求出結論.【詳解】解:點在反比例函數(shù)的圖象,.故答案為:1.證明:反比例函數(shù)解析式為,設A點坐標為軸于點C,軸于點D,點坐標為,P點坐標為,C點坐標為,,,,,,,.又,∽,,.解:四邊形ABCD的面積和的面積相等,,,整理得:,解得:,舍去,點坐標為.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征、相似三角形的判定與性質(zhì)、平行線的判定以及三角形的面積,解題關鍵是:根據(jù)點的坐標,利用反比例函數(shù)圖象上點的坐標特征求出k值;利用相似三角形的判定定理找出∽;由三角形的面積公式,找出關于a的方程.20、(1)x,y;(2)2;(3)AB=8,梯形ABCD的面積=1.【解析】

(1)依據(jù)點P運動的路程為x,△ABP的面積為y,即可得到自變量和因變量;(2)依據(jù)函數(shù)圖象,即可得到點P運動的路程x=4時,△ABP的面積;(3)根據(jù)圖象得出BC的長,以及此時三角形ABP面積,利用三角形面積公式求出AB的長即可;由函數(shù)圖象得出DC的長,利用梯形面積公式求出梯形ABCD面積即可.【詳解】(1)∵點P運動的路程為x,△ABP的面積為y,∴自變量為x,因變量為y.故答案為x,y;(2)由圖可得:當點P運動的路程x=4時,△ABP的面積為y=2.故答案為2;(3)根據(jù)圖象得:BC=4,此時△ABP為2,∴AB?BC=2,即×AB×4=2,解得:AB=8;由圖象得:DC=9﹣4=5,則S梯形ABCD=×BC×(DC+AB)=×4×(5+8)=1.【點睛】本題考查了動點問題的函數(shù)圖象,弄清函數(shù)圖象上的信息是解答本題的關鍵.21、(1)20s;(2)【解析】

(1)利用待定系數(shù)法求出函數(shù)解析式,再求出y=840時x的值即可得;(2)根據(jù)“上加下減,左加右減”的原則進行解答即可.【詳解】解:(1)∵該拋物線過點(0,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論